Pseudopotentials for interacting atoms

Extended capabilities of pseudopotential approach based on all-electron pseudopotentials

Contents

- Standard pseudopotentials
	- norm-conserving pseudopotentials
	- ultrasoft pseudopotentials
- Desirable pseudopotential properties
	- "softness"
	- "transferability"
- All-electron pseudopotentials
	- construction process
	- properties, comparison to standard pseudopotentials

What is pseudopotential:

operator simulating the effect (within LDA): of [NUCLEUS ⁺ CORE ELECTRONS] on electronic states in the energy range of interest, e.g. valence states, unoccupied states (LDA!) (i.e. not on any state !!!) in the real-space region significant for chemical bonds

Requirements, expected properties:

- **•** "sufficient" accuracy in wide energy range (transferability)
- real merit to computational efficiency and/or accuracy
	- by reducing the basis set size (compared to AE)
	- **by eliminating large energies of core states**

Standard pseudopotentials - history

- **•** Empirical pseudopotentials parameters tuned so that PSP give "good results" for some particular structure; then PSP is assumed to be transferable to another structure
- Ab-initio pseudopotentials
	- 1. free atom calculation; for the atomic state of interest
	- 2. construct pseudowavefunction for a given l and E

$$
\psi_{l,E}^{\rm PS}(r) \equiv \psi_{l,E}^{\rm AE}(r), \ \ r > R_C
$$

- י
,
. E
y 3. obtain pseudopotentials by inverted Schrödinger (Dirac) equation
- 4. "unscreen": $V^{\rm ion}_{l}(r) = V^{\rm scr}_{l}(r) V_{\rm H,XC}$ [$T^n(r) = V_t^{\rm scr}(r) - V_H$ x !"" $\rho^{\rm ps}$ (r) .

Ab-initio pseudopotential

Norm-conserving pseudopotentials \bullet Top and Hopfield [1973], Hamann et al[1979]

$$
\frac{\partial}{\partial \epsilon} \frac{\partial}{\partial r} \ln \psi_{\epsilon,l}(r) \Big|_{\epsilon = E, r = R_C} = \frac{-2}{R_C^2 \psi_{E,l}^2(R_C)} \int_0^{R_C} |\psi_{E,l}(r)|^2 r^2 dr
$$
\n
$$
\sum_{\substack{\epsilon \in \mathbb{N} \\ \epsilon \neq 0}}^{\infty} \sqrt{\frac{1}{\sum_{\substack{\epsilon \in \mathbb{N} \\ \epsilon \neq 0}}^2} \sqrt{\frac
$$

norm-conserving PSP - continued

$$
\int_0^{R_C} \left| \psi_{E,l}^{\text{PS}} \right|^2 r^2 dr = \int_0^{R_C} \left| \psi_{E,l}^{\text{AE}} \right|^2 r^2 dr
$$

$$
\frac{\partial}{\partial \epsilon} \frac{\partial \ln \psi_{\epsilon,l}^{\text{PS}}(r)}{\partial r} \Big|_{\epsilon = E, r = R_C} = \frac{\partial}{\partial \epsilon} \frac{\partial \ln \psi_{\epsilon,l}^{\text{AE}}(r)}{\partial r} \Big|_{\epsilon = E, r = R_C}
$$

amount of charge of ψ^{AE} and ψ^{PS} implies equal

I DNASA SNIIT AND AQUALSCA $\frac{1}{\sqrt{2}}$ r
: of cl
tive, i
:he ne Equal amount of charge of $\psi^{\text{A}E}$ and $\psi^{\text{P}S}$ implies *eq*u and ψ
ase shi d of $E_{\rm re}$ implies equal loga-
and equal scattering
to the 1-st order rithmic derivative, i.e. equal phase shift and equal scattering properties in the neighbourhood of E_{ref} to the 1-st order

Ab-initio pseudopotentials - continued

- ... several various types of norm-conserving PSP Generalized ... [Hamann 1989], [RRKJ 1990], Extended ... [Shirley et al 1990]
- **•** Ultrasoft pseudopotentials Vanderbilt [1990]; relaxing norm-conserving condition \Rightarrow softer PSP, smaller R_C
- PAW (Projector Augmented Wave) method Blöchl [1995]; (-)partial waves in the basis set, (-)still frozen core, (+)unambiguous assignment between AE and PS quantities

Desirable PSP properties ... and problems

1. "softness"

– means the size of basis (as small as possible) set that we need to achieve required accuracy in ^a given application; is there any independent criterion ? not discoverd so far, but we have some "indicators":

Visual softness, curvature at $r=0$

- Fourier image of PS-potential in reciprocal space
- Fourier image of PS-wave function in reciprocal space

2. "transferability"

intuitive meaning: the ability to work properly in different environments (solids, compounds, molecules), e.g. Na in metal Na and NaCl

two main components:

- (a) the precision of reproducing the scattering properties of AE potential (log. derivative) as ^a function of ϵ in some neighborhood of $E_{\mathrm{r}e}$ (energy transferability)
- (b) the precision of reproducing the AE eignevalues under varying the external environmental conditions (i.e. charge density within DFT)

transferability ... - continued

(a) and (b) related via the *higher momenta* of the charge density [Shirley et al 1989] (related to higher energy derivatives of the phase-shift):

norm-conserving PSP

- \Rightarrow correct 1-st energy derivative of scattering properties
- correct PSP behavior with respect to making first order changes to external charge density

 \equiv causing constant potential shift

Sources of errors in pseudopotential method

- linearized method \Rightarrow higher order errors:
	- energy bands in ^a solid doesn't coincide with atomic eignevalues

- external charge density (caused by neighboring atoms) is not ^a first order change (doesn't cause constant potential shift)

 \Rightarrow attempts to mimick the chemical bond by choosing suitable atomic configuration for generating pseudopotential

next step in psedopotential construction: subtracting the XC-potential of valence charge density: can cause **even first order error** since the XC-term is not linear; reduced by NLCC (non-linear core correction)

All electron pseudopotential (AEPP)

– $-$ selfconsistent pseudopotential-generating scheme that takes into account the solid state environment:

- 1. all-electron atom recontruction using the crystal boundary conditions
- 2. constructing screened PSP: by minimizing ^a functional assembled from conditions to be satisfied
- 3. unscreening the PSP by real solid-state valence charge density

AEPP - 1.atomic reconstruction

1. crystal charge density forms a *boundary condition*

 - \$%

|
|
| $\frac{m}{r}\ln\left(\frac{r}{\rho_l}\right)$
id $\rho_l^{\rm s}$, $\frac{C}{\mathbf{d}t}$ where partial charge density in a solid $\rho_l^{\text{sps}}(r)$ is evaluated by summing over all occupied states,

$$
\rho_l^{\text{sps}}(r) = \sum_{\vec{k},n} \sum_{m=-l}^l \frac{1}{4\pi r^2} \int_{SPH} d\Omega d\Omega'
$$

$$
\psi_{\vec{k},n}^*(r\hat{\mathbf{n}}) Y_{lm}(\hat{\mathbf{n}}) Y_{lm}^*(\hat{\mathbf{n}}') \psi_{\vec{k},n}(r\hat{\mathbf{n}}')
$$

ndary condition (above) replaces the stand

 condition for the wavefunctions to be normalizable The boundary condition (above) replaces the standard $(\psi_{E,l}(r) \rightarrow 0$ for $r \rightarrow \infty)$ and determines the eigenvalue E_l . $\frac{1}{2}$

AEPP - 1. atomic reconstruction - continued

The normalization condition for the valence atomic-like radial wavefunctions is

$$
\int_0^{R_C} \left| \psi_{E_{\text{val},l},l}^{\text{at}}(r) \right|^2 r^2 dr = \int_0^{R_C} \rho_l^{\text{sps}}(r) r^2 dr
$$

norm-conserving condition)
states are recalculated selfconsistently v
yymented to the crystal charge density

(reversed norm-conserving condition)

 valence (augmented to the crystal charge density) states. The core states are recalculated selfconsistently with the

AEPP - 2. screened PSP

2. $\,$ each component $V_l^{\rm scr}(r)\,$ satisfies

i. (i) At σ_C the potential $V^{\rm scr}_l(r)$ matches the all-electron CC
C potential $V^{\mathrm{at}}(r)$ up to the second derivative,

(ii) At $r=R_C$ the radial pseudo-wavefunctions $R_{E_n}^{\rm ps}$

 their values and first derivatives (for each energy window), ,
) $\mathcal{L}^{l,l}$ $\frac{1}{2}$ match the corresponding atomic-like radial functions by and

(iii) the correct energy derivative of the

pseudo-wavefunction is ensured by the norm-conserving condition (for main -valence- energy window; relaxed for semicore state)

AEPP - continued

differences with respect to conservative methods: standard methods **AEPP**

boundary conditions for initial atomic calculation: free, isolated atom derived from partial projected charge density in ^a solid

chemical bond is taken into account in PSP by intuitive, ad-hoc_{in poturel} choice of atomic occuby intentive, and not in natural way via the choice of atomic occu-
pation numbers

transferability ranges are located aroundd the atomic eigenvalues around centers of projected DOS (bands) in ^a solid

core states atomic, frozen-core ap-proximation self-consistent with the charge density in ^a solid

Sacreening — XC potential term atomic valence charge self-consistent charge density, NLCC density in ^a solid