Bunching instability in surface growth

František Slanina

Collaboration with: M. Kotrla, J. Krug, P. Chvosta

Institute of Physics, Academy of Sciences of the Czech Republic, Prague

[slanina@fzu.c](mailto:slanina@fzu.cz)z

- **[Experiments](#page-1-0)**
- **[One-dimensional](#page-3-0) model**
- [Evolution](#page-20-0) of bunches
- **[Stationary](#page-22-0) bunch profile**
- **[Analytica](#page-24-0)l**

 $\begin{array}{rcl}\n & \frac{1}{2} \\
& & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
& & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
& & & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
& & & & \frac{1}{2} & \frac{1}{2} & \frac{1}{2}$ for 1 min (b) 3 min (c) 14 min (d).

[K. Sudoh and H. Iwasaki, Phys. Rev. Lett. 87, 216103 (2001).]

1300 nm 3 1300 nm STM images of Si(113) surfaces taken at room temperature after annealing at 600 degrees for (a) 1 min, (b) 8 min, and (c) 32 min. width.

Time dependence of the average terrace.

There are S steps located at positions $x_1, x_2, ..., x_S$ on a chain of length L. Periodic boundary conditions.

There are S steps located at positions $x_1, x_2, ..., x_S$ on a chain of length L. Periodic boundary conditions.

There are S steps located at positions $x_1, x_2, ..., x_S$ on a chain of length L. Periodic boundary conditions. For a terrace of length $l=l_i\equiv x_i-x_{i-1}$ the probabilities of attachment on left is p^+ on right p^-

$$
p^{\pm} = \frac{1}{2} \frac{1 \pm b + d \, l}{1 + d \, l}
$$

 $b \in (-1, 1)$"ballance" ES barrier
 $d \in [0, \infty)$"inverse diffusion constant"

There are S steps located at positions $x_1, x_2, ..., x_S$ on a chain of length L. Periodic boundary conditions. For a terrace of length $l=l_i\equiv x_i-x_{i-1}$ the probabilities of attachment on left is p^+ on right p^-

$$
p^{\pm} = \frac{1}{2} \frac{1 \pm b + d \, l}{1 + d \, l}
$$

 $b \in (-1, 1)$"ballance" ES barrier
 $d \in [0, \infty)$"inverse diffusion constant"

There are S steps located at positions $x_1, x_2, ..., x_S$ on a chain of length L. Periodic boundary conditions. For a terrace of length $l=l_i\equiv x_i-x_{i-1}$ the probabilities of attachment on left is p^+ on right p^-

$$
p^{\pm} = \frac{1}{2} \frac{1 \pm b + d \, l}{1 + d \, l}
$$

 $b \in (-1, 1)$"ballance" ES barrier
 $d \in [0, \infty)$"inverse diffusion constant"

 $L = 5 \cdot 10^3, \, \bar{l} = 5,$

$$
b=-1,\, d=0
$$

Bunching instability in surface growth 20 May 2004 – p.5/17

 $L = 5 \cdot 10^3, \, \overline{l} = 5,$

$$
b=-0.6,\, d=0
$$

Bunching instability in surface growth 20 May 2004 – p.5/17

 $L = 5 \cdot 10^3, \, \bar{l} = 5,$

$$
b=-0.6, d=0.001
$$

Bunching instability in surface growth 20 May 2004 – p.5/17

General problem: very strong, complex topological correlations

Force chains in sheared sand. Bunches. Bunches.

• Density-density correlation function.

$$
C_n(x,t) = \sum_{x'} \langle n(x',t)n(x'+x,t) \rangle, \text{ with } n(x,t) = \sum_{i=1}^S \delta(x_i(t)-x) .
$$

• Density-density correlation function.

$$
C_n(x,t) = \sum_{x'} \langle n(x',t)n(x'+x,t) \rangle, \text{ with } n(x,t) = \sum_{i=1}^S \delta(x_i(t)-x) .
$$

• Distribution of distances between bunches $P_{\text{domain}}(x,t) = \langle \sum_{i}^{S_k} \delta(x_{k,i} - x_{k,i-1} - x) \rangle$ Bunch of size $k\colon$ at least $k>1$ steps at the same position. Bunch positions $x_{k,i}, i = 1, 2, ..., S_k$.

• Density-density correlation function.

$$
C_n(x,t) = \sum_{x'} \langle n(x',t)n(x'+x,t) \rangle, \text{ with } n(x,t) = \sum_{i=1}^S \delta(x_i(t)-x) .
$$

• Distribution of distances between bunches $P_{\text{domain}}(x,t) = \langle \sum_{i}^{S_k} \delta(x_{k,i} - x_{k,i-1} - x) \rangle$ Bunch of size $k\colon$ at least $k>1$ steps at the same position. Bunch positions $x_{k,i}, i = 1, 2, ..., S_k$.

• Fluctuations in terrace widths **in the set of the set o**

$$
\Delta = \frac{1}{\bar{l}S} \sum_{i=1}^{S} (x_i - x_{i-1})^2 \text{ with } \bar{l} = \frac{1}{S} \sum_{i=1}^{S} x_i - x_{i-1} = \frac{L}{S}
$$

• Density-density correlation function.

$$
C_n(x,t) = \sum_{x'} \langle n(x',t)n(x'+x,t) \rangle, \text{ with } n(x,t) = \sum_{i=1}^S \delta(x_i(t)-x) .
$$

• Distribution of distances between bunches $P_{\text{domain}}(x,t) = \langle \sum_{i}^{S_k} \delta(x_{k,i} - x_{k,i-1} - x) \rangle$ Bunch of size $k\colon$ at least $k>1$ steps at the same position. Bunch positions $x_{k,i}, i = 1, 2, ..., S_k$.

• Fluctuations in terrace widths **in the set of the set o**

$$
\Delta = \frac{1}{\bar{l}S} \sum_{i=1}^{S} (x_i - x_{i-1})^2 \text{ with } \bar{l} = \frac{1}{S} \sum_{i=1}^{S} x_i - x_{i-1} = \frac{L}{S}
$$

• k-bunch distances **[comparison](#page-34-0)**

$$
\Delta_k = \frac{1}{L} \sum_{i=1}^{S_k} (x_{k,i} - x_{k,i-1})^2
$$

• Density-density correlation function.

$$
C_n(x,t) = \sum_{x'} \langle n(x',t)n(x'+x,t) \rangle, \text{ with } n(x,t) = \sum_{i=1}^S \delta(x_i(t)-x) .
$$

• Distribution of distances between bunches $P_{\text{domain}}(x,t) = \langle \sum_{i}^{S_k} \delta(x_{k,i} - x_{k,i-1} - x) \rangle$ Bunch of size $k\colon$ at least $k>1$ steps at the same position. Bunch positions $x_{k,i}, i = 1, 2, ..., S_k$.

• Fluctuations in terrace widths **in the set of the set o**

$$
\Delta = \frac{1}{\bar{l}S} \sum_{i=1}^{S} (x_i - x_{i-1})^2 \text{ with } \bar{l} = \frac{1}{S} \sum_{i=1}^{S} x_i - x_{i-1} = \frac{L}{S}
$$

$$
\bullet
$$
 k -bunch distances\n \bullet

$$
\Delta_k = \frac{1}{L} \sum_{i=1}^{S_k} (x_{k,i} - x_{k,i-1})^2
$$

• Stationary profile $h(x) = \sum_{i=1}^{S} \theta(x_{k,i} - x)$

Density-density correlation function

 $L = 3000, b = -0.3, l$ $l=10,\, d=0.01,$ average over 500 runs.

Distribution of distances between bunches ("domain sizes")

 $L = 3000, b = -0.3, l$ $l=10,\, d=0.01,$ average over 500 runs.

 $L = 10^6, 2 \cdot 10^5, \ldots \bar{l} = 5, b = -0.9, d = 0, 0.0001, 0.001, 0.003, 0.01, 0.1, 1$

Rescaled: $b = -0.9, \, -0.6, \, -0.3.$ bunch distance $\sim \Delta_2 \sim t^{0.38}$

Bunch profile...

... Logarithmic singularity

Bunching instability in surface growth 20 May 2004 – p.11/17

Stationary regime

 $L=10^5$ (\times), 10^4 (⊙), $\bar{l}=5$, (inset: $L=10^4$ $\bar{l}=10$), $d=0$; line: $\sim -\ln(b+1)$ $L = 10^4, \bar{l} = 10,$ $b=-0.5$ $\Delta_\mathrm{s}/L = 1 - \frac{B}{A - \ln(b+1)}, \quad b \rightarrow -1$ Or: $b+1\sim \exp(-\frac{B}{1-\Delta_{\mathrm{s}}/L})$

Analytic treatment

Probability of advancing (length of the sample is L):

$$
Prob\{x \to x+1\} = \frac{1}{2L} \left[l_{+} + l_{-} + b\left(\frac{1}{1 + d\,l_{+}} - \frac{1}{1 + d\,l_{-}}\right)\right]
$$

Analytic treatment

Probability of advancing (length of the sample is L):

$$
Prob\{x \to x+1\} = \frac{1}{2L} \left[l_+ + l_- + b \left(\frac{1}{1 + d l_+} - \frac{1}{1 + d l_-} \right) \right]
$$

Fokker-Planck equation for motion of the step

$$
\frac{\partial P(x,\tau)}{\partial \tau} = -\frac{\partial}{\partial x} \left\{ \left[1 - b \frac{P'(x,\tau)}{2(P(x,\tau) + d)^2} \right] / \left[1 - \left(\frac{P'(x,\tau)}{2P^2(x,\tau)} \right)^2 \right] \right\}
$$

Analytic treatment

Probability of advancing (length of the sample is L):

$$
Prob\{x \to x+1\} = \frac{1}{2L} \left[l_+ + l_- + b \left(\frac{1}{1 + d l_+} - \frac{1}{1 + d l_-} \right) \right]
$$

Fokker-Planck equation for motion of the step

$$
\frac{\partial P(x,\tau)}{\partial \tau} = -\frac{\partial}{\partial x} \left\{ \left[1 - b \frac{P'(x,\tau)}{2(P(x,\tau) + d)^2} \right] / \left[1 - \left(\frac{P'(x,\tau)}{2P^2(x,\tau)} \right)^2 \right] \right\}
$$

Look for solution in the form $P(x,\tau)=\Phi(x-v\tau).$ This leads to equation

$$
v\Phi(x) + c = \frac{1 - b\frac{\Phi'(x)}{2(\Phi(x) + d)^2}}{1 - \left(\frac{\Phi'(x)}{2\Phi^2(x)}\right)^2}
$$

Hint for solution

For d=0

$$
x = 2 \int_0^{\frac{1}{2\Phi(x)}} \frac{cy + v}{\sqrt{(b^2 + 4c(c-1))y^2 + 4v(2c-1)y + 4v^2 - by}} dy
$$

Hint for solution

For d=0

$$
x = 2 \int_0^{\frac{1}{2\Phi(x)}} \frac{cy + v}{\sqrt{(b^2 + 4c(c-1))y^2 + 4v(2c-1)y + 4v^2 - by}} dy
$$

asymptotically, $x \to \infty$

$$
\Phi(x) \simeq \frac{\sqrt{b^2 + 4c(c-1)} + b}{4(c-1)} \frac{1}{x}
$$

Hint for solution

For d=0

$$
x = 2 \int_0^{\frac{1}{2\Phi(x)}} \frac{cy + v}{\sqrt{(b^2 + 4c(c-1))y^2 + 4v(2c-1)y + 4v^2 - by}} dy
$$

asymptotically, $x \rightarrow \infty$

$$
\Phi(x) \simeq \frac{\sqrt{b^2 + 4c(c-1)} + b}{4(c-1)} \frac{1}{x}
$$

and profile

$$
h(x) \simeq K(\ln L - \ln x)
$$

to [simulations](#page-22-1)

 \bullet Unstable for any $b < 0.$ No periodicity. Stationary state with single bunch.

 \bullet Unstable for any $b < 0.$ No periodicity. Stationary state with single bunch.

 \bullet Distances between bunches grow as $\sim t^\alpha$, $\alpha \simeq 0.38$ for $d > 0,$ $\alpha=1$ for $d=0$

 \bullet Unstable for any $b < 0.$ No periodicity. Stationary state with single bunch.

 \bullet Distances between bunches grow as $\sim t^\alpha$, $\alpha \simeq 0.38$ for $d > 0,$ $\alpha=1$ for $d=0$

• Stationary bunch profile: logarithmic singularity

 \bullet Unstable for any $b < 0.$ No periodicity. Stationary state with single bunch.

 \bullet Distances between bunches grow as $\sim t^\alpha$, $\alpha \simeq 0.38$ for $d > 0,$ $\alpha=1$ for $d=0$

• Stationary bunch profile: logarithmic singularity

Outlook

- Crossover between $d=0$ and $d>0$
- Numerical solution of equation for stationary profile

Comparison of various definitions of bunch.

 Δ $(+)$, Δ_{k} for $k=2$ (\times) , 4 (\boxdot) , 6 (\odot) , 8 (Δ) . L = 10 5 , \overline{l} = 5, b = -0.9 , d = 0.

Illustration of quantities Δ and Δ_k

Illustration of quantities Δ and Δ_k

[back](#page-15-0)

