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[K. Sudoh and H. Iwasaki, Phys. Rev. Lett. 87, 216103 (2001).]

1300 nm 3 1300 nm STM images of Si(113) sur-

faces taken at room temperature after annealing

at 600 degrees for (a) 1 min, (b) 8 min, and (c)

32 min. width.

Time dependence of the average terrace.
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One-dimensional model

There are S steps located at positions x1, x2, ..., xS on a chain of
length L. Periodic boundary conditions.

For a terrace of length l = li ≡ xi − xi−1 the probabilities of
attachment on left is p+ on right p−

p± =
1

2

1 ± b + d l

1 + d l
b ∈ (−1, 1)......”ballance” ES barrier
d ∈ [0,∞)....”inverse diffusion constant”

Launch simulation
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Space-time diagram
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Measured quantities

General problem: very strong, complex topological correlations

Force chains in sheared sand. Bunches.

• Density-density correlation function.
Cn(x, t) =

∑

x′〈n(x′, t)n(x′ + x, t)〉, with n(x, t) =
∑S

i=1 δ(xi(t) − x) .

• Distribution of distances between bunches
Pdomain(x, t) = 〈

∑Sk

i δ(xk,i − xk,i−1 − x)〉

Bunch of size k: at least k > 1 steps at the same position. Bunch
positions xk,i, i = 1, 2, ..., Sk.

• Fluctuations in terrace widths illustration

∆ = 1
lS

∑S
i=1(xi − xi−1)

2 with l = 1
S

∑S
i=1 xi − xi−1 = L

S

• k-bunch distances comparison

∆k = 1
L

∑Sk

i=1(xk,i − xk,i−1)
2

• Stationary profile
h(x) =

∑S
i=1 θ(xk,i − x)
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Density-density correlation function
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L = 3000, b = −0.3, l̄ = 10, d = 0.01, average over 500 runs.
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Distribution of distances between bunches (“domain sizes”)

t = 7458

x
300025002000150010005000

1000

100

10

1

0.1

t = 14102

x
300025002000150010005000

1000

100

10

1

0.1

t = 26664

300025002000150010005000

1000

100

10

1

0.1

t = 50416

300025002000150010005000

1000

100

10

1

0.1

t = 95322

300025002000150010005000

1000

100

10

1

0.1

t = 180227

300025002000150010005000

1000

100

10

1

0.1

t = 299998

x
300025002000150010005000

1000

100

10

1

0.1

t = 0

P
d
o
m

a
in
(x

)

300025002000150010005000

1000

100

10

1

0.1

t = 10

P
d
o
m

a
in
(x

)

300025002000150010005000

1000

100

10

1

0.1

t = 20

P
d
o
m

a
in
(x

)

300025002000150010005000

1000

100

10

1

0.1

t = 44

P
d
o
m

a
in
(x

)

300025002000150010005000

1000

100

10

1

0.1

t = 307

300025002000150010005000

1000

100

10

1

0.1

t = 162

x

P
d
o
m

a
in
(x

)

300025002000150010005000

1000

100

10

1

0.1

t = 582

300025002000150010005000

1000

100

10

1

0.1

t = 2085

x
300025002000150010005000

1000

100

10

1

0.1

L = 3000, b = −0.3, l̄ = 10, d = 0.01, average over 500 runs.
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t/tc

(∆
2
−

∆
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Rescaled: b = −0.9, −0.6, −0.3.

bunch distance ∼ ∆2 ∼ t0.38
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Bunch profile... ...Logarithmic singularity
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Stationary regime
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Analytic treatment

Probability of advancing (length of the sample is L):

Prob{x → x + 1} =
1

2L

[

l+ + l− + b

(
1

1 + d l+
−

1

1 + d l−

)]

Fokker-Planck equation for motion of the step

∂P (x, τ)

∂τ
= −

∂

∂x

{[

1 − b
P ′(x, τ)

2(P (x, τ) + d)2

] /[

1 −

(
P ′(x, τ)

2P 2(x, τ)

)2
]}

Look for solution in the form P (x, τ) = Φ(x − vτ). This leads to
equation

vΦ(x) + c =
1 − b Φ′(x)

2(Φ(x)+d)2

1 −
(

Φ′(x)
2Φ2(x)

)2
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Hint for solution

For d=0

x = 2

∫ 1
2Φ(x)

0

cy + v
√

(b2 + 4c(c − 1))y2 + 4v(2c − 1)y + 4v2 − by
dy

asymptotically, x → ∞

Φ(x) '

√

b2 + 4c(c − 1) + b

4(c − 1)
︸ ︷︷ ︸

K

1

x

and profile

h(x) ' K(ln L − ln x)

to simulations
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Conclusions
• Unstable for any b < 0. No periodicity. Stationary state with single
bunch.

• Unstable for any b < 0. No periodicity. Stationary state with single
bunch.

• Distances between bunches grow as ∼ tα, α ' 0.38 for d > 0,
α = 1 for d = 0

• Stationary bunch profile: logarithmic singularity

Outlook

• Crossover between d = 0 and d > 0

• Numerical solution of equation for stationary profile
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Comparison of various definitions of bunch.

∆ (+), ∆k for k = 2 (×), 4 (�), 6 (�), 8 (4). L = 105, l̄ = 5, b = −0.9, d = 0.
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