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1. Outline of the talk

> noninteracting electrons on an impure lattice at 7' = 0 K (no phonons)

H=t)" C;rcj + ) \/;cjcZ . V: random, site independent
(i,5) U

> self-consistent equations for two-particle vertices (parquet scheme)
> systematics of 2P diagrams
> time-reversal symmetry

> asymptotic limit to high spatial dimensions
> |leading order of 1/d-expansion — CPA + weak localization
> addition of O(1/d) terms + self-consistency

> return to finite dimensions — mean-field
> weak disorder ~ diffusion

> strong disorder ~ localization
> ?? Ward identities, particle number conservation ??




. Diffusion

Relaxation of density inhomogeneities
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Relaxation function (electron-hole correlation function)
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Slow variations in space and time, g — 0 and w — 0
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Averaging over disorder configurations = electron-electron correlations
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3. Bethe-Salpeter equations

2P irreducibility not uniquely defined — 3 topologically nonequivalent scattering
channels:
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The last one, so-called vertical channel, is irrelevant.




. Parquet equation

ee-reducible diagram

cannot result from eh-multiplication
T — Aeh + Aeh T

Diagram reducible in one channel is irreducible in other scattering channels.
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5. Invariance w. r. t. time reversal

Electron states |k) and | — k) are equivalent. «— G(z,k) = G(z,—k)

Time-reversal transformation 7 (electron-hole symmetry)

def.
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6. Parquet scheme

Selfconsistent equations for (irreducible) two-particle vertices
Input: completely irreducible vertex I

General system
fHs(T A =0
fps(TA) =0
A N =T

Time-reversal invariant case
FAL(D, A = 0
Aeh _ TACe
A A =T

How to find selfenergy?

No diagrammatic representation, Ward identity + Kramers-Kronig relation
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. Limit to high spatial dimensions
Single equation to be solved: fgfg(/\ee +TAC—I,TA)=0
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Reduction of momentum dependencies — limit to high spatial dimensions
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Off-diagonal elements loose their weight with increasing d
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> all local diagrams D|G,;| inserted into /

> off-diagonal contributions included via
parquet scheme

> T, G, A A T — T, G, AN A T =~

Different treatment of di-
agonal and off-diagonal | —
elements.




. Convolutions in the asymptotic limit d — oo

Elementary convolutions (“contractions”), W;; = t2(G*(2;))(G*(z;))
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9. 2P vertices In strict d = oo (no parquet eq.)

Ladder diagrams
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10. 2P vertices in the asymptotics d — oo

1/d perturbation expansion (adding 1, 2, ... channel crossings) — no new quality,
we seek non-linear equations for 2P vertices

*ansatz” similar to strict d = oo case (other diagrams do not renormalize the poles)
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Selfenergy: > no A" to generate our T' = A" + A — ~ from Bethe-

Salpeter equation = no Vollhardt-Wolfle identity
> diffusion pole needed to match the weak scattering limit
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11.

Mean-field approximation

First step: Gaussian y fromd — oo ——  realistic y from d dimensions

Second step: pole suppression

> the higher the dimension the better (in d = 1 and d = 2 the pole is crucial)
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> % behaves as Landau-like order parameter, &5 > 0 — no diffusion pole

Model calculation based on
Born approximation (not CPA)
1/A ... diffusion pole weight
Ap ... Bornirreducible vertex
w ... half band-width
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12. Diffusion pole

Ward identity holds only for w =0

SAE) - SE(E +w) #
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Phase diagram (localized states
hatched)

E ... position in the band
ApB ... Bornirreducible vertex
w ... half band-width
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= weighted pole in the correlation function

Only g /A states are diffusive, others
do not contribute to diffusion.




13. (A)symmetric binary alloy

Localization tendencies most 2 4
pronounced at the

band edges ... 2t % 5
0 - - . .

-4 -2 0 2 4

... andin the impurity band.




14.

Ward identity vs. analyticity

The weight 1/A < 1 is not an artifact of our approximations
«—— Ward identities cannot be fulfilled in principle.

Ward identity: S (21) — Zk(22) ZAek,, 21, 22; 0) [Gyn(21) — Gyn(22)]
k//
> left-hand side — analytic (selfenergy)
> right-hand side — diffusion/Cooper pole in A"

Diffusive regime
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Localized regime ( D(w) = —iwé?, Vollhardt & Wélfle)
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. Conclusions
What we did?
> formulated parguet scheme for the use in high spatial dimensions
> solved these equations in the asymptotic limit d — oo
> applied this solution as a mean-field approximation

What such an approximation indicates?
> disorder-driven metal-insulator transition
> Inability to comply with particle number conservation

How to understand the surprising inconsistency?
> formulation using configurationally averaged (translationally invariant) Green
functions does not fully cover the physical Hilbert space
> extended and localized eigenstates co-exist in the diffusive phase
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