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Slovakia; E-mail: Ladislav.Samaj@savba.sk



Content

1. Heisenberg model 1

1.1 Definitions and notations 2

1.2 Hamiltonian and its symmetries 3

1.3 Schrödinger equation 5

1.4 Coordinate Bethe ansatz 6

1.4.1 M=0,1 6

1.4.2 M=2 6

1.4.3 M=3 8

1.4.4 Arbitrary M 9

1.5 Orbach parametrization 10

1.5.1 ∆ = 1 11

1.5.2 ∆ = −1 11

1.6 Ground state and its energy 12

1.7 Excited states 13

2. Quantum inverse scattering method 15

2.1 Definition of the S-matrix 16

2.2 Yang-Baxter equation 17

2.3 Transfer and monodromy matrices 18

2.4 S-matrix of the Heisenberg model 20

2.5 Diagonalization of the transfer matrix 23

3. Hubbard model 27

3.1 Hamiltonian and its symmetries 28

3.2 Nested Bethe ansatz 29

3.2.1 Two electrons 29

3.2.2 N electrons 32

3.3 Boundary conditions within the inhomogeneous QISM 34

3.4 Ground state and its energy 36

3.5 Absence of Mott’s transition conductor-insulator 38

4. Kondo effect 39

4.1 Hamiltonian 40

4.2 S-matrices 41

4.3 Boundary conditions within the inhomogeneous QISM 42

4.4 Ground state and its energy 43

5. References 47



1. Heisenberg model



1.1 Definitions and notations

We introduce the following notations for special 2 × 2 matrices: the unity matrix

1 ≡ s0 =

(
1 0

0 1

)

; (1.1)

the Pauli matrices {sα}, α = x(1), y(2), z(3)

sx ≡ s1 =

(
0 1

1 0

)

, sy ≡ s2 =

(
0 −i

i 0

)

, sz ≡ s3 =

(
1 0

0 −1

)

. (1.2)

The Pauli matrices fulfill the product relations

(sα)2 = 1, sα · sβ = iǫαβγs
γ for α 6= β, (1.3)

where ǫαβγ is the antisymmetric tensor (ǫ123 = 1, ǫ213 = −1, etc.). Consequently,

[sα, sβ] = 2iǫαβγs
γ , {sα, sβ} = 2δαβ , (1.4)

where [A,B] = A ·B−B ·A denotes the commutation operator and {A,B} = A ·B+B ·A

denotes the anticommutation operator.

One usually works in the basis formed by the eigenvectors of sz:

sze+ = e+, e+ =

(
1

0

)

; sze− = −e−, e− =

(
0

1

)

. (1.5)

It is useful to introduce the matrices

s+ =
1

2
(sx + isy) ≡

(
0 1

0 0

)

and s− =
1

2
(sx − isy) ≡

(
0 0

1 0

)

, (1.6)

which act on the vectors e± as follows

s+e+ = s−e− = 0; s+e− = e+, s−e+ = e−. (1.7)

The tensor product of two matrices A and B is defined as

(A ⊗ B)σ1σ2

σ′
1σ′

2
= Aσ1

σ′
1
Bσ2

σ′
2
≡ Aσ1σ′

1
Bσ2σ′

2
=





A11B . . . A1nB
...

...

Am1B . . . AmnB



 . (1.8)

Let us consider a chain of N lattice sites n = 1, 2, . . . ,N . We introduce the lattice

Pauli operators (matrices) of dimension 2N × 2N on this chain as follows

s
α
n = 1 ⊗ . . .⊗ 1

︸ ︷︷ ︸

n−1

⊗ sα
︸︷︷︸

n

⊗1 ⊗ . . .⊗ 1
︸︷︷︸

N

. (1.9)

Explicitly,

(sα
n)σ1...σN

σ′
1...σ′

N
= (sα)σnσ′

n
δσ1σ′

1
. . . δσn−1σ′

n−1
δσn+1σ′

n+1
. . . δσN σ′

N
. (1.10)
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There exists an important general rule concerning the ordinary product of two 2N × 2N

matrices, each of which is given by a direct product of N 2×2 matrices: one has to perform

the matrix products of the 2 × 2 matrices at the corresponding sites n = 1, 2, . . . ,N and

the resulting 2N ×2N matrix is simply their tensor product. As an example, we write down

the multiplication of two Pauli operators s
α
n and s

α′

n′ for two different sites n 6= n′:

s
α
ns

α′

n′ = 1
︸︷︷︸

1

⊗ . . .⊗ 1 ⊗ sα
︸︷︷︸

n

⊗1 ⊗ . . .⊗ sα′

︸︷︷︸

n′

⊗1 ⊗ . . .⊗ 1
︸︷︷︸

N

. (1.11)

It stands to reason that

[sα
n, s

α′

n′ ] = 0 for n 6= n′. (1.12)

The corresponding Hilbert space is V1 ⊗ V2 ⊗ . . .⊗ VN , where Vn is isomorphic to C2.

We shall choose as the basis for each Vn 2 × 1 orthonormal vectors e+ (spin up) and e−

(spin down) defined in Eq. (1.5). The vector basis for Pauli operators is generated by all

possible 2N tensor products of these 2×1 vectors on the chain. Let us adopt the convention

according to which a basis vector |n1, n2, . . . , nM 〉 corresponds to the tensor product of M

e− vectors put on the ordered lattice sites

n1 < n2 < . . . < nM (1.13)

and (N −M) e+ vectors put on all remaining sites:

|n1, n2, . . . , nM 〉 = e+
︸︷︷︸

1

⊗e+ ⊗ . . . e+ ⊗ e−
︸︷︷︸

n1

⊗e+ ⊗ . . . e+ ⊗ e−
︸︷︷︸

n2

⊗ . . .⊗ e+
︸︷︷︸

N

. (1.14)

Equivalently,

|n1, n2, . . . , nM 〉 = s
−
n1

s
−
n2
. . . s−nM

|0〉, (1.15)

where |0〉 is the tensor product of N e+ vectors. Since the total number of these orthogonal

vectors is (
N

0

)

+

(
N

1

)

+ . . .+

(
N

N

)

= 2N ,

they form a complete basis of the 2N -dimensional Hilbert space.

1.2 Hamiltonian and its symmetries

For quantum mechanical reasons (exchange force), the coupling between two magnetic

dipoles may cause nearest-neighbours to have lowest energy when they are parallel or an-

tiparallel. This phenomenon is described by the Heisenberg model with nearest-neighbour

interactions of quantum Pauli spin-1/2 operators defined on a lattice. In the case of the

one-dimensional (1D) periodic chain of n = 1, 2, . . . N sites, the most general form of the

Heisenberg Hamiltonian reads

H = −
1

2

N∑

n=1

(
Jxs

x
ns

x
n+1 + Jys

y
ns

y
n+1 + Jzs

z
ns

z
n+1

)
, (1.16)

where Jx, Jy, Jz are coupling constants and the chain periodicity is ensured by setting

s
α
N+1 = s

α
1 .

There are three possibilities for the coupling constants:
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• Jx = Jy = Jz = J : the isotropic XXX Heisenberg model, solved by Bethe [1] (1931).

• (Jx = Jy = J) 6= Jz : the XXZ Heisenberg model, solved by C. N. Yang & C. P.

Yang [2,3] (1966).

• (Jx 6= Jy) 6= Jz: the XYZ Heisenberg model, solved by Baxter [4] (1972).

We shall concentrate on the XXZ Heisenberg model defined by the Hamiltonian

H(J, Jz) = −
1

2

N∑

n=1

[
J
(
s
x
ns

x
n+1 + s

y
ns

y
n+1

)
+ Jzs

z
ns

z
n+1

]
. (1.17)

For a bipartite chain with N = even number, the set of lattice sites can be divided into

two subsets A and B. Then, due to the relations for the Pauli matrices szsxsz = −sx and

szsysz = −sy, the unitary transformation with U =
∏

n∈A s
z
n leaves H unchanged, except

for the replacement J → −J :

UH(J, Jz)U
† = H(−J, Jz). (1.18)

Thus, without any loss of generality we can take J = 1 and consider the Hamiltonian

H(∆) ≡
1

J
H(J, Jz) = −

1

2

N∑

n=1

(
s
x
ns

x
n+1 + s

y
ns

y
n+1 + ∆s

z
ns

z
n+1

)
, (1.19)

where the only parameter ∆ = Jz/J can take an arbitrary real value. The case ∆ = 1

(∆ = −1) corresponds to the ferromagnetic (antiferromagnetic) isotropic chain. All other

values of ∆ correspond to the anisotropic XXZ Heisenberg chain.

There exists another useful symmetry of the XXZ model for N = even number. In-

troducing the unitary operator V = exp(iπ
∑N

n=1 ns
z
n), the unitary transformation of H

reads:

V H(∆)V † = −H(−∆). (1.20)

In this way, the energy spectra of the Hamiltonians H(∆) and H(−∆) are related by

the reflection around E = 0. It is therefore sufficient to study the energy spectra of the

Hamiltonians say with ∆ ≥ 0.

Finally, using the identity

s
x
ns

x
n+1 + s

y
ns

y
n+1 = 2

(
s
+
n s

−
n+1 + s

−
n s

+
n+1

)
(1.21)

it can be readily shown that the Hamiltonian (1.11) commutes with the total spin along

the anisotropy axis,

[H(∆),

N∑

n=0

s
z
n] = 0. (1.22)

This is no longer true for the XYZ Heisenberg chain.
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1.3 Schrödinger equation

Since the Hamiltonian commutes with the total spin along the anisotropy axis, see relation

(1.22), one can look for the solution of the Schrödinger equation

H(∆)ψM = EψM (1.23)

as a superposition of all vectors in the Hilbert space with the fixed number M of down

spins

ψM =
∑

{n}

a(n1, n2, . . . , nM )|n1, n2, . . . , nM 〉, (1.24)

where the summation goes over all possible sets of M ordered sites (1.13).

In order to proceed, we have to know how the Hamiltonian acts on a given Hilbert

vector |n1, n2, . . . , nM 〉. Using (1.21), we can rewrite the Hamiltonian (1.19) as follows

H(∆) = −N
∆

2
+

N∑

n=1

Hn,n+1, −Hn,n+1 = s
+
n s

−
n+1 +s

−
n s

+
n+1 +

1

2
∆
(
s
z
ns

z
n+1 − 1

)
. (1.25)

The component Hn,n+1 acts as the unity operator on each site, except for the couple of

nearest neighbours n, n+ 1. Since it holds

(
s
+
n s

−
n+1 + s

−
n s

+
n+1

)
(
e±n ⊗ e±n+1

e±n ⊗ e∓n+1

)

=

(
0

e∓n ⊗ e±n+1

)

(1.26)

and

s
z
ns

z
n+1

(
e±n ⊗ e±n+1

e±n ⊗ e∓n+1

)

=

(
e±n ⊗ e±n+1

−e±n ⊗ e∓n+1

)

, (1.27)

we have

Hn,n+1

(
e±n ⊗ e±n+1

e±n ⊗ e∓n+1

)

= ∆

(
0

e±n ⊗ e∓n+1

)

−

(
0

e∓n ⊗ e±n+1

)

. (1.28)

With regard to the representation (1.25), it holds

[

H(∆) +N
∆

2

]

|n1, n2, . . . , nM 〉 = Na∆|n1, n2, . . . , nM 〉

−
∑

{n′}

|n′1, n
′
2, . . . , n

′
M 〉. (1.29)

Here, the configuration of sites {n′} is obtained from {n} by the interchange of just one

nearest-neighbour pair of antiparallel spins

n′1 = n1, n′2 = n2, . . . , n′α = nα ± 1, . . . , n′M = nM , (1.30)

under the condition that the site configuration {n′} will be the allowed one fulfilling the

ordering condition (1.13), and

Na =
∑

{n′}

1 (1.31)

is the number of the nearest-neighbour antiparallel spins in the site configuration {n}.
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Finally, the condition that ψM (1.24) is the eigenfunction (more precisely, eigenvector)

of the Hamiltonian H(∆), see the Schrödinger Eq. (1.23), can be expressed as

Ēa{n} =
∑

{n′}

(
∆ a{n} − a{n′}

)
, (1.32)

where Ē = E +N∆/2 is the shifted energy. In order to apply the interchange {n} → {n′}

(1.30) in the whole interval of site coordinates nα, we have to extend this interval beyond N

by identifying sites n with N + n. The periodic boundary conditions for the a-amplitudes

are written in the form

a(n1, n2, . . . , nM ) = a(n2, n3, . . . , nM , n1 +N) (1.33)

respecting the prescribed ordering of sites (1.13). The next task is to solve the set of

equations (1.32), complemented by the periodic boundary conditions (1.33), for each sector

of the Hilbert space with M = 0, 1, . . . ,N down spins.

1.4 Coordinate Bethe ansatz

1.4.1 M=0,1

The case M = 0 is trivial. The vector |0〉 with all sites in the spin-up state e+ is the

eigenvector of the Hamiltonian H(∆) with the energy E = −N∆/2.

In the sector with one spin down M = 1, Eq. (1.32) reads

Ēa(n) = 2∆a(n) − a(n− 1) − a(n+ 1). (1.34)

The solution of this equation is the plane wave

a(n) = A exp(ikn). (1.35)

The wave number k is quantized according to the periodicity condition (1.33), a(n) =

a(n +N), as follows

exp(ikN) = 1 ⇐⇒ Nk = 2πI, I = 0, 1, . . . ,N − 1. (1.36)

The interval of I-values can be shifted by an arbitrary integer. The energy E is obtained

by substituting the solution (1.35) for a(n) into (1.34), with the result

E = −N
∆

2
+ 2 (∆ − cos k) . (1.37)

1.4.2 M=2

For M = 2 one has to distinguish between two cases: sites n1 and n2 are either nearest

neighbours or they are not.

Let us start with the case when they are not nearest neighbours, i.e. n2 6= n1 +1. The

equation (1.32) then takes the form

Ēa(n1, n2) = 4∆a(n1, n2) − a(n1 − 1, n2) − a(n1 + 1, n2)

−a(n1, n2 − 1) − a(n1, n2 + 1). (1.38)
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The general solution of this equation reads

a(n1, n2) = A12e
i(k1n1+k2n2) +A21e

i(k2n1+k1n2), (1.39)

E = −N
∆

2
+ 2 (∆ − cos k1) + 2 (∆ − cos k2) . (1.40)

The coefficients A12 and A21 are as-yet free.

When the sites n1 and n2 are nearest neighbours, i.e. n2 = n1 + 1, Eq. (1.32) takes

the form

Ēa(n, n+ 1) = 2∆a(n, n+ 1) − a(n− 1, n + 1) − a(n, n+ 2). (1.41)

We shall look for the solution of this equation in the same form (1.39) as in the previous

case, where the coefficients A12 and A21 will be constrained by a condition. We can do that

due the fact that Eq. (1.41) can be represented as the previous one (1.38) provided that

there is a constraint on a(n1, n2). For this purpose, we extend the definition of a(n1, n2)

to identical sites n1 = n2 and put formally n1 = n, n2 = n+ 1 in (1.38):

Ēa(n, n+ 1) = 4∆a(n, n+ 1) − a(n− 1, n + 1) − a(n+ 1, n+ 1)

−a(n, n) − a(n, n+ 2). (1.42)

The two equations (1.41) and (1.42) are equivalent if it holds

a(n + 1, n + 1) − 2∆a(n, n+ 1) + a(n, n) = 0. (1.43)

The insertion of the solution (1.39) into this equation leads to the following relation between

the A-coefficients:
A12

A21
= −

ei(k1+k2) − 2∆eik1 + 1

ei(k1+k2) − 2∆eik2 + 1
= exp (iθ12) . (1.44)

The phase factor is readily shown to be given by

ctg

(
θ12
2

)

= ∆
ctg(k1/2) − ctg(k2/2)

(∆ + 1) + (∆ − 1)ctg(k1/2)ctg(k2/2)
. (1.45)

It is antisymmetric with respect to the exchange of indices,

θ12 = −θ21. (1.46)

Setting the common prefactor to unity, the coefficients are expressible simply as

A12 = exp

(
i

2
θ12

)

, A21 = exp

(
i

2
θ21

)

. (1.47)

We note that the wave numbers must be unequal, k1 6= k2. In the opposite case

k1 = k2 = k, it follows from Eq. (1.44) that A12 = −A21 and consequently the amplitude

a(n1, n2) = (A12 +A21) exp[ik(n1 + n2)] vanishes.

The wave numbers k1 and k2 are quantized according to the periodic boundary condi-

tion (1.33), a(n1, n2) = a(n2, n1 +N), as follows

A12 = A21e
ik1N , A21 = A12e

ik2N . (1.48)

With regard to (1.44), these conditions can be rewritten in a more convenient form

Nk1 = 2πI1 + θ12, Nk2 = 2πI2 + θ21, (1.49)

where I1 and I2 are sequences of N consecutive integers such that k1 6= k2.
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1.4.3 M=3

The treatment of the sector M = 3 allows to perform a generalization of the formalism to

arbitrary M . It is necessary to consider all possibilities of nearest-neighbour positions for

three sites, ordered as n1 < n2 < n3:

(a) n2 6= n1 + 1, n3 6= n2 + 1,

(b) n2 = n1 + 1, n3 6= n2 + 1,

(c) n2 6= n1 + 1, n3 = n2 + 1,

(d) n2 = n1 + 1, n3 = n2 + 1.

In the case (a) with no nearest neighbours, the Schrödinger Eq. (1.32) takes the form

Ēa(n1, n2, n3) = 6∆a(n1, n2, n3) − a(n1 − 1, n2, n3) − a(n1 + 1, n2, n3)

−a(n1, n2 − 1, n3) − a(n1, n2 + 1, n3)

−a(n1, n2, n3 − 1) − a(n1, n2, n3 + 1). (1.50)

Its solution is represented as a superposition of plane waves

a(n1, n2, n3) = A123e
i(k1n1+k2n2+k3n3) +A132e

i(k1n1+k3n2+k2n3)

+A213e
i(k2n1+k1n2+k3n3) +A231e

i(k2n1+k3n2+k1n3)

+A312e
i(k3n1+k1n2+k2n3) +A321e

i(k3n1+k2n2+k1n3). (1.51)

The corresponding energy is given by

E = −N
∆

2
+ 2 (∆ − cos k1) + 2 (∆ − cos k2) + 2 (∆ − cos k3) . (1.52)

In the presence of nearest-neighbour sites, we shall use the same trick as in the M = 2

sector. The case (b) implies

A123

A213
= eiθ12 ,

A132

A312
= eiθ13 ,

A231

A321
= eiθ23 , (1.53)

where θαβ with α, β = 1, 2, 3 is the obvious generalization of the function given by Eqs.

(1.44) and (1.45). The case (c) implies

A123

A132
= eiθ23 ,

A213

A231
= eiθ13 ,

A312

A321
= eiθ12 . (1.54)

The consideration of the case (d) does not imply any new relations among the A-coefficients.

Using the symmetry relation (1.46) for the phases θαβ , the solution of 6 homogeneous

relations in Eqs. (1.53) and (1.54) for 6 coefficients can be written in the form

A123 = exp

[
i

2
(θ12 + θ13 + θ23)

]

,

A213 = exp

[
i

2
(θ21 + θ23 + θ13)

]

,

A321 = exp

[
i

2
(θ32 + θ31 + θ21)

]

, (1.55)
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etc., with the obvious formal structure.

The periodic boundary condition (1.33), a(n1, n2, n3) = a(n2, n3, n1 +N), implies

A123 = A231e
ik1N , A213 = A132e

ik2N , A312 = A123e
ik3N . (1.56)

The wave numbers k1, k2 and k3, necessarily distinct, are thus quantized as follows

Nk1 = 2πI1 + θ12 + θ13,

Nk2 = 2πI2 + θ21 + θ23,

Nk3 = 2πI3 + θ31 + θ32, (1.57)

where each of I1, I2 and I3 is a sequence of N consecutive integers.

1.4.4 Arbitrary M

We have seen that the solution in the sector M = 3 was constructed explicitly using the

information gain from the M = 2 sector, namely the phase function θαβ defined in (1.44)

or (1.45). This property is maintained also for higher sectors M = 4, 5, . . . ,N .

Let us introduce the symmetric group SM of all M ! permutations of M number

(1, 2, . . . ,M). We shall denote an element of the group SM by P , Pα with α = 1, 2, . . . ,M

will denote the number at the αth position in P . Like for instance, for M = 3 and the

permutation P = (3, 1, 2) one has P1 = 3, P2 = 1 and P3 = 2.

The Bethe ansatz has the form

a(n1, n2, . . . , nM ) =
∑

P∈SM

AP exp

(

i

M∑

α=1

kPαnα

)

. (1.58)

This solution certainly fulfills the Schrödinger equation when there are no nearest-neighbour

sites, i.e. nα+1 6= nα + 1 for each α = 1, 2, . . . ,M . The corresponding energy is given by

E = −N
∆

2
+

M∑

α=1

2(∆ − cos kα). (1.59)

When two sites are the nearest neighbours, say nα+1 = nα + 1 with a given α, the

counterpart of the “consistency” equation (1.43) is

a(. . . , nα + 1, nα + 1, . . .) − 2∆a(. . . , nα, nα + 1, . . .) + a(. . . , nα, nα, . . .) = 0. (1.60)

Inserting the Bethe ansatz (1.58) to this consistency equation leads to

∑

P∈SM

AP

[

ei(kPα+kP (α+1)) − 2∆eikP (α+1) + 1
]

×eikP1n1+···+i(kPα+kP (α+1))nα+···ikPMnM = 0. (1.61)

In the summation, each permutation P is coupled with the permutation P (α,α+ 1) which

is generated from P by the transposition of the nearest-neighbours Pα and P (α+1), i.e. if

P = (P1, . . . , Pα, P (α+ 1), . . . , PM) then P (α,α+ 1) = (P1, . . . , P (α+ 1), Pα, . . . , PM).
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Since the corresponding A-coefficients are multiplied by the same {n}-dependent exponen-

tial in (1.61), it holds

AP

[

ei(kPα+kP (α+1)) − 2∆eikP (α+1) + 1
]

+AP (α,α+1)

[

ei(kPα+kP (α+1)) − 2∆eikPα + 1
]

= 0. (1.62)

With respect to the definition (1.44) of θ phase, one thus has

AP (α,α+1) = AP exp
(
−iθPα,P (α+1)

)
. (1.63)

This implies

AP = exp






i

2

M∑

α,β=1
(α<β)

θPα,Pβ




 . (1.64)

The periodic boundary condition (1.33) is equivalent to the conditions

AP = APCeikP1N for arbitrary P , (1.65)

where PC is the cyclic transposition of P , i.e. when P = (P1, P2, . . . , PM) then PC =

(P2, . . . , PM,P1). With respect to the result (1.64) for the A-amplitudes, one has

eikP1N =
AP

APC
= exp

(

i
M∑

α=2

θP1,Pα

)

for arbitrary P . (1.66)

We conclude that the wave numbers k1, k2, . . ., kM are quantized according to the set of

M Bethe equations

Nkα = 2πIα +

M∑

β=1
(β 6=α)

θαβ , α = 1, 2, . . . ,M. (1.67)

Each Iα belongs to a sequence of N consecutive integers such that arbitrary two wave

numbers kα 6= kβ .

Especially simple is the case ∆ = 0. In that case, the phase factor (1.44) is given by

exp(iθαβ) = −1. The boundary conditions (1.66) then implies

eikαN = (−1)M−1, E = −2

M∑

α=1

cos kα. (1.68)

1.5 Orbach parametrization

The θ-function, given by Eq. (1.45), is a complicated function of wave k-numbers. For

reasons which will be clearer later, it is useful to parametrize the k-numbers by “rapidities”

λ, k = k(λ), in such a way that the θ-function will depend only on the difference of the

corresponding rapidities: θαβ = θ(λα − λβ). The form of the parametrization depends on

the value of the anisotropy parameter ∆: ∆ > 1, ∆ = 1, −1 < ∆ < 1, ∆ = −1, ∆ < −1.

For simplicity, in what follows we shall restrict ourselves to the ferromagnetic (∆ = 1) and

antiferromagnetic (∆ = −1) isotropic chains.
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1.5.1 ∆ = 1

For ∆ = 1, the relation (1.45) takes the form

ctg

(
θαβ

2

)

=
1

2

[

ctg

(
kα

2

)

− ctg

(
kβ

2

)]

. (1.69)

The needed parametrization is then

λα =
1

2
ctg

(
kα

2

)

, ctg

(
θαβ

2

)

= λα − λβ. (1.70)

The inverse relations read

kα =
1

i
ln

(
2λα + i

2λα − i

)

, θαβ =
1

i
ln

(
λα − λβ + i

λα − λβ − i

)

. (1.71)

In general, the quantities kα, and consequently the rapidities λα, can be complex numbers.

For real values, they are localized in intervals

0 < kα < 2π, −∞ < λα <∞. (1.72)

Inserting relations (1.71) into the Bethe equations (1.66) results in

(
λα + i/2

λα − i/2

)N

=

M∏

β=1
(β 6=α)

λα − λβ + i

λα − λβ − i
, α = 1, 2, . . . ,M. (1.73)

The energy (1.59) is expressible in terms of rapidities as follows

E = −
N

2
+

M∑

α=1

1

λ2
α + 1/4

. (1.74)

1.5.2 ∆ = −1

For ∆ = −1, the relation (1.45) takes the form

ctg

(
θαβ

2

)

=
1

2

[

tg

(
kβ

2

)

− tg

(
kα

2

)]

. (1.75)

The needed parametrization is then

λα =
1

2
tg

(
kα

2

)

, ctg

(
θαβ

2

)

= λβ − λα. (1.76)

The inverse relations read

kα =
1

i
ln

(
i − 2λα

i + 2λα

)

, θαβ =
1

i
ln

(
λβ − λα + i

λβ − λα − i

)

. (1.77)

If kα and λα take real values, they are localized in intervals

− π < kα < π, −∞ < λα <∞. (1.78)
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Bethe equations (1.66) now take the form

(
i/2 − λα

i/2 + λα

)N

=
M∏

β=1
(β 6=α)

λα − λβ − i

λα − λβ + i
, α = 1, 2, . . . ,M. (1.79)

The energy (1.59) is expressible in terms of rapidities as follows

E =
N

2
−

M∑

α=1

1

λ2
α + 1/4

. (1.80)

When the number of lattice sites N = even number, Eqs. (1.73) and (1.79) coincide while

the respective energies (1.74) and (1.80) differ only by the sign, which is in agreement with

the equivalence of the spectra of conjugate Hamiltonians H∆ and −H−∆.

1.6 Ground state and its energy

When ∆ ≥ 1, the ground state of the Heisenberg chain is evidently ferromagnetic, i.e.

M = 0, with the energy

E0 = −N
∆

2
, ∆ ≥ 1. (1.81)

In the region of ∆ < 1, the “global” ground state has the total Sz-spin equal to zero,

i.e. belong to the sector with M = N/2 (N even). To analyze the Bethe equations (1.67),

one has to specify the values of integers Iα which correspond to the ground state. It has

been shown in Refs. [2, 3] that in the given M -sector the ground-state integers {Iα}
M
α=1,

are distinct and symmetrically distributed around 0 with the unity step, i.e.

−Imax,−Imax + 1, . . . , Imax − 1, Imax.

Since 2Imax + 1 = M , one has

I1, I2, . . . , IM = −
M − 1

2
,−

M − 1

2
+ 1, . . . ,

M − 1

2
. (1.82)

This choice of I-values was first observed for the ∆ = 0 case (1.68): here, Nkα = 2πIα
with {Iα} given by (1.82) indeed minimizes the energy and simultaneously ensures that

kα 6= kβ .

The Bethe equations (1.67) with the I-values (1.82) in the zero-spin sector M = N/2

kα = 2π
Iα
N

−
1

N

N/2
∑

β=1
(β 6=α)

θαβ , α = 1, 2, . . . ,N/2. (1.83)

lead, in the continuum N → ∞ limit, to real wave numbers {kα}. Setting Iα/N = x

(−1/4 < x < 1/4), one gets from (1.83)

k[λ(x)] = 2πx+

∫ 1/4

−1/4
dy θ[λ(x) − λ(y)]. (1.84)
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Here, the wave numbers k and the θ-function are parametrized by the continuous rapidities

λ(x). Let us introduce the density of rapidities around the given value by the relation

dx = ρ(λ)dλ. Differentiation of Eq. (1.84) with respect to λ then leads to

dk(λ)

dλ
= 2πρ(λ) −

∫

dλ′ ρ(λ′)
∂

∂λ
θ(λ− λ′), (1.85)

where the range of integration depends on ∆.

For the antiferromagnetic isotropic case ∆ = −1, the Orbach parametrization (1.76),

or equivalently (1.77), gives

dk(λ)

dλ
=

4

1 + 4λ2
,

∂

∂λ
θ(λ− λ′) =

2

1 + (λ− λ′)2
. (1.86)

The rapidity in (1.78) takes real values on the whole axis. Eq. (1.85) is then written as

2

1 + 4λ2
= πρ(λ) +

∫ ∞

−∞
dλ′

ρ(λ′)

1 + (λ− λ′)2
. (1.87)

Applying in this equation the Fourier transform

ρ(λ) =
1

2π

∫ ∞

−∞
dξ e−iλξρ̂(ξ), (1.88)

and subsequently using the integral formula

1

2π

∫ ∞

−∞
dλ

e−iλξ

1 + λ2
=

1

2
e−|ξ| (1.89)

(the residuum theorem), one ends up with

ρ̂(ξ) =
1

2 cosh(ξ/2)
, ρ(λ) =

1

2 cosh(πλ)
. (1.90)

The ground-state energy (1.80) then reads

E0 =
N

2
−N

∫ ∞

−∞
dλ ρ(λ)

1

λ2 + 1/4
=
N

2
−N2 ln 2. (1.91)

1.7 Excited states

The general analysis of Bethe equations is complicated for finite N , but simplifies substan-

tially in the limit N → ∞.

Let us consider for simplicity the isotropic ∆ = 1 ferromagnetic chain. Its Orbach

parametrization is presented in Section 1.5.1, Eqs. (1.69) - (1.74). As was mentioned, the

ground state corresponds to all spins up (M = 0) with the energy E0 = −N/2.

For the first excited states in the sector M = 1, the equations for λ and k read

(
λ+ i/2

λ− i/2

)N

= 1, eikN = 1. (1.92)
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The corresponding energy is E = E0 + 2(1 − cos k). In the limit N → ∞, the wave

numbers k cover continuously the whole interval 〈0, 2π) and the rapidities cover the real

axis −∞ < λ < ∞. The excitations of this type are called magnons. The energy of a

magnon with the wave number k is ǫk = 2(1 − cos k).

In the sector with two spin downs (M = 2), Bethe Eqs. (1.73) read

(
λ1 + i/2

λ1 − i/2

)N

=
λ1 − λ2 + i

λ1 − λ2 − i
,

(
λ2 + i/2

λ2 − i/2

)N

=
λ2 − λ1 + i

λ2 − λ1 − i
. (1.93)

Let us first study real solutions of these equations and denote (λ1−λ2+i)/(λ1−λ2−i) =

exp(iϕ), ϕ ∈ R. Then,

eik1N = eiϕ, eik2N = e−iϕ. (1.94)

In the limit N → ∞, k1 and k2 once again cover continuously the interval 〈0, 2π) and one

has the state of two independent magnons with the energy E = E0 + ǫk1 + ǫk2.

However, the system of two equations in (1.93) exhibits also complex solutions

λ1 = x1 + iy1, λ2 = x2 + iy2. (1.95)

Comparing the modulus of lhs and rhs of the first equation in (1.93), one gets

[
x2

1 + (y1 − 1/2)2

x2
1 + (y1 + 1/2)2

]N

=
(x1 − x2)

2 + (y1 − y2 − 1)2

(x1 − x2)2 + (y1 − y2 + 1)2
. (1.96)

Let us assume that y1 > 0. As N → ∞, the lhs of (1.96) goes exponentially to 0. The rhs

thus implies

x1 = x2, y1 − y2 = 1. (1.97)

The same findings are obtained from the second equation in (1.93). Multiplying the two

equations in (1.93) results in the relation

[
x1 + i(y1 + 1/2)

x1 + i(y1 − 3/2)

]N

= 1, (1.98)

from which y1 = 1/2 and −∞ < x1 <∞. Finally,

λ1 = x+ i/2, λ2 = x− i/2. (1.99)

This is the bound state of two magnons. Its energy ǫk1,k2 = 1− cos(k1 +k2) is always lower

than the sum of energies for two independent magnons ǫk1 + ǫk2 .

For an arbitrary value of ∆ and in the limit N → ∞, the states of the Heisenberg

chain exhibit in the space of rapidities a string structure. Namely, the states are grouped

into complex strings

λµ = x+ iµ, µ = −m,−m+ 1, . . . ,m− 1,m. (1.100)

Since 2m + 1 is the number of states and as such it has to be a positive integer, one

has m = 0, 1/2, 1, 3/2, etc. The statistics of complex strings enables one to derive the

thermodynamics (the free energy, etc.) of the Heisenberg chain at arbitrary temperature

T , see monographs [M2,M3].
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2. Quantum inverse scattering method



2.1 Definition of the S-matrix

The Heisenberg XXZ chain is the simplest system for which the exact solution is obtained

by using the coordinate Bethe ansatz, see the representation (1.58) for the wave-function

amplitudes. In this case, one has M “particles”, namely down-spins in the sea of up-

spins, which have no internal degrees of freedom. The particles are specified only by their

positions on the chain and these positions are ordered, n1 < n2 < . . . < nM . The scattering

of particles is defined by the relation between amplitude A21 = S12A12 where S12 is a scalar.

There exist physical systems of particles possessing internal degrees of freedom σ =

1, . . . , l, sometimes called “colours”. Like for example, for an electron σ denotes one of the

two spin states {↑, ↓}. Let us consider N particles on a chain of sites x = 1, 2, . . . , L. The

particles are characterized by the couples of data (σ1, x1), (σ2, x2), . . . , (σN , xN ). Now, mu-

tual positions among arbitrarily coloured particles are relevant. For a given configuration

of particles we define the permutation Q = (Q1, Q2, . . . , QN) ∈ SN as follows

XQ = {xQ1 ≤ xQ2 ≤ . . . ≤ xQN}. (2.1)

For example, if three particles are ordered as follows x3 < x1 < x2 one has Q = (3, 1, 2).

The permutation Q carries the information about the positional ordering of the particles

(from the left to the right) on the chain: (σQ1, xQ1), (σQ2, xQ2), . . . , (σQN , xQN ).

In section 3, we shall solve the 1D Hubbard model of N interacting electrons with

the spin σ ∈ {↑, ↓}. The solution for the wave function will be found in the form of the

generalized Bethe ansatz:

ψσ1σ2...σN
(x1, x2, . . . , xN ) =

∑

P∈SN

sign(PQ)A(Q|P ) exp

(

i

N∑

α=1

kPαxQα

)

, (2.2)

where

A(Q|P ) ≡ AσQ1σQ2...σQN
(kP1, kP2, . . . , kPN ) (2.3)

denotes the amplitude and sign(PQ), which is equivalent to (−1)ηP +ηQ with ηP (ηQ) being

the parity of the permutation P (Q), ensures the antisymmetry of the wave function ψ

with respect to the interchange of any pair of particles. As before, the summation over all

permutations P “distributes” the given wave numbers (k1, k2, . . . , kN ) among all particles.

The A-amplitudes are related by the scattering of particles. Namely, for N = 2 one

has

Aσjσi
(kv , ku) =

∑

σ′
iσ

′
j

S
σiσ

′
i

σjσ′
j
(ku, kv)Aσ′

iσ
′
j
(ku, kv), (2.4)

where (i, j), (u, v) ∈ {(1, 2); (2, 1)} and S denotes the two-particle scattering matrix of

dimension l2. It is seen that the scattering is elastic, i.e. not only the total momentum but

also both individual momenta are conserved. Note however that in the scattering process

particles can change their σ-colours. The two-particle S-matrix is usually represented

graphically as follows

S
σ1σ′

1

σ2σ′
2
(k1, k2) =

�
�

��@
@

@@σ2

σ1

σ′1

σ′2

. (2.5)

– 16 –



For an arbitrary particle numberN , the two-particle S-matrix relates the A-amplitudes

A(Q|P ) and A(Q̃|P̃ ) which differ from one another by the transposition of a pair of nearest-

neighbour particles, i.e. Q̃ = Q(α,α+ 1) and P̃ = P (α,α+ 1) [see the definition after Eq.

(1.61)]. Schematically, one can write

A...σjσi...(. . . kv, ku . . .) =
∑

σ′
iσ

′
j

S
σiσ′

i

σjσ′
j
(ku, kv)A...σ′

iσ
′
j ...(. . . ku, kv . . .). (2.6)

Applying successively this nearest-neighbour transposition rule, one can convert an arbi-

trary amplitude A(Q|P ) to the one with Q = I, where I = (1, 2, . . . ,N) is the identity

permutation corresponding to the coordinate sector

XI = {x1 ≤ x2 ≤ . . . ≤ xN}. (2.7)

In this way, the scattering of N particles factorizes into a product of two-particle scatterings

which is the fundamental property of integrable systems.

2.2 Yang-Baxter equation

The S-matrices of integrable systems are not arbitrary. There exists a general relation

among the elements of the S-matrix which can be deduced from the scattering of three

particles.

Let us study the scattering process of three particles which starts from the initial state

x3 ≤ x2 ≤ x1, corresponding to Q = (3, 2, 1), and ends in the final state x1 ≤ x2 ≤ x3,

corresponding to Q = I ≡ (1, 2, 3). There are two possible realizations of this three-particle

scattering in terms of the two-particle scatterings:

(a) (3, 2, 1) → (3, 1, 2) → (1, 3, 2) → (1, 2, 3);

(b) (3, 2, 1) → (2, 3, 1) → (2, 1, 3) → (1, 2, 3).

Using the prescription (2.6), the (a) sequence of two-particle scatterings is expressible as

Aσ3σ2σ1(k3, k2, k1) =
∑

σ′
1σ′

2

S
σ1σ′

1

σ2σ′
2
(k1, k2)Aσ3σ′

1σ′
2
(k3, k1, k2)

︸ ︷︷ ︸

∑

σ′
3σ′′

1

S
σ′
1σ′′

1

σ3σ′
3
(k1, k3)Aσ′′

1 σ′
3σ′

2
(k1, k3, k2)

︸ ︷︷ ︸

∑

σ′′
2 σ′′

3

S
σ′
2σ′′

2

σ′
3σ′′

3
(k2, k3)Aσ′′

1 σ′′
2 σ′′

3
(k1, k2, k3), (2.8)

while the (b) sequence corresponds to

Aσ3σ2σ1(k3, k2, k1) =
∑

σ′
2σ′

3

S
σ2σ′

2

σ3σ′
3
(k2, k3)Aσ′

2σ′
3σ1

(k2, k3, k1)
︸ ︷︷ ︸

∑

σ′
1σ′′

3

S
σ1σ′

1

σ′
3σ′′

3
(k1, k3)Aσ′

2σ′
1σ′′

3
(k2, k1, k3)

︸ ︷︷ ︸

∑

σ′′
1 σ′′

2

S
σ′
1σ′′

1

σ′
2σ′′

2
(k1, k2)Aσ′′

1 σ′′
2 σ′′

3
(k1, k2, k3). (2.9)
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The final result must be the same for both sequences of two-particle scatterings. Using

the Orbach parametrization of wave numbers in terms of rapidities (spectral parameters)

{kα = kα(λα);S(kα, kβ) = S(λα − λβ)}, the equivalence of the processes (2.8) and (2.9)

implies the following constraint for the elements of the S-matrix:
∑

σ′
1σ′

2σ′
3

S
σ1σ′

1

σ2σ′
2
(λ− µ)S

σ′
1σ′′

1

σ3σ′
3
(λ)S

σ′
2σ′′

2

σ′
3σ′′

3
(µ) =

∑

σ′
1σ′

2σ′
3

S
σ2σ′

2

σ3σ′
3
(µ)S

σ1σ′
1

σ′
3σ′′

3
(λ)S

σ′
1σ′′

1

σ′
2σ′′

2
(λ− µ). (2.10)

This Yang-Baxter relation is of the form S12(λ−µ)S13(λ)S23(µ) = S23(µ)S13(λ)S12(λ−µ)

where the Yang-Baxter matrices S12, S13 and S23 act on the spaces V1 ⊗ V2, V1 ⊗ V3 and

V2 ⊗ V3, respectively. It can be represented graphically as follows

�
�

�
�@
@

@
@

σ1

σ2 σ3
σ′1

σ′2 σ′3
σ′′1

σ′′2σ′′3

=

�
�

�
�@

@
@

@

σ1

σ2 σ3

σ′1

σ′2σ′3

σ′′1

σ′′2σ′′3

. (2.11)

This graphical representation of the Yang-Baxter relation is applicable to the mathematical

theory of knots [5]. The solutions of the Yang-Baxter equation are related to quantum

groups and Lie algebra (Dynkin diagrams).

The Yang-Baxter equation (2.10) ensures the equivalence of all possible multi-particle

scattering processes, independently of the order in which the two-particle scatterings are

performed.

2.3 Transfer and monodromy matrices

Let us now forget about the origin of the “small” scattering S-matrix of dimension l2

and use it as the building element of “large” matrices formulated on the chain of N sites

n = 1, 2, . . . , N . In this part, we introduce a hierarchy of large matrices and derive for

them the analogies of the Yang-Baxter Eq. (2.10). The method, known as the algebraic

Bethe ansatz or the quantum inverse scattering method (QISM), was worked out by L. D.

Faddeev and his coworkers [6, 7].

• The transfer matrix T is defined as follows

T(λ)σ1...σN

σ′
1...σ′

N
=

∑

γ1,...,γN

Sγ1γ2

σ1σ′
1
(λ)Sγ2γ3

σ2σ′
2
(λ) · · ·SγN γ1

σN σ′
N

(λ). (2.12)

Since each of the indices {σ1, . . . , σN} or {σ′1, . . . , σ
′
N} can take lN values, the dimension

of T is lN .

• The monodromy matrix Tξ of dimension lN+1 is defined by

Tξ(λ)
γξσ1...σN

γ′
ξ
σ′
1...σ′

N
=

∑

γ2,...,γN

S
γξγ2

σ1σ′
1
(λ)Sγ2γ3

σ2σ′
2
(λ) · · ·S

γN γ′
ξ

σN σ′
N

(λ), (2.13)

where ξ is an auxiliary site with state indices (γξ , γ
′
ξ). The monodromy matrix can be

represented graphically as follows

Tξ(λ)
γξσ1...σN

γ′
ξ
σ′
1...σ′

N
=

σ1 σ2 σN−1 σN

σ′1 σ′2 σ′N−1 σ′N

γξ γ′ξ
γ2 γ3 γN . (2.14)
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The transfer matrix (2.12) is obtained from this representation by connecting the free ends,

i.e. setting γξ = γ′ξ ≡ γ1 and summing over γ1, creating in this way the circle. Algebraically,

one has

T(λ) = Trξ Tξ(λ), (2.15)

where Trξ · · · ≡
∑

γξ ,γ′
ξ
δγξγ′

ξ
· · · is the trace in the auxiliary ξ-space.

• It is useful to introduce also the Lξn-matrices (n = 1, 2, . . . ,N) of dimension lN+1:

Lξn(λ)
γξσ1...σN

γ′
ξ
σ′
1...σ′

N
= S

γξγ′
ξ

σnσ′
n
(λ)δσ1σ′

1
. . . δσn−1σ′

n−1
δσn+1σ′

n+1
. . . δσN σ′

N
. (2.16)

It can be shown by the explicit evaluation of matrix products that the monodromy matrix

is expressible as the following product of Lξn-matrices

Tξ(λ) = Lξ1(λ)Lξ2(λ) · · · LξN(λ). (2.17)

• Besides the auxiliary site ξ is useful to introduce another auxiliary site η and define

in the (ξ, η) space the Lξη-matrix of dimension l2:

Lξη(λ)
γξγη

γ′
ξ
γ′

η
≡ S

γξγ′
ξ

γηγ′
η
(λ). (2.18)

The Yang-Baxter Eq. (2.10) for the S-matrix can be transcribed in terms of L-matrices

as follows

Lξη(λ− µ)Lξn(λ)Lηn(µ) = Lηn(µ)Lξn(λ)Lξη(λ− µ). (2.19)

Here, the products of L matrices are performed in the space of N ordinary chain sites

1, 2, . . . , N and two auxiliary ξ, η sites; for example, the matrix element on the lhs has to

be understood in the following way:

{Lξη(λ− µ)Lξn(λ)Lηn(µ)}
γξγη{σ1...σN}

γ′
ξ
γ′

η{σ
′
1...σ′

N
}

=
∑

γ′′
ξ

,γ′′
η

∑

{σ′′
1 ,...,σ′′

N
}

Lξη(λ− µ)
γξγη

γ′′
ξ

γ′′
η

×Lξn(λ)
γ′′

ξ
{σ1...σN}

γ′
ξ
{σ′′

1 ...σ′′
N
}
Lηn(µ)

γ′′
η {σ

′′
1 ...σ′′

N
}

γ′
η{σ

′
1...σ′

N
}
. (2.20)

One can obtain from Eq. (2.19) an analogous relation for the monodromy matrix:

Lξη(λ− µ)Tξ(λ)Tη(µ) = Tη(µ)Tξ(λ)Lξη(λ− µ). (2.21)

To prove this relation, we take advantage of the fact that the matrices Lξn and Lηm

commute for n 6= m and write down

Tξ(λ)Tη(µ) = Lξ1(λ)Lη1(µ) · · · LξN(λ)LηN (µ). (2.22)

Multiplying this relation from the left by Lξη(λ−µ) and then commuting successively Lξη

by using Eq. (2.19) results in the relation (2.21).
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Equations (2.19) and (2.21) can be rewritten in more convenient forms by applying from

the left the permutation operator of indices ξ and η, Πξη, with the elements (Πξη)
γξγη

γ′
ξ
γ′

η
=

δγξγ′
η
δγ′

ξ
γη

. Introducing the R matrix of dimension l2

R(λ) = ΠξηLξη(λ), (2.23)

Eq. (2.19) transforms to

R(λ− µ) [Ln(λ) ⊗ Ln(µ)] = [Ln(µ) ⊗Ln(λ)]R(λ− µ) (2.24)

and Eq. (2.21) transforms to

R(λ− µ) [T (λ) ⊗ T (µ)] = [T (µ) ⊗ T (λ)]R(λ− µ). (2.25)

Here, the tensor products are considered in the (ξ, η) space; for example, the lhs of Eq.

(2.24) has to be understood in the following way

∑

γ′′
ξ

,γ′′
η

R(λ− µ)
γξγη

γ′′
ξ

γ′′
η
Ln(λ)

γ′′
ξ

γ′
ξ
Ln(µ)

γ′′
η

γ′
η
. (2.26)

Finally, on the base of Eq. (2.25) we shall prove the commutation property of transfer

matrices {T(λ)}. Multiplying both sides of Eq. (2.25) from the right by the inverse matrix

R−1(λ− µ) results in

R(λ− µ) [T (λ) ⊗ T (µ)]R−1(λ− µ) = T (µ) ⊗ T (λ). (2.27)

Let us trace both sides of this equation in the auxiliary ξ and η spaces. The lhs then reads

∑

γξ,γη

∑

α,α′

β,β′

R(λ−µ)
γξγη

αβ T (λ)αα′T (µ)ββ′R
−1(λ−µ)α

′β′

γξγη
=
∑

α,α′

β,β′

T (λ)αα′T (µ)ββ′δαα′δββ′ = T(λ)T(µ),

(2.28)

while the rhs is expressible as

∑

γξ,γη

{T (µ) ⊗ T (λ)}γξγη

γξγη
=
∑

γξ,γη

T (µ)
γξ
γξ
T (λ)

γη
γη = T(µ)T(λ). (2.29)

We conclude that

[T(λ),T(µ)] = 0 for arbitrary λ and µ. (2.30)

The existence of the infinite family of commuting transfer matrices is of primary impor-

tance: the eigenvectors of transfer matrices T(λ) are common and do not depend on the

spectral parameter λ.

2.4 S-matrix of the Heisenberg model

The S-matrix associated with the XXX Heisenberg chain reads

S
σ1σ′

1

σ2σ′
2
(λ) =

3∑

j=0

wj(λ)sj
σ1σ′

1
sj
σ2σ′

2
, wj(λ) = w(λ) for j = 1, 2, 3, (2.31)
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where s0 is the 2 × 2 unity matrix (1.1) and {sα} with α = 1, 2, 3 are the Pauli matrices

(1.2). The S-matrix (2.31) has dimension 4 and is of the form

S(λ) =







a(λ) 0 0 0

0 c(λ) b(λ) 0

0 b(λ) c(λ) 0

0 0 0 a(λ)






, where

a(λ) = w0(λ) +w(λ)

b(λ) = 2w(λ)

c(λ) = w0(λ) −w(λ)

. (2.32)

The permutation operator Π and the R-matrix (2.23) are expressible as follows

Π =







1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1






, R(λ) = ΠS(λ) =







a(λ) 0 0 0

0 b(λ) c(λ) 0

0 c(λ) b(λ) 0

0 0 0 a(λ)






. (2.33)

The Lξn-matrix, defined by (2.16), reads

Lξn(λ)
γξσ1...σN

γ′
ξ
σ′
1...σ′

N
=

3∑

j=0

wj(λ)sj
γξγ′

ξ
(sj

n)σ1...σN

σ′
1...σ′

N
=

3∑

j=0

wj(λ)sj ⊗ s
j
n. (2.34)

In the space of the auxiliary ξ space, the Lξn-matrix takes the form

Ln(λ) =

(
w0(λ)s0

n + w(λ)sz
n 2w(λ)s−n

2w(λ)s+
n w0(λ)s0

n − w(λ)sz
n

)

≡

(
α̂n(λ) β̂n(λ)

γ̂n(λ) δ̂n(λ)

)

. (2.35)

Having the explicit forms of the R-matrix (2.33) and the Lξn-matrix (2.35), one can

look for the solution of the Yang-Baxter equation (2.24) in the auxiliary (ξ, η) space. For

example, for the (1, 2) matrix element one gets the constraint

a(λ− µ)
[
w0(λ)s0

n + w(λ)sz
n

]
2w(µ)s−n =

[
w0(µ)s0

n + w(µ)sz
n

]
2w(λ)s−n b(λ− µ)

+2w(µ)s−n
[
w0(µ)s0

n + w(µ)sz
n

]
c(λ− µ). (2.36)

Substituting a, b, c from (2.32) and using the relations szs− = −s−, s−sz = s−, one gets

w0(λ)w(µ)w(λ− µ)−w(λ)w0(µ)w(λ− µ) +w(λ)w(µ)w(λ− µ)−w(λ)w(µ)w0(λ− µ) = 0.

(2.37)

It is interesting that the same equation is obtained for all nontrivial matrix elements in

the Yang-Baxter equation (2.24). Eq. (2.37) is therefore the only constraint. Its division

by w(λ)w(µ)w(λ − µ) results in

c(λ)

b(λ)
=
c(µ)

b(µ)
+
c(λ− µ)

b(λ− µ)
. (2.38)

The simplest solution of this equation is c(λ)/b(λ) = α + βλ. Choosing c(λ)/b(λ) = λ/i

one ends up with

a(λ) : c(λ) : b(λ) = (λ+ i) : λ : i. (2.39)

It is still necessary to establish the relationship between the Hamiltonian of the XXX

Heisenberg chain and the transfer matrix built from the S-matrix defined by relations
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(2.32) and (2.39). When λ = 0, the S-matrix is proportional to the permutation matrix

S(λ = 0) = iΠ. Thus,

T(λ = 0)σ1...σN

σ′
1...σ′

N
= iNδσ1σ′

2
δσ2σ′

3
· · · δσN−1σ′

N
δσN σ′

1
(2.40)

and

T−1(λ = 0)σ1...σN

σ′
1...σ′

N
= i−Nδσ1σ′

N
δσ2σ′

1
· · · δσN−1σ′

N−2
δσN σ′

N−1
. (2.41)

For the derivative of the logarithm of the transfer matrix (2.12) with respect to λ,

d

dλ
ln T(λ) = T−1(λ)

d

dλ
T(λ),

taken at λ = 0, we then get

{
d

dλ
ln T(λ)

}σ1...σN

σ′
1...σ′

N

∣
∣
∣
∣
∣
λ=0

=
1

i

N∑

n=1

δσ1σ′
1
· · · δσn−1σ′

n−1

d

dλ
S

σnσ′
n+1

σn+1σ′
n
(λ)
∣
∣
∣
λ=0

δσn+2σ′
n+2

· · · δσN σ′
N
.

(2.42)

The considered S-matrix, given by Eqs. (2.32) and (2.39), can be reexpressed in an equiv-

alent form

S
σ1σ′

1

σ2σ′
2
(λ) =

3∑

j=0

pj(λ)sj
σ1σ′

2
sj
σ2σ′

1
, where p0 =

λ

2
+ i and pj =

λ

2
for j = 1, 2, 3. (2.43)

Thus,

d

dλ
S

σnσ′
n+1

σn+1σ′
n
(λ)
∣
∣
∣
λ=0

=
1

2
δσnσ′

n
δσn+1σ′

n+1
+

1

2

3∑

j=1

sj
σnσ′

n
sj
σn+1σ′

n+1
. (2.44)

Inserting this relation into (2.42) results in

HXXX ≡ −
1

2

N∑

n=1

(
s
x
ns

x
n+1 + s

y
ns

y
n+1 + s

z
ns

z
n+1

)
=
N

2
IN − i

d

dλ
ln T(λ)

∣
∣
∣
λ=0

, (2.45)

where IN is the unity matrix of dimension 2N . In this way, the diagonalization of the XXX

Heisenberg Hamiltonian is related to the diagonalization of the transfer matrix.

The generalization of the formalism to the XXZ and XYZ Heisenberg chains is straight-

forward. The general form of the S-matrix is the one presented in Eq. (2.31) with no

constraints on wj parameters, i.e.

S
σ1σ′

1

σ2σ′
2
(λ) =







a(λ) 0 0 d(λ)

0 c(λ) b(λ) 0

0 b(λ) c(λ) 0

d(λ) 0 0 a(λ)






, where

a(λ) = w0(λ) + w3(λ)

b(λ) = w1(λ) + w2(λ)

c(λ) = w0(λ) − w3(λ)

d(λ) = w1(λ) − w2(λ)

. (2.46)

The Yang-Baxter Eq. (2.24) is satisfied when the system of equations

wm(λ)wl(µ)wj(λ− µ) −wl(λ)wm(µ)wk(λ− µ)

+wk(λ)wj(µ)wl(λ− µ) − wj(λ)wk(µ)wm(λ− µ) = 0 (2.47)

– 22 –



holds for an arbitrary permutation (j, k, l,m) of (0, 1, 2, 3). For the XXZ model with the

anisotropy ∆ = cos(2ν), one has w1 = w2 and the equation (2.47) implies the following

parametrization

a(λ) : c(λ) : b(λ) : d(λ) = sin(λ+ ν) : sin(λ− ν) : sin(2ν) : 0. (2.48)

For the XYZ model with d(λ) 6= 0, the parametrization of a, b, c and d is done in terms of

the elliptic sine function.

2.5 Diagonalization of the transfer matrix

Let us restrict ourselves to the case of the XXX Heisenberg chain. We start with the

monodromy matrix Tξ, represented in the auxiliary ξ-space as follows

T (λ) =

(
A(λ) B(λ)

C(λ) D(λ)

)

, (2.49)

where each of the matrices A,B,C and D acts in the 2N -dimensional space of indices

α1 . . . αN . Considering this representation in the Yang-Baxter equation (2.25), one obtains

the following commutation rules:

[A(λ), A(µ)] = [B(λ), B(µ)] = [C(λ), C(µ)] = [D(λ),D(µ)] = 0, (2.50)

A(λ)B(µ) =
a(µ− λ)

c(µ− λ)
B(µ)A(λ) −

b(µ− λ)

c(µ− λ)
B(λ)A(µ), (2.51)

D(λ)B(µ) =
a(λ− µ)

c(λ− µ)
B(µ)D(λ) −

b(λ− µ)

c(λ− µ)
B(λ)D(µ). (2.52)

Our task is to find the spectrum of the transfer matrix

T(λ) = Trξ Tξ(λ) = A(λ) +D(λ). (2.53)

Let us choose as the “generating” vector the tensor product of e+ vectors [see Eq.

(1.5)] on the chain of N sites

Ω = e+
︸︷︷︸

1

⊗ . . .⊗ e+
︸︷︷︸

n

⊗ . . .⊗ e+
︸︷︷︸

N

. (2.54)

It follows from the representation (2.35) of the Lξn-matrix in the auxiliary ξ-space that the

operators α̂n, β̂n, γ̂n and δ̂n act on the local vector e+n as follows:

α̂n(λ)e+n = a(λ)e+n , β̂n(λ)e+n = b(λ)e−n ,

γ̂n(λ)e+n = 0, δ̂n(λ)e+n = c(λ)e+n .

(2.55)

These relations can be written in a compact form

Ln(λ)e+n =

(
a(λ) [· · ·]

0 c(λ)

)

e+n , (2.56)
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where the symbol [· · ·] denotes an operator matrix element, transforming the vector e+n to

e−n , whose explicit form will be irrelevant. With regard to the representation (2.17) of the

monodromy matrix and the triangle character of the matrix on the rhs of Eq. (2.56), one

finds

T (λ)Ω =

(
aN (λ) [· · ·]

0 cN (λ)

)

Ω. (2.57)

Using the representation (2.49), we obtain the action of the elements of the monodromy

matrix on the generating vector Ω:

A(λ)Ω = aN (λ)Ω, C(λ)Ω = 0, D(λ)Ω = cN (λ)Ω. (2.58)

The action of the operator B(λ) on the vector Ω is unknown, however, the action of this

operator is determined uniquely by the commutation relations with A(λ) (2.51) and with

D(λ (2.52).

The eigenvectors of the transfer matrix will be searched in the ansatz form

φ(λ1, . . . , λM ) =
M∏

α=1

B(λα)Ω, (2.59)

where M = 0, 1, . . . , N and the parameters (λ1, λ2, . . . , λM ) are as-yet unspecified; note

that the eigenvectors are not supposed to depend on the spectral parameter λ which is in

agreement with the previous analysis. The eigenfunction equation reads

T(λ)φ(λ1, . . . , λM ) = [A(λ) +D(λ)]

M∏

α=1

B(λα)Ω. (2.60)

Since the action of the operator B on Ω is not known, it is necessary to commute this

operator with the operators A and D, whose actions on Ω are known [see Eq. (2.58)], with

the aid of the commutation relations (2.51) and (2.52). Let us consider the expression

containing the A operator and start with the first expansion step

A(λ)

M∏

α=1

B(λα)Ω =

[
a(λ1 − λ)

c(λ1 − λ)
B(λ1)A(λ) −

b(λ1 − λ)

c(λ1 − λ)
B(λ)A(λ1)

] M∏

α=2

B(λα)Ω. (2.61)

In the next step, the rhs of this equation is expanded as
[a(λ1 − λ)

c(λ1 − λ)

a(λ2 − λ)

c(λ2 − λ)
B(λ1)B(λ2)A(λ) −

a(λ1 − λ)

c(λ1 − λ)

b(λ2 − λ)

c(λ2 − λ)
B(λ1)B(λ)A(λ2)

−
b(λ1 − λ)

c(λ1 − λ)

a(λ2 − λ1)

c(λ2 − λ1)
B(λ)B(λ2)A(λ1) +

b(λ1 − λ)

c(λ1 − λ)

b(λ2 − λ1)

c(λ2 − λ1)
B(λ)B(λ1)A(λ2)

]

×

M∏

α=3

B(λα)Ω. (2.62)

Since the operators {B(λα)} commute with each other, the result must be symmetric with

respect to the interchange λ1 ↔ λ2. From the point of view of Eq. (2.62), this is equivalent

to saying that the following relation

b(λ1 − λ)

c(λ1 − λ)

b(λ2 − λ1)

c(λ2 − λ1)
−
a(λ1 − λ)

c(λ1 − λ)

b(λ2 − λ)

c(λ2 − λ)
= −

b(λ2 − λ)

c(λ2 − λ)

a(λ1 − λ2)

c(λ1 − λ2)
(2.63)
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must hold. It is easy to check that within the parametrization (2.39) this equation is indeed

fulfilled. Thus, Eq. (2.62) can be reexpressed as follows

[a(λ1 − λ)

c(λ1 − λ)

a(λ2 − λ)

c(λ2 − λ)
B(λ1)B(λ2)A(λ) −

b(λ1 − λ)

c(λ1 − λ)

a(λ2 − λ1)

c(λ2 − λ1)
B(λ)B(λ2)A(λ1)

−
b(λ2 − λ)

c(λ2 − λ)

a(λ1 − λ2)

c(λ1 − λ2)
B(λ)B(λ1)A(λ2)

] M∏

α=3

B(λα)Ω. (2.64)

Since c(λ) = λ, there must hold λ1 6= λ2. Proceeding in this way, also with the expression

in (2.60) containing the operator D, one ends up with the result

T(λ)φ(λ1, . . . , λM ) = Λ(λ;λ1, . . . , λM )
M∏

α=1

B(λα)Ω

+

M∑

α=1

Λα(λ;λ1, . . . , λM )B(λ)

M∏

β=1
(β 6=α)

B(λβ)Ω, (2.65)

where

Λ(λ;λ1, . . . , λM ) = aN (λ)

M∏

α=1

a(λα − λ)

c(λα − λ)
+ cN (λ)

M∏

α=1

a(λ− λα)

c(λ− λα)
(2.66)

and

Λα(λ;λ1, . . . , λM ) = −
b(λα − λ)

c(λα − λ)




a

N (λα)

M∏

β=1
(β 6=α)

a(λβ − λα)

c(λβ − λα)
− cN (λα)

M∏

β=1
(β 6=α)

a(λα − λβ)

c(λα − λβ)




 .

(2.67)

The condition for φ(λ1, . . . , λM ) (2.59) to be an eigenvector of the transfer matrix T (λ)

is the nullity of all Λα (2.67), i.e. the system of equations

[
a(λα)

c(λα)

]N

=
M∏

β=1
(β 6=α)

a(λα − λβ)

a(λβ − λα)

c(λβ − λα)

c(λα − λβ)
α = 1, 2, . . . ,M (2.68)

which determines the set of distinct parameters λ1, λ2, . . . , λM . With respect to the

parametrization (2.38), this set of equations can be written as follows

(
λα + i

λα

)N

=

M∏

β=1
(β 6=α)

λα − λβ + i

λα − λβ − i
, α = 1, 2, . . . ,M. (2.69)

The corresponding eigenvalue of T(λ) is Λ given by Eq. (2.66). With respect to the

parametrization (2.38), Λ is expressible as

Λ(λ;λ1, . . . , λM ) = (λ+ i)N
M∏

α=1

λα − λ+ i

λα − λ
+ λN

M∏

α=1

λ− λα + i

λ− λα
. (2.70)
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Using the relationship (2.45) between the XXX Hamiltonian and the transfer matrix, the

Hamiltonian eigenvalue E is given by

E = −i
d

dλ
ln Λ(λ;λ1, . . . , λM )

∣
∣
∣
λ=0

+
N

2

= −
N

2
− i

M∑

α=1

(
1

λα
−

1

λα + i

)

. (2.71)

Finally, performing the shift λα = λ′α − i/2 for all α = 1, 2, . . . ,M , one recovers the Bethe

equations (1.73) and (1.74) of the XXX Heisenberg chain.

The advantage of the outlined QISM consists in its general applicability to an arbitrary

integrable model. At first stage, it is necessary to establish an S-matrix which fulfills the

Yang-Baxter equation. Then, the transfer matrix constructed from this S-matrix is shown

to be related to a quantum Hamiltonian. Finally, the diagonalization of the transfer matrix

proceeds along the above lines. In this way one can solve XYZ Heisenberg model whose

Hamiltonian does not commute with the total spin in the z-direction and therefore there is

no hope to apply the coordinate Bethe ansatz. This model exhibits the phase transitions

and its singular behavior around the critical points is nonuniversal, i.e. the critical indices

depend on the model’s parameters.

The quantity T(λ) with a free parameter λ is in fact the true transfer matrix of some

classical two-dimensional statistical (usually vertex) models and its diagonalization implies

the free energy of these models [M1].

Another application of the inhomogeneous version of the QISM will be documented in

the treatment of boundary conditions for the Hubbard and Kondo models.
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3. Hubbard model



3.1 Hamiltonian and its symmetries

The 1D Hubbard model was solved by Lieb and Wu [8], for a reminiscence and some new

rigorous results see Ref. [9].

We consider the 1D Hubbard model on a periodic chain of l = 1, 2, . . . , L sites. Its

Hamiltonian in the second quantization may be written as

H = T
L∑

l=1

∑

σ=↑,↓

(c†lσcl+1σ + c†l+1σclσ) + U
L∑

l=1

nl↑nl↓, (3.1)

where c†lσ and clσ are creation and annihilation operators of electrons (the chain periodicity

is ensured by setting cL+1σ = c1σ), nlσ = c†lσclσ is the occupation number operator for

electron of spin σ ∈ {↑, ↓} at site l and U > 0 is the Coulomb coupling constant.

For a bipartite chain with L = even number, the set of lattice sites can be divided into

two subsets, A and B, such that there is no hopping between A sites or B sites. Then,

the unitary transformation U †HU with U = exp[iπ
∑

l∈A(nl↑ + nl↓)] leaves H unchanged,

except for the replacement T → −T . Without any loss of generality we can take T = −1.

The commutation relations

[
∑

l

nl↑,H] = [
∑

l

nl↓,H] = 0 (3.2)

imply that the numbers of down-spin electrons M and up-spin electrons M ′ are conserved,

and therefore they are good quantum numbers (the conservation of the total number of

electrons N = M +M ′ is obvious). Thus, we can label the Fock eigenstates of the Hamil-

tonian (3.1) by M and M ′ and write the Schrödinger equation as follows

H|M,M ′〉 = E(M,M ′)|M,M ′〉. (3.3)

There exists a symmetry between particles and holes. Introducing fermion operators

dlσ = c†lσ, d†lσ = clσ (3.4)

and using the relation nlσ = 1 − d†lσdlσ, one obtains the identity

E(M,M ′) = −(L−N)U + E(L−M,L−M ′). (3.5)

Since N ≥ L if and only if (L−M) + (L−M ′) ≤ L, we can restrict ourselves to the case

of at most “half-filled band”

N ≤ L. (3.6)

In addition, due to the spin-up and spin-down symmetry, it is sufficient to consider

M ≤M ′. (3.7)
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3.2 Nested Bethe ansatz

The Fock eigenstates of the Hubbard model are expressible as follows

|M,M ′〉 =
∑

{σj}

∑

{xk}

ψσ1...σN
(x1, . . . , xN ) c†x1σ1

. . . c†xN σN
|0〉, (3.8)

where
∑

{σj}
denotes summation over all N !/(M !M ′!) possible spin configurations and |0〉

denotes the particle vacuum. Due to the anticommutation relations between the Fermion

operators, the amplitudes ψ are totally antisymmetric under simultaneous exchange of spin

and space variables:

ψσQ1...σQN
(xQ1, . . . , xQN ) = sign(Q)ψσ1...σN

(x1, . . . , xN ), (3.9)

where Q = (Q1, Q2, . . . , QN) is a permutation of the labels {1, 2, . . . ,N}, i.e. an element

of the symmetric group SN . The antisymmetry property (3.9) implies that the summation

over spin configurations in (3.8) is redundant and one has

|M,M ′〉 =
N !

M !M ′!

∑

{xk}

ψσ1...σN
(x1, . . . , xN ) c†x1σ1

. . . c†xN σN
|0〉, (3.10)

where (σ1, . . . , σN ) is an arbitrary configuration of M electrons with spin down and M ′

electrons with spin up. Inserting (3.10) into the eigenvalue equation, one gets the “first

quantized” version of the Schrödinger equation for the wave function ψ:

−
N∑

j=1

∑

ǫ=±1

ψσ1...σN
(x1, . . . , xj + ǫ, . . . , xN ) + U

∑

j<k

δ(xj , xk)ψσ1...σN
(x1, . . . , xN )

= Eψσ1...σN
(x1, . . . , xN ). (3.11)

Here, δ(x, x′) denotes the Kronecker delta.

3.2.1 Two electrons

For the case of N = 2 electrons, the Schrödinger equation (3.11) reads

−ψσ1σ2(x1 − 1, x2) − ψσ1σ2(x1 + 1, x2) − ψσ1σ2(x1, x2 − 1) − ψσ1σ2(x1, x2 + 1)

+Uδ(x1, x2)ψσ1σ2(x1, x2) = Eψσ1σ2(x1, x2). (3.12)

Let Q = (Q1, Q2) ∈ S2 be a permutation of the labels of particle coordinates which

defines the sector XQ of mutual particle positions as follows

XQ = {xQ1 ≤ xQ2}. (3.13)

In particular, Q = (1, 2) for x1 ≤ x2 and Q = (2, 1) for x2 ≤ x1.

When x1 < x2 or x1 > x2, (3.12) reduces to the Schrödinger equation for free electrons

on the chain and its solution is a superposition of plane waves. The “nested” Bethe ansatz

form for the wave function reads

ψσ1σ2(x1, x2) =
∑

P∈S2

sign(PQ)AσQ1σQ2
(kP1, kP2) exp

(

i

2∑

α=1

kPαxQα

)

, (3.14)
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where k1 and k2 are the momenta of the two electrons. The prefactor sign(PQ) ensures the

antisymmetry property of the wave function with respect to the interchange of particles:

ψσ1σ2(x1, x2) = −ψσ̄1σ̄2(x̄1, x̄2) , (3.15)

where σ̄1 = σ2, x̄1 = x2 and σ̄2 = σ1, x̄2 = x1. To prove this fact, let us consider the case

x1 < x2. In the ansatz (3.14) for ψσ1σ2(x1, x2) we then have Q = (1, 2) and so

ψσ1σ2(x1, x2) = Aσ1σ2(k1, k2)e
i(k1x1+k2x2) −Aσ1σ2(k2, k1)e

i(k2x1+k1x2) . (3.16)

On the other hand, for ψσ̄1σ̄2(x̄1, x̄2) one has x̄1 > x̄2, i.e. Q = (2, 1), and the Bethe ansatz

(3.14) yields

ψσ̄1σ̄2(x̄1, x̄2) = −Aσ̄2σ̄1(k1, k2)e
i(k1x̄2+k2x̄1) +Aσ̄2σ̄1(k2, k1)e

i(k2x̄2+k1x̄1). (3.17)

It is seen that Eqs. (3.16) and (3.17) imply the antisymmetry relation (3.15).

Substituting the ansatz (3.14) into Eq. (3.12) with x1 6= x2 leads to the energy

E = −2(cos k1 + cos k2). (3.18)

When x1 = x2, the electrons occupy the same site and interact with one another

through a scattering process. The Bethe ansatz (3.14) for the wave function requires

the scattering to be purely elastic, which means that the momenta k1 and k2 of the two

electrons are individually conserved (the electrons either keep or exchange their momenta).

The scattering process is determined by two conditions. Firstly, we have to “match” the

wave function defined in the two sectors Q = (1, 2) and Q = (2, 1) when x1 = x2 = x. This

yields the condition

ψσ1σ2(x, x) = [Aσ1σ2(k1, k2) −Aσ1σ2(k2, k1)] exp[i(k1 + k2)x]

= [Aσ2σ1(k2, k1) −Aσ2σ1(k1, k2)] exp[i(k1 + k2)x]. (3.19)

Secondly, the Schrödinger equation (3.12) has to be fulfilled for x1 = x2 = x, which implies

−e−ik1Aσ1σ2(k1, k2) + e−ik2Aσ1σ2(k2, k1) + eik2Aσ2σ1(k1, k2) − eik1Aσ2σ1(k2, k1)

−eik2Aσ1σ2(k1, k2) + eik1Aσ1σ2(k2, k1) + e−ik1Aσ2σ1(k1, k2) − e−ik2Aσ2σ1(k2, k1)

+[U + 2(cos k1 + cos k2)][Aσ1σ2(k1, k2) −Aσ1σ2(k2, k1)] = 0. (3.20)

With the aid of Eqs. (3.19) and (3.20) we can express any two of the four amplitudes

AσQ1σQ2
(kP1, kP2) in terms of the other two. Simple algebra gives

Aσ2σ1(k2, k1) =
∑

σ′
1,σ′

2

S
σ1σ′

1

σ2σ′
2
(k1, k2)Aσ′

1σ′
2
(k1, k2), (3.21)

where S is the two-particle scattering matrix with elements

S
σ1σ′

1

σ2σ′
2
(k1, k2) =

sin k1 − sin k2

sin k1 − sin k2 + iU/2
I

σ1σ′
1

σ2σ′
2

+
iU/2

sin k1 − sin k2 + iU/2
Π

σ1σ′
1

σ2σ′
2
. (3.22)
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Here, I is the identity operator with elements Iσ1τ1
σ2τ2 = δσ1σ′

1
δσ2σ′

2
and Π is the permutation

operator Π
σ1σ′

1

σ2σ′
2

= δσ1σ′
2
δσ2σ′

1
. The natural parametrization of momenta reads

sin kn = λ0
n n = 1, 2; (3.23)

the necessity of introducing the upperscript 0 in λ0
n will be clear later. Within this

parametrization, the S-matrix (3.22) can be expressed as

S12(λ = λ0
1 − λ0

2) =
λ+ i(U/2)Π12

λ+ i(U/2)
. (3.24)

This matrix has the form of the S-matrix for the XXX Heisenberg model (2.32), where the

matrix elements a, b and c are

a(λ) = 1, b(λ) =
iU/2

λ+ iU/2
, c(λ) =

λ

λ+ iU/2
. (3.25)

Since it holds

a(λ) : c(λ) : b(λ) = (λ+ iU/2) : λ : iU/2, (3.26)

Eq. (2.38), which is a direct consequence of the Yang-Baxter equation, is automatically

fulfilled.

We impose periodic boundary conditions on the wave function:

ψσ1σ2(0, x2) = ψσ1σ2(L, x2), ψσ1σ2(x1, 0) = ψσ1σ2(x1, L); (3.27)

ψσ1σ2(1, x2) = ψσ1σ2(L+ 1, x2), ψσ1σ2(x1, 1) = ψσ1σ2(x1, L+ 1). (3.28)

Inserting the Bethe ansatz (3.14) into these conditions yields

exp(ikP1L)AσQ2σQ1
(kP2, kP1) = AσQ1σQ2

(kP1, kP2), (3.29)

where the permutations P,Q ∈ S2 are arbitrary. Choosing say Q = (2, 1), one gets explic-

itly

exp(ikP1L)Aσ1σ2(kP2, kP1) = Aσ2σ1(kP1, kP2) =
∑

σ′
1,σ′

2

S
σ1σ′

1

σ2σ′
2
(kP2, kP1)Aσ′

1σ′
2
(kP2, kP1).

(3.30)

In the sector of both electrons with spin up, it follows from the explicit form of the

S-matrix (3.22) that

exp(ikP1L)A↑↑(kP2, kP1) = A↑↑(kP1, kP2) = A↑↑(kP2, kP1). (3.31)

The periodic boundary conditions thus take the simple form

exp(iknL) = 1 n = 1, 2. (3.32)

Similarly as in the case of the Heisenberg chain, the wave numbers must be distinct, k1 6= k2,

in order to prevent the nullity of the wave function. The same result is obtained in the

sector of both electrons with spin down.
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In the sector of one electron with spin up and the other one with spin down, the

diagonalized form of Eq. (3.30) reads

{

eikP1L

(
1 0

0 1

)

−

( sin kP2−sinkP1−iU/2
sin kP2−sinkP1+iU/2 0

0 1

)}(
A↑↓(kP2, kP1) −A↓↑(kP2, kP1)

A↑↓(kP2, kP1) +A↓↑(kP2, kP1)

)

= 0.

(3.33)

This eigenvalue equation has two solutions. The first quantization condition, corresponding

to A↑↓(kP2, kP1) = −A↓↑(kP2, kP1), takes the form

exp(ikP1L) =
sin kP2 − sin kP1 − iU/2

sin kP2 − sin kP1 + iU/2
. (3.34)

Introducing the quantity

λ1 =
1

2
(sin k1 + sin k2) , (3.35)

Eq. (3.34) can be reexpressed in a more symmetric way

exp(iknL) =
λ1 − sin kn − iU/4

λ1 − sin kn + iU/4
n = 1, 2. (3.36)

Since it follows from (3.34) that exp(ik1L) exp(ik2L) = 1, the parameter λ1 is determined

by the relation
2∏

n=1

λ1 − sin kn − iU/4

λ1 − sin kn + iU/4
= 1. (3.37)

The second condition, corresponding to A↑↓(kP2, kP1) = A↓↑(kP2, kP1) = A↑↓(kP1, kP2), is

equivalent to the previous one (3.32).

3.2.2 N electrons

The generalization of the above results to the case of N electrons is straightforward. The

Bethe ansatz for the solution ψ of the Schrödinger equation (3.11) in the sector Q with

XQ = {xQ1 ≤ xQ2 ≤ . . . ≤ xQN} (3.38)

is

ψσ1σ2...σN
(x1, x2, . . . , xN ) =

∑

P∈SN

sign(PQ)AσQ1σQ2...σQN
(kP1, kP2, . . . , kPN )

× exp

(

i
N∑

α=1

kPαxQα

)

. (3.39)

Substituting this ansatz into (3.11) for the case xn 6= xm (n,m = 1, . . . ,N ;n 6= m), the

energy is obtained as follows

E = −2

N∑

n=1

cos kn. (3.40)

Note that by construction the Bethe ansatz wave function (3.39) is antisymmetric

under simultaneous exchange of spin and space variables. This fact assures the Schrödinger
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equation (3.11) to be satisfied when three or more electrons are occupying the same site.

The only non-trivial case to consider is the presence of two electrons on the same site.

Using the single valuedness of the wave function and solving the matching conditions at

the Q-sector boundaries, one gets the nearest-neighbour electron scattering between the

amplitudes

A...σjσi...(. . . kv, ku . . .) =
∑

σ′
iσ

′
j

S
σiσ′

i

σjσ′
j
(ku, kv)A...σ′

iσ
′
j ...(. . . ku, kv . . .). (3.41)

We impose periodic boundary conditions on the wave function:

ψσ1...σN
(x1, . . . , xn−1, 0, xn+1, . . . , xN ) = ψσ1...σN

(x1, . . . , xn−1, L, xn+1, . . . , xN )

ψσ1...σN
(x1, . . . , xn−1, 1, xn+1, . . . , xN ) = ψσ1...σN

(x1, . . . , xn−1, L+ 1, xn+1, . . . , xN ),(3.42)

where n = 1, . . . , N . Inserting the Bethe ansatz (3.39) into these conditions yields

exp(ikP1L)AσQ2...σQN σQ1
(kP2, . . . , kPN , kP1) = AσQ1σQ2...σQN

(kP1, kP2, . . . , kPN ). (3.43)

Let us consider the special case P = Q = (1,N,N − 1, . . . , 2), for which Eq. (3.43)

takes the form

exp(ik1L)AσN ...σ2σ1(kN , . . . , k2, k1) = Aσ1σN ...σ2(k1, kN , . . . k2). (3.44)

Let us apply the two-particle scattering formula (3.41) to the amplitude on the lhs of this

equation in order to “commute” successively k1 with k2, k3, . . . , kN :

AσN ...σ2σ1(kN , . . . , k2, k1) =
∑

σ′
2,τ2

Sσ1τ2
σ2σ′

2
(k1, k2) AσN ...τ2σ′

2
(kN , . . . , k1, k2)

=
∑

σ′
2,...,σ′

N
τ2,...,τN

Sσ1τ2
σ2σ′

2
(k1, k2) S

τ2τ3
σ3σ′

3
(k1, k3) · · ·

×S
τN−1τN

σNσ′
N

(k1, kN ) AτN σ′
N

...σ′
2
(k1, kN , . . . , k2). (3.45)

Identifying τN ≡ σ′1, the combination of Eqs. (3.44) and (3.45) yields

exp(−ik1L)Aσ1σN ...σ2(k1, kN , . . . , k2) =
∑

σ′
1,σ′

2...,σ′
N

T1
σ1σN ...σ2

σ′
1σ′

N
...σ′

2
Aσ′

1σ′
N

...σ′
2
(k1, kN , . . . , k2),

(3.46)

where

T1
σ1σN ...σ2

σ′
1σ′

N
...σ′

2
=

∑

τ2,...,τN−1

Sσ1τ2
σ2σ′

2
(k1, k2) S

τ2τ3
σ3σ′

3
(k1, k2) · · ·S

τN−1σ′
1

σN σ′
N

(k1, k2). (3.47)

In this way the task of finding the quantization condition for k1 is transformed to the

eigenvalue problem of the T1-matrix.

Let us introduce the inhomogeneous transfer matrix

T(λ;λ0
1, . . . , λ

0
N )σ1...σN

σ′
1...σ′

N
=

∑

γ1,...,γN

Sγ1γ2

σ1σ′
1
(λ− λ0

1) S
γ2γ3

σ2σ′
2
(λ− λ0

2) · · ·S
γN γ1

σN σ′
N

(λ− λ0
N ). (3.48)
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At the point λ = λ0
1, using the equality Sγ1γ2

σ1σ′
1
(0) = δσ1γ2δσ′

1γ1
for our S-matrix (3.24) and

identifying γn ≡ τn−1 (n = 1, . . . , N) one finds that

T1 = T(λ = λ0
1;λ

0
1, . . . , λ

0
N ). (3.49)

Performing the above procedure for P1 = n (n = 1, . . . ,N), one gets the following

eigenvalue equation for kn momentum:

exp(−iknL) A = Tn A, Tn = T(λ = λ0
n;λ0

1, . . . , λ
0
N ). (3.50)

3.3 Boundary conditions within the inhomogeneous QISM

The transfer matrix (3.48) is by the structure very similar to the one defined in the QISM

by Eq. (2.12). The important difference is that the spectral parameters of the S-matrices

in (3.48) are inhomogeneous, dependent on the sites n = 1, . . . ,N . As we shall see, this

complication does not prevent from the diagonalization of the transfer matrix (3.48) by

using an inhomogeneous version of the QISM described in section 2.

We recall that the S-matrices in the definition of the transfer matrix (3.48) are equiv-

alent to the one of the XXX Heisenberg chain (2.32) with the matrix elements a, b and c

defined in Eq. (3.23). As before, the transfer matrix (3.48) is the trace of the monodromy

matrix T in the auxiliary ξ-space,

T(λ;λ0
1, . . . , λ

0
N ) = Trξ Tξ(λ;λ0

1, . . . , λ
0
N ). (3.51)

The monodromy matrix is expressible as the product of local Lξn-matrices

Tξ(λ;λ0
1, . . . , λ

0
N ) = Lξ1(λ− λ0

1)Lξ2(λ− λ0
2) · · · LξN (λ− λ0

N ). (3.52)

Yang-Baxter equations, obtained within the homogeneous QISM (section 2), now take

the following forms. Considering Lξη(λ) defined by (2.18), the counterpart of the Yang-

Baxter Eq. (2.19) reads

Lξη(λ− µ)Lξn(λ− λ0
n)Lηn(µ− λ0

n) = Lηn(µ− λ0
n)Lξn(λ− λ0

n)Lξη(λ− µ). (2.19′)

Then, the analogy of the Yang-Baxter Eq. (2.21) is

Lξη(λ− µ)Tξ(λ;λ0
1, . . . , λ

0
N )Tη(µ;λ0

1, . . . , λ
0
N )

= Tη(µ;λ0
1, . . . , λ

0
N )Tξ(λ;λ0

1, . . . , λ
0
N )Lξη(λ− µ). (2.21′)

Introducing R(λ) = ΠξηLξη, this equation takes an equivalent form

R(λ− µ)
[
T (λ;λ0

1, . . . , λ
0
N ) ⊗ T (µ;λ0

1, . . . , λ
0
N )
]

=
[
T (µ;λ0

1, . . . , λ
0
N ) ⊗ T (λ;λ0

1, . . . , λ
0
N )
]
R(λ− µ). (2.25′)

In analogy with Eq. (2.35), the Lξn-matrix is expressible in the ξ-space as follows

Ln(λ− λ0
n) =

(
α̂n(λ− λ0

n) β̂n(λ− λ0
n)

γ̂n(λ− λ0
n) δ̂n(λ− λ0

n)

)

. (3.53)
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The operator elements act on the local vector e+n in the following way:

α̂n(λ− λ0
n)e+n = a(λ− λ0

n)e+n , β̂n(λ− λ0
n)e+n = b(λ− λ0

n)e−n ,

γ̂n(λ− λ0
n)e+n = 0, δ̂n(λ− λ0

n)e+n = c(λ− λ0
n)e+n .

(3.54)

These relations can be written in a compact form

Ln(λ− λ0
n)e+n =

(
a(λ− λ0

n) [· · ·]

0 c(λ− λ0
n)

)

e+n . (3.55)

The monodromy matrix is expressed in the auxiliary ξ-space as

T (λ;λ0
1, . . . , λ

0
N ) =

(
A(λ;λ0

1, . . . , λ
0
N ) B(λ;λ0

1, . . . , λ
0
N )

C(λ;λ0
1, . . . , λ

0
N ) D(λ;λ0

1, . . . , λ
0
N )

)

. (3.56)

The Yang-Baxter equation (2.25’) implies the commutation rules of type (2.50)-(2.52) for

the matrices A, B, C and D. Note that the shifts of spectral parameters λ and µ by

{λ0
n} are “canceled” in parameters a(µ− λ), b(µ− λ) and c(µ− λ), i.e. the inhomogeneity

does not enter into the commutation procedure of the matrix B with A or D. When the

monodromy matrix acts on the generating vector Ω (the tensor product of e+ vectors on

the chain of N sites), the representation (3.52) and Eq. (3.55) imply that

T (λ;λ0
1, . . . , λ

0
N )Ω =

(∏N
n=1 a(λ− λ0

n) [· · ·]

0
∏N

n=1 c(λ− λ0
n)

)

Ω. (3.57)

Comparing Eqs. (3.56) and (3.57) with one another, the action of the elements of the

monodromy matrix on the generating vector Ω reads:

AΩ =

N∏

n=1

a(λ− λ0
n)Ω, CΩ = 0, DΩ =

N∏

n=1

c(λ− λ0
n)Ω. (3.58)

The eigenvectors of the transfer matrix are searched in the ansatz form

φ(λ0
1, . . . , λ

0
N ;λ1, . . . , λM ) =

M∏

α=1

B(λα)Ω, (3.59)

where λ1, . . . , λM are free spectral parameters. Performing the whole commutation proce-

dure between Eqs. (2.61)-(2.64), one ends up with the crucial relation (2.65), where the

eigenvalue of the transfer matrix (2.66) is replaced by

Λ(λ;λ0
1, . . . , λ

0
N ;λ1, . . . , λM ) =

N∏

n=1

a(λ− λ0
n)

M∏

α=1

a(λα − λ)

c(λα − λ)
+

N∏

n=1

c(λ− λ0
n)

M∏

α=1

a(λ− λα)

c(λ − λα)

(3.60)

and the Bethe equations (2.68) for the spectral parameters λ1, . . . , λM take the form

N∏

n=1

a(λα − λ0
n)

c(λα − λ0
n)

=

M∏

β=1
(β 6=α)

a(λα − λβ)

a(λβ − λα)

c(λβ − λα)

c(λα − λβ)
α = 1, 2, . . . ,M. (3.61)
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Eq. (3.50) is thus equivalent to the quantization condition

exp(−iknL) =
M∏

α=1

λα − sin kn + iU/2

λα − sin kn
n = 1, . . . ,N. (3.62)

The Bethe equations (3.61) take the explicit form

N∏

n=1

λα − sin kn + iU/2

λα − sin kn
=

M∏

β=1
(β 6=α)

(−1)
λα − λβ + iU/2

λβ − λα + iU/2
α = 1, . . . ,M. (3.63)

Finally, shifting λα → λ′α − iU/4 and after some simple manipulations one gets the results

in the well-known symmetric form

exp(iknL) =

M∏

α=1

λα − sin kn − iU/4

λα − sin kn + iU/4
n = 1, . . . ,N (3.64)

and
N∏

n=1

λα − sin kn − iU/4

λα − sin kn + iU/4
=

M∏

β=1
(β 6=α)

λα − λβ − iU/2

λα − λβ + iU/2
α = 1, . . . ,M. (3.65)

These general results are in agreement with the respective Eqs. (3.36) and (3.37), obtained

for the special case N = 2 and M = 1.

3.4 Ground state and its energy

Logarithming Eqs. (3.64) and (3.65) one arrives at

knL = 2πIn +
M∑

β=1

2 arctg

[
4

U
(λβ − sin kn)

]

, (3.66)

N∑

n=1

2 arctg

[
4

U
(λα − sin kn)

]

= 2πJα +
M∑

β=1
(β 6=α

2 arctg

[
2

U
(λα − λβ)

]

, (3.67)

where In and Jα are integers or half-integers. Here, we have used the formula

x− iy

x+ iy
= ei(Θ−π) =⇒ Θ = 2 arctg

(
x

y

)

. (3.68)

In the thermodynamics limit L→ ∞, N → ∞, M → ∞ with the finite particle density

N/L and spin M/L, the numbers {In} and {Jα} are consecutive sequences In+1 = In + 1,

Jα+1 = Jα + 1 symmetrically distributed around 0. The corresponding real numbers {kn}

and {λα} are situated in the intervals

−Q ≤ kn ≤ Q, −B ≤ λα ≤ B. (3.69)
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In the continuum limit kn → k(x), λα → λ(x) and In/N → x, the density of k is ρ(k) and

the density of λ is σ(λ). Eq. (3.66) implies

k(x) = 2πx+

∫ B

−B
dλ σ(λ) 2 arctg

[
4

U
(λ− sin k)

]

. (3.70)

The differentiation of this equation with respect to k yields

2πρ(k) = 1 + cos k

∫ B

−B
dλ σ(λ)

8U

U2 + 16(λ − sin k)2
. (3.71)

The second equation is obtained from Eq. (3.67) by differentiating with respect to λ:

∫ Q

−Q
dk ρ(k)

8U

U2 + 16(λ − sin k)2
= 2πσ(λ) +

∫ B

−B
dλ′ σ(λ′)

4U

U2 + 4(λ− sin k)2
. (3.72)

The parameters Q and B are determined by the conditions

∫ Q

−Q
dk ρ(k) =

N

L
,

∫ B

−B
dλσ(λ) =

M

L
. (3.73)

The energy (3.40) is expressible, for real kn and in the continuum limit, as follows

E(M,M ′) = −2L

∫ Q

−Q
dk ρ(k) cos k. (3.74)

The global ground state corresponds to a half-filled band N = L with zero total spin

M = M ′ = N/2 (N is even). This corresponds to B = ∞ and Q = π [9]. With these

values of B and Q, Eqs. (3.71) and (3.72) can be solved by using the Fourier method, in

particular, the following Fourier transforms:

∫ ∞

−∞

dλ

2π
eiωλ 8U

U2 + 16λ2
= e−U |ω|/4,

∫ ∞

−∞

dλ

2π
eiωλ 4U

U2 + 4λ2
= e−U |ω|/2. (3.75)

The final results read

σ(λ) =
1

2π

∫ ∞

0
dω

J0(ω) cos(ωλ)

cosh(ωU/4)
, (3.76)

ρ(k) =
1

2π
+

cos k

π

∫ ∞

0
dω

J0(ω) cos(ω sin k)

1 + exp(ωU/2)
, (3.77)

E0(N/2, N/2) = −4L

∫ ∞

0
dω

J0(ω)J1(ω)

ω[1 + exp(ωU/2)]
, (3.78)

where J0(ω) and J1(ω) are the Bessel functions.

The complete thermodynamics of the 1D Hubbard model is reviewed in Ref. [10].
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3.5 Absence of Mott’s transition conductor-insulator

When an interaction parameter of electrons is varied, the system of electrons in the ground

state can undergo a conducting-insulating Mott transition. In the Hubbard model one

expects that the Mott transition occurs at some critical Uc > 0. In what follows we show

that this is not the case of the 1D Hubbard model in which there exists no Mott transition

for all U > 0.

In order to determine whether the ground state is conducting or insulating, it is nec-

essary to evaluate the chemical potentials

µ+ = E0(M+1,M ;U)−E0(M,M ;U), µ− = E0(M,M ;U)−E0(M−1,M ;U). (3.79)

Due to the symmetry (3.5), the chemical potentials fulfil the relation

µ+ + µ− = U. (3.80)

The system is conducting is µ+ = µ− and insulating if µ+ > µ−; this is related to the fact

that in the insulating phase there are bounded pairs of ↑↓ electrons while in the conducting

phase the interaction is screened. It was shown in ref. [9] that

µ−(U) = 2 − 4

∫ ∞

0
dω

J1(ω)

ω[1 + exp(ωU/2)]
. (3.81)

Consequently, µ+(U) > µ−(U) and the 1D Hubbard model is insulating for all U > 0.

There is no conducting-insulating transition in the ground state of the 1D Hubbard model,

except at U = 0.
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4. Kondo effect



4.1 Hamiltonian

The Kondo model describes the interaction of a conduction band with a localized spin

impurity. The conduction band is defined by the Hamiltonian

H0 =
∑

k,σ

ǫ(k)c†
kσckσ, (4.1)

where ckσ (c†
kσ) is the annihilation (creation) operator of an electron with momentum k and

spin component σ ∈ {↑, ↓}. The conduction band is coupled via spin exchange interaction

to a spin s0 localized at r = 0,

HI = J
∑

σ,σ′

Ψ∗
σ(r = 0)sσσ′Ψσ′(r = 0) · s0. (4.2)

Here, Ψσ(r = 0) [Ψ∗
σ(r = 0)] is the Fourier transform of ckσ (c†

kσ). For simplicity, the

impurity spin s0 will be considered to be the spin-1/2, but the exact analysis can be

performed for any spin S = 1/2, 1, 3/2, . . ..

The system is rotationally invariant and therefore it is useful to expand the electron

operators ckσ and c†
kσ in the basis of the spherical functions:

ckσ =

∞∑

l=0

l∑

m=−l

Ylm

(
k

k

)

cklm,σ, c†
kσ =

∞∑

l=0

l∑

m=−l

Y ∗
lm

(
k

k

)

c†klm,σ. (4.3)

One assumes for simplicity that from the angular modes only the s-wave modes with

l = m = 0 have nonzero coupling to the impurity. The total Hamiltonian H = H0 + HI

then reads

H =
∑

k,l,m,σ

ǫ(k)c†klm,σcklm,σ + J
∑

k,k′

σ,σ′

c†k00,σsσσ′ck′00,σ′ · s0. (4.4)

Let us restrict ourselves to momenta k close to the Fermi surface, k = kF + q with

q ≪ D where D is a cut-off of the order of kF , and consider the linear dispersion law

ǫ(k) = ǫF + vF (k − kF ). (4.5)

We shift the energy by ǫF , set vF = 1 and leave in the free-electron part of H only the

relevant electrons with l = m = 0. Using the notation ck00,σ ≡ ckσ and c†k00,σ ≡ c†kσ, one

thus gets

H =
∑

k,σ

kc†kσckσ + J
∑

k,k′

σ,σ′

c†kσsσσ′ck′σ′ · s0. (4.6)

This Hamiltonian is effectively one-dimensional. In the coordinate representation in

terms of the operators cσ(x) =
∫

dk exp(ikx)ckσ , it takes the form

H =

∫

dx



−i
∑

σ

c†σ(x)
∂

∂x
cσ(x) + Jδ(x)

∑

σ,σ′

c†σ(x)sσσ′cσ′(x) · s0



 . (4.7)
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In the first quantization, the Schrödinger equation for N electrons (σ1, x1), . . . , (σN , xN )

and one impurity (σ0, x0 ≡ 0) is written as follows

(

−i

N∑

n=1

∂

∂xn
−E

)

ψσ1...σN ,σ0(x1, . . . , xN ) + J

N∑

n=1

δ(xn)

×
∑

σ′
n,σ′

0

sσnσ′
n
· sσ0σ′

0
ψσ1...σ′

n...σN ,σ′
0
(x1, . . . , xN ) = 0. (4.8)

4.2 S-matrices

The Kondo model was solved by Andrei [11] and Wiegmann [12], for reviews see Ref. [13,14].

Let us first study the Schrödinger Eq. (4.8) for a single electron interacting with the

impurity: (

−i
d

dx
− E

)

ψσ,σ0(x) + Jδ(x)
∑

σ′ ,σ′
0

sσσ′ · sσ0σ′
0
ψσ′,σ′

0
(x) = 0. (4.9)

The wave function is searched in the Bethe-ansatz form

ψσ,σ0(x) = exp(ikx) [Aσσ0θ(−x) +Aσ0σθ(x)] . (4.10)

For x 6= 0, this function obviously satisfies Eq. (4.9) and implies the eigenvalue

E = k. (4.11)

At x = 0, the Schrödinger Eq. (4.9) leads to

δ(0)

{

−i (Aσ0σ −Aσσ0) +
1

2
Js · s0 (Aσσ0 +Aσ0σ)

}

= 0. (4.12)

Here, we used the equality θ(x) + θ(−x) = 1 and the consequent renormalization prescrip-

tion

θ(x)δ(x) = θ(−x)δ(x) =
1

2
δ(x). (4.13)

For the scattering S-matrix of the electron with number n = 1, 2, . . . ,N , which relates the

amplitudes according to the standard prescription

Aσ0σn =
∑

σ′
n,σ′

0

S
σnσ′

n

σ0σ′
0
Aσ′

nσ′
0
, (4.14)

we thus get

Sn0 =
i + Jsn · s0/2

i − Jsn · s0/2
=

i − (J/2) + JΠn0

i + (J/2) − JΠn0
. (4.15)

Here, we took the advantage of the fact that the permutation operators Πn0 = (In0 + sn ·

s0)/2. Since Π2 = I the S-matrix (4.15) can be transformed to a more convenient form

Sn0 = exp(−iφ)
In0 − ic Πn0

1 − ic
, (4.16)

where

c =
2J

1 − (3J2/4)
, exp(iφ) =

1 − (3J2/4) + 2iJ

1 + (3J2/4) − iJ
. (4.17)
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As concerns the scattering S-matrix for two electrons n and m away from impurity,

since the Hamiltonian does not contain any interaction term one might be tempted to

consider Snm = Inm. However, this choice would not satisfy the “mixed” Yang-Baxter

equation for the scattering of two electrons and the impurity

SnmSn0Sm0 = Sm0Sn0Snm (4.18)

due to the non-commutativity of Sn0 and Sm0. The solution of this problem consists in

the fact that for free non-interacting electrons an arbitrary electron-electron S-matrix is

allowed. Being inspired by the Hubbard model, we consider

Snm = Πnm. (4.19)

This choice evidently satisfies, besides the standard Yang-Baxter equation for three elec-

trons

SnmSnkSmk = SmkSnkSnm, (4.20)

also the mixed one (4.18) for two electrons and the impurity.

Let us introduce the “state variables” λ0
n = 1 or 0 depending on whether n refers to an

electron (n = 1, 2, . . . , N) or to the impurity (n = 0), respectively. Then, the expressions

for the S-matrices (4.16) and (4.19) can be unified:

Snm = exp
[
−i(λ0

n − λ0
m)φ

] (λ0
n − λ0

m)Inm − ic Πnm

(λ0
n − λ0

m) − ic
. (4.21)

The Bethe ansatz for the amplitude of N electrons and the impurity is analogous to

that of the Hubbard model, the corresponding energy depends on the momenta of electrons

as follows

E =

N∑

n=1

kn. (4.22)

4.3 Boundary conditions within the inhomogeneous QISM

Let us consider N electrons localized on the line of length L. Imposing periodic boundary

conditions for the electrons leads to N eigenvalue equations for their momenta analogous

to the ones (3.50) for the Hubbard model:

exp(−iknL)A = TnA n = 1, . . . ,N. (4.23)

Here, the operator Tn, defined by the previous Eq. (3.47), is now built with the S-matrices

of the Kondo model (4.21):

Tn = Sn,n−1 . . . Sn1Sn0SnN . . . Sn,n+1. (4.24)

We define the transfer matrix

T(λ;λ0
0, λ

0
1, . . . , λ

0
N ) = Trξ Tξ(λ;λ0

0, λ
0
1, . . . , λ

0
N ) (4.25)
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with the monodromy matrix expressed as the product of local Lξn-matrices

Tξ(λ;λ0
0, λ

0
1, . . . , λ

0
N ) = Lξ0(λ− λ0

0)Lξ1(λ− λ0
1) · · · LξN(λ− λ0

N ). (4.26)

The operator of interest Tn is determined simply by

Tn = T (λ = λ0
n;λ0

0, λ
0
1, . . . , λ

0
N ) n = 1, . . . ,N. (4.27)

Comparing the S-matrices of the Kondo model (4.21) with those of the Hubbard

model (3.24) it is clear that they are equivalent if one identifies U/2 → −c, up to a trivial

exponential prefactor which appears in each Tn just once. We can therefore adopt the final

results (3.64) and (3.65) of the inhomogeneous QISM applied to the Hubbard model, with

the identification sin kn ≡ λ0
n (n = 1, . . . ,N) and with the inclusion of the n = 0 impurity

term and the corresponding λ0
0. Namely, in the sector with M (0 ≤ M ≤ N) down-spin

electrons, the electron momenta are given by

exp(iknL) = exp(iφ)

M∏

α=1

λα − λ0
n + ic/2

λα − λ0
n − ic/2

n = 1, . . . ,N (4.28)

and the spectral parameters λ1, . . . , λM are determined by the Bethe equations

N∏

n=0

λα − λ0
n + ic/2

λα − λ0
n − ic/2

=

M∏

β=1
(β 6=α)

λα − λβ + ic

λα − λβ − ic
α = 1, . . . ,M. (4.29)

After the substitution of the state variables λ0
0 = 0 and λ0

n = 1 for n = 1, . . . ,N , Eq. (4.28)

takes the form

exp(iknL) = exp(iφ)

M∏

α=1

λα − 1 + ic/2

λα − 1 − ic/2
n = 1, . . . ,N, (4.30)

while the formal inversion of Eq. (4.29) results in

(
λα − 1 − ic/2

λα − 1 + ic/2

)N (λα − ic/2

λα + ic/2

)

=
M∏

β=1
(β 6=α)

λα − λβ − ic

λα − λβ + ic

= −
M∏

β=1

λα − λβ − ic

λα − λβ + ic
α = 1, . . . ,M. (4.31)

Note that the equations for the momenta {kn} and for the spin spectral parameters {λα}

have decoupled. The φ-parameter in Eq. (4.30) can be omitted since it only shifts trivially

kn by the uniform φ/L.

4.4 Ground state and its energy

Using a formula similar to the one (3.68), one gets from Eq. (4.30) (taken with φ ≡ 0) that

kn =
2π

L
In +

1

L

M∑

β=1

[Θ(2λβ − 2) − π] . (4.32)
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Here, In is an integer and

Θ(x) = −2 arctg
(x

c

)

. (4.33)

The expression for the energy (4.22) becomes

E =

N∑

n=1

2π

L
In + ne

M∑

β=1

[Θ(2λβ − 2) − π] , (4.34)

where ne = N/L is the electron density. Taking the logarithm of Eqs. (4.31) one finds that

the spectral parameters {λα}
M
α=1 satisfy the following set of coupled equations

NΘ(2λα − 2) + Θ(2λα) = −2πJα +

M∑

β=1

Θ(λα − λβ), α = 1, . . . ,M, (4.35)

where the numbers {Iα}
M
α=1 are distinct integers or half-integers.

Let us now concentrate on the ground state determined by specific choices of quantum

numbers {In}
N
n=1 and {Jα}

M
α=1.

• Since the integers {In}
N
n=1 in the energy (4.34) can take arbitrarily large and negative

values, the energy spectrum is unbounded from below. It is therefore needed to

introduce a cutoff K, say as follows
∣
∣
∣
∣

2π

L
In

∣
∣
∣
∣
< K. (4.36)

In the ground state, the quantum numbers {In}
N
n=1 take their minimum values al-

lowed by the cutoff. Since they have to be distinct and run from −KL/(2π) upwards

with the unity step, setting ǫF = 0 they read

I1, I2, . . . , IN = −N,−N + 1, . . . , 0. (4.37)

Consequently, K = 2πN/L = 2πne.

• As concerns the quantum numbers {Jα}
M
α=1 in Eq. (4.35), they also have to be

distinct and, since |Θ(x)| ≤ π, they are bounded by the general restrictions

J−(N,M) = −
1

2
(N −M − 1) ≤ Jα ≤

1

2
(N −M − 1) = J+(N,M). (4.38)

The state with the lowest energy is a spin singlet, M = N/2, induced by consecutive

numbers Jα+1 = Jα + 1 which fill the interval

J− ≤ Jα ≤ J+, J± = ±
1

2

(
N

2
− 1

)

. (4.39)

In the thermodynamic limit N,L→ ∞ with ne = N/L held fixed, we define the density

σ(λ) of the solutions {λα} of Eq. (4.35). All λ-solutions are real in the ground state and

thus from Eq. (4.34) the ground-state energy E0 becomes

E0 =

N∑

n=1

2π

L
In + ne

∫ ∞

−∞
dλ σ(λ) [Θ(2λ− 2) − π] . (4.40)
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The relation for σ(λ) is obtained from Eq. (4.35) by the standard procedure, with the final

result

σ(λ) =
2c

π

[
N

c2 + 4(λ− 1)2
+

1

c2 + 4λ2

]

−

∫ ∞

−∞

dλ′

π

c

c2 + (λ− λ′)2
σ(λ′). (4.41)

The solution of this equation is obtained with the aid of Fourier transforms:

σ(λ) =
1

2c

{
N

cosh[π(λ− 1)/c]
+

1

cosh(πλ/c)

}

. (4.42)

Finally, inserting {In}
N
n=1 from (4.37) and σ(λ) from (4.42) into the relation for the energy

(4.40), one arrives at

E0 = −
π

2L
N2 − ine ln

[

Γ(1 + ic)Γ(1
2 − ic)

Γ(1 − ic)Γ(1
2 + ic)

]

. (4.43)

The complete thermodynamics of the Kondo model is reviewed in Refs. [13,14].

All studied models possess short-ranged particle interactions, on the same site or point

(Hubbard, Kondo) or the nearest-neighbour one (Heisenberg). The Bethe ansatz for sys-

tems with long-ranged interactions among particles is reviewed in the monograph [M4].

Integrable models in the (1+1)-dimensional Field Theory (e.g. sine-Gordon) are solved

by using the Thermodynamic Bethe ansatz.
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