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Abstract

Our concern in this paper lies with imbeddings of general spaces of
Besov and Lizorkin-Triebel type with dominating mixed derivatives
in the first critical case. We employ multivariate exponential Or-
licz and Lorentz-Orlicz spaces in the role of targets. We study basic
properties of the target spaces, in particular, we compare them with
usual exponential spaces, showing that in this case the multivariate
clones are in fact better adapted to the character of smoothness of
the imbedded spaces. Then we prove sharp limiting imbedding the-
orems and establish estimates for the multivariate growth envelope
functions.
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1 Introduction

Various aspects of critical imbeddings have been intensively studied in nu-
merous papers in last years, inspired with the celebrated imbedding theorem
[Tru] and its later generalizations.

Here we shall be concerned with the limiting imbeddings of the spaces
Sr

p qB(RN ×R
N) and Sr

p qF (RN ×R
N) in the so called first critical case, that

is, when rp = N , where 2N is the dimension of the underlying Euclidean
space. We shall prove the refinement corresponding to the Brézis-Wainger
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1



2 M. Krbec and H.-J. Schmeisser

theorem [BW]. There is a rich literature especially in last years, devoted to
limiting imbeddings and we shall make no attempt here to make an account
of either the history or the recent research in this area. We refer to [Tri2]
for a detailed survey with further references.

In [KS1] and [KS2] we considered critical imbeddings of spaces with
dominating mixed derivatives and various clones of special reduced imbed-
dings. The current paper can be considered as a free continuation to [KS1];
in [KS2] we studied imbeddings of these spaces into spaces of almost Lip-
schitz continuous functions (that is, in the second critical case, rp = N+p).
Note that some of these results have been quite recently generalized to the
case of vector-valued function spaces without the UMD property(see e.g.
[KS3]).

The target spaces for the critical imbeddings in the first critical case
are the exponential Orlicz spaces or their Orlicz-Lorentz refinements. In
both cases the targets are characterized with help of non-increasing re-
arrangements. If the imbedded spaces have more complicated structure as
in the case of dominating mixed derivatives, then there is a natural ques-
tion whether the target spaces can be improved or refined considering other
spaces in the role of targets.

Recall that for a measurable f : R
M → C the non-increasing rearrange-

ment of f is the function

f ∗(t) = inf{λ > 0 : µf (λ) ≤ t},

where
µf (λ) = |{x ∈ R

M : |f(x)| > λ}|.

One of the tools used recently for refinements of subcritical Sobolev
imbeddings are multivariate rearrangements (see [K]), which turn out to
be appropriate for our goal as well, and we shall prove the corresponding
imbedding theorem in the first critical case (Theorem 3.1).

The concept of the growth envelope function and of the growth enve-
lope, introduced by Triebel and Haroske (see [H], [Tri2]) show that if we
use the usual rearrangements, then the use of the exponential Orlicz and
exponential Lorentz-Orlicz spaces in the role of the target is quite nat-
ural: the “optimal functions” permit the growth just fitting the biggest
possible growth of these standard rearrangements. A closer look at the
critical imbeddings in [KS1] and considerations concerning the sharpness of
the imbeddings there reveal in turn that one can expect better imbeddings
when passing from usual rearrangements to the multivariate ones because
they are better adopted to measure the unboundedness of functions with
dominating mixed smoothness properties.

We shall generally adhere to common notations, more specific notions
will be defined in the following. The constant c in various estimates is
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a “generic” constant: its values might change from line to line but it is
independent of particular choice of functions appearing in the formulas.

2 Rearrangements, extrapolation, spaces

2.1 Rearrangements

The multivariate rearrangements were studied in several papers; even more
general questions of Banach spaces with mixed norms were considered. For
the Lebesgue and Lorentz spaces in this spirit we refer to Blozinski [B],
Kolyada [K] and Yatsenko [Ya].

Let us fix notions and notations. Let f : R
N × R

N → C be measurable.
Put

(R1f)(s, y) = [f(., y)]∗(s), s > 0, , y ∈ R
N ,

(R2f)(x, t) = [f(x, .)]∗(t), x ∈ R
N , t > 0,

(2.1)

and define the multivariate non-increasing rearrangement of f by

(R12)f(s, t) = (R2 ◦R1f)(s, t) = [(R1f)(s, .)]∗(t), s, t > 0. (2.2)

Sometimes it is more convenient to work with the averages of the above
operators. Let

(A1f)(s, y) =
1

s

∫ s

0

(R1f)(u, y) du, s > 0, y ∈ R
N ,

(A2f)(x, t) =
1

t

∫ t

0

(R2f)(x, v) dv, x ∈ R
N , t > 0,

and define the multivariate average of f by

(A12f)(s, t) = (A2 ◦ A1f)(s, t)

=
1

t

∫ t

0

(R2(A1f))(s, v) dv

=
1

t

∫ t

0

R2

(
1

s

∫ s

0

(R1f)(u, .) du

)
(v) dv

=
1

st

∫ t

0

R2

(∫ s

0

(R1f)(u, .) du

)
(v) dv, s, t > 0.

(2.3)

One can consider the multivariate rearrangement R21 and the multivariate
average A21 defined in an obvious way.

In accordance with (2.1) we should write extra parentheses around R2

and its inner function on the third and fourth line of the last display; since
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no misunderstanding can occur we shall often use such a little abuse of the
notations to simplify the formulae.

On the other hand one can consider the operator

f ∗∗(s, t) =
1

st

∫ t

0

∫ s

0

(R12f)(σ, τ) dσdτ

and one can ask about the relation between these various expressions.
Plainly

(R12f)(s, t) ≤ (A12f)(s, t) ≤ f ∗∗(s, t). (2.4)

By virtue of the Fubini theorem and properties of the non-increasing re-
arrangements the function R12f is equimeasurable with R1f and the latter
is in turn equimeasurable with f . Hence

∫ ∞

0

∫ ∞

0

(R12)f(s, t) dsdt =

∫

RN

∫

RN

f(x, y) dxdy

=

∫ ∞

0

R1

(∫ ∞

0

(R2f)(x, .) dt

)
(s) ds.

(2.5)

Analogous equality hold for R21.
The superposition of the rearrangements in (2.2) and of the averages in

(2.3) is worth of a comment: It should be pointed out that the functions
R12f and A12f are non-increasing with respect to both variables. This
means the following: If for a fixed x we rearrange a function f = f(x, y)
with respect to the variable y, then the result is the non-increasing function
t 7→ (R2f)(x, t), t > 0. Now, if we rearrange (R2f)(x, t) as a function of
the variable x for every fixed t, it can generally happen that the resulting
function will be rearranged in a different way in the direction of the axis
t, nevertheless, the monotonicity in t will be preserved! This remarkable
property of multivariate rearrangements can be seen and understood well
for instance considering a rearrangement of a matrix, where the application
of R12 consists in subsequent non-increasing rearrangements of the elements
in columns and rows. Hence

R2(R12f)(s, t) = R1(R12f)(s, t) = (R12f)(s, t), s, t, > 0. (2.6)

Further, one can easily check that

(R12(f + g))(s1 + s2, t1 + t2) ≤ (R12f)(s1, t1) + (R12g)(s2, t2).

The operator A12 is subadditive whereas R12 and f ∗∗ are not.
The symbol Lp, q (1 ≤ p, q ≤ ∞) will denote the usual Lorentz spaces

equipped with the (quasi)norm

‖f |Lp, q‖ =

(
q

p

∫ ∞

0

[
t1/pf ∗(t)

] dt
t

)1/q
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(with usual modifications if p = ∞ or q = ∞).
The multivariate Lorentz spaces can be introduced as follows: Consider

for simplicity the product R
2N = R

N × R
N . Then for 1 < p, q < ∞ we

define the (quasi)norm in Lp, q
R = Lp, q

R (RN × R
N) by

‖f |Lp, q
R ‖ =

(
q

p

∫ ∞

0

q

p

∫ ∞

0

[
(st)1/p(R12f)(s, t)

]q ds

s

dt

t

)1/q

. (2.7)

Similarly one can use R21. Relations between Lp, q
R and the standard Lorentz

spaces Lp, q were studied in [Ya] where it was shown, for instance, that

Lp, q
R ↪→ Lp, q if q < p. (2.8)

The domain R
N × R

N will be considered to simplify the notations and the
exposition. We shall not pursue the technicalities connected with the more
general domain R

N1 ×R
N2 and the corresponding spaces with mixed norms.

Let us recall the sharp form of Calderón’s lemma (see [SW, Chapter 5]),
stating that if p ≥ q, then ‖f |Lp‖ ≤ ‖f |Lp, q‖, i.e. the norm of the corre-
sponding imbedding does not exceed one. This combined with (2.8) and
with the equimeasurability properties (2.5) immediately yields

‖f |Lp(R
2N)‖ ≤ c‖f |Lp, q

R (RN × R
N)‖ if q < p,

where c is the norm of the imbedding in (2.8). Applying the sharp version
of Calderón’s lemma in a more careful and elaborate way the last estimate
can be improved: There holds

‖f |Lp(R
2N)‖ ≤ ‖f |Lp, q

R (RN × R
N)‖ if q < p, (2.9)

that is, the norm of the imbedding Lp, q
R (RN × R

N) ↪→ Lp(R
2N) does not

exceed one. Indeed, let f = f(x, y), x, y ∈ R
N , and q < p. Then

‖f |Lp(R
N × R

N)‖ ≤

∥∥∥∥
(
q

p

∫ ∞

0

[
s1/pR1f(s, y)

]q ds

s

)1/q∣∣∣Lp(R
N)

∥∥∥∥
(by Calderón’s lemma)

=

∥∥∥∥
q

p

∫ ∞

0

[
s1/pR1f(s, y)

]q ds

s

∣∣∣Lp/q(R
N)

∥∥∥∥
1/q

≤

(
q

p

∫ ∞

0

(∫

RN

[
s1/pR1f(s, y)

]p
dy

)q/p
ds

s

)1/q

(by generalized Minkowki’s inequality)

=

(
q

p

∫ ∞

0

‖s1/pR1f(s, ·)|Lp(R
N)‖q ds

s

)1/q
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≤

(
q

p

∫ ∞

0

(
q

p

∫ ∞

0

[
s1/pR12f(s, t)t1/p

]q dt

t

)
ds

s

)1/q

(by Calderón’s lemma)

= ‖f |Lp,q
R (RN × R

N)‖

and (2.9) is proved.
Since we shall work with atomic decompositions it will be useful to

introduce further shorthands. Let b : Z
N×Z

N → C and denote the elements
of b by b(m,n). Put

(R1b)(α, n) = [b(., n)]∗ (α), α ∈ N, n ∈ Z
N ,

(R2b)(m,β) = [b(m, .)]∗ (β), m ∈ Z
N , β ∈ N,

(R12b)(α, β) = (R2 ◦R1b)(α, β) = [(R1b)(α, .)]
∗ (β), α, β ∈ N,

(A1b)(µ, n) =
1

µ

µ∑

α=1

(R1b)(α, n), µ ∈ N, n ∈ Z
N ,

(A2b)(m, ν) =
1

ν

ν∑

β=1

(R2b)(m,β), m ∈ Z
N , ν ∈ N,

and

b∗∗(µ, ν) =
1

µν

µ∑

α=1

ν∑

β=1

(R12b)(α, β), µ ∈ N, ν ∈ N.

Next we collect a couple of inequalities, which will be useful in the sequel.
The inequalities in the following Lemma are standard and can be found e.g.
in the classical monograph [HLP].

Lemma 2.1 (Hardy’s discrete inequality). Let 1 < q ≤ ∞ and let (bκ) or
(bκ,λ), κ, λ ∈ N, be sequences of non-negative real numbers. Then

∞∑

k=1

(
1

k

k∑

κ=1

bκ

)q

≤ c

∞∑

κ=1

bqκ

and
∞∑

k=1

∞∑

`=1

(
1

k`

k∑

κ=1

∑̀

λ=1

bκ,λ

)q

≤ c
∞∑

κ=1

∞∑

λ=1

bqκ,λ

(with appropriate modification for q = ∞).

A consequence of the previous Lemma is the following maximal inequal-
ity, which holds for any sequence b = (bm,n), m,n ∈ Z

N ,

∞∑

µ=1

∞∑

ν=1

[b∗∗(µ, ν)]q ≤ c
∞∑

α=1

∞∑

β=1

(R12b)(α, β)q = c
∑

m∈ZN

∑

n∈ZN

|b(m,n)|q.
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2.2 Extrapolation

In the following we shall need various refinements of Orlicz spaces. For
the purpose of a unified terminology and notations we give a short survey
and several definitions. To avoid unnecessary technicalities (arising from
considering spaces on sets with infinite measure) we tacitly shall assume
that the spaces in the sequel are defined on some open set Ω in R

N , |Ω| =
1. We shall suppose that the reader is familiar with Orlicz spaces LΦ,
where Φ is a Young function. Important in applications are the Zygmund
spaces, Lp(logL)a, i.e. the Orlicz spaces with the generating Young function
Φ(t) = tp log(1 + t)a, 1 ≤ p < ∞, a ∈ R. Note that the Orlicz spaces
are rearrangement invariant and that f ∈ Lp(logL)a is equivalent with∫ 1

0
[f ∗(t)]p(log e/t)a dt < ∞ (see e.g. [BR] or [BS]). Hence if p = ∞, it is

well justified to consider L∞(logL)a (a < 0) as the space with the finite
quasinorm sup0<t≤1 f

∗(t)(log e/t)1/a. This also naturally agrees with the
extrapolation properties (2.11) and (2.12) below so that in this case we get
the exponential Orlicz space Lexp t−a

.

In [BR] there were studied the so called Lorentz-Zygmund spaces Lp, q; a,
1 ≤ p, q ≤ ∞, a ∈ R, which—in this notations—include the Zygmund
spaces Lp(logL)a (1 ≤ p <∞), the exponential Orlicz spaces Lexp ta , a > 0
(which are nothing but the Zygmund spaces L∞(logL)−1/a) and also, for
a = 0, the Lorentz spaces Lp, q. The general formula for the (quasi)norm in
the space Lp, q; a, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ reads

‖f |Lp, q; a‖ =

(
q

p

∫ 1

0

[
t1/pf ∗(t)(log e/t)a

]q
dt/t

)1/q

with appropriate modifications for p = ∞ or q = ∞: If 1 ≤ p <
∞ and q = ∞, then we get the weak spaces with the quasinorm
sup0<t≤1 t

1/pf ∗(t)(log e/t)a. If p = ∞, 1 ≤ q < ∞, and a 6= 0, then we
have the space L∞, q;−a with the norm

(∫ 1

0

[f ∗(t) (log e/t)a]
q
dt/t

)1/q

. (2.10)

The case a = −1 will be of particular importance for us; this is the case of
the exponential Orlicz-Lorentz space, sometimes called the BWq-space be-
cause of its prominent role in critical imbeddings—we refer to the celebrated
paper [BW]. See also comments later in this section.

To have a more complete picture we would like to recall several facts
about extrapolation of Lebesgue and Lorentz spaces. It is a “folklore fact”
that the space Lexp tq , i.e. the Orlicz space with the generating Young func-
tion t 7→ exp tq−1 can be characterized as the space of all functions f which



8 M. Krbec and H.-J. Schmeisser

satisfy

sup
k∈N

‖f |Lk‖

k1/q
<∞ (2.11)

or

sup
0<t<1

f ∗(t)

(log e/t)1/q
<∞ (2.12)

or

sup
0<t<1

‖f |Lk,∞‖

k1/q
<∞

(further refinements in terms of Lorentz spaces Lk,r are possible—see e.g.
[EK]). Let us point out that all the three formulas above give equivalent
(quasi)norms.

On the other hand, Lorentz type clones of Orlicz spaces, LΦ,Ψ in self-
explaining notations (Ψ and Φ are Young functions), have been studied
in a number of papers, see e.g. [M-S]. If Φ(t) = exp tq

′

− 1, Ψ(t) = tq,
q′ = q/(q − 1) with 1 < q < ∞ (see [EK] for an analysis of this case), then

Lexp tq
′

−1,tq (or just Lexp tq
′

,tq for brevity) can be shown to coincide with the
Lorentz-Zygmund spaces L∞,q,−1 with the quasinorm

(∫ 1

0

[
f ∗(t)

log e/t

]q
dt

t

)1/q

. (2.13)

Let us point out that these spaces are nothing but BWq of [BR] mentioned
earlier.

Discretizing the integral on the left (e.g. using dyadic intervals) leads to
various extrapolation characterizations of these spaces; see [CUK]. Note in

passing that the space Lexp tq
′

,tq , 1 < q < ∞, can be characterized by the
condition ( ∞∑

k=1

[
‖f |Lk‖

k

]q)1/q

<∞ (2.14)

and that another equivalent (quasi)norm in Lexp tq
′

,tq can be taken as

( ∞∑

k=1

[
‖f |Lk,r‖

k

]q)1/q

with any 1 < r < ∞. We refer to [EK] and [CUK]) for a systematic treat-
ment of these and “localized” blowup conditions for Lebesgue and Lorentz
norms.

In the current paper we deal with a multivariate variant of (2.10)
and (2.13). Quasinorms of this type will be used to handle the critical
imbeddings—see e.g. (3.1) in Theorem 3.1. Although our main objective
in this paper is an improvement of critical imbeddings and we shall not
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systematically study the corresponding multivariate spaces themselves, we
shall present and prove various relevant comparisons with the spaces based
on usual rearrangements (this section and later in Section 4 and 5).

Let us also observe that the condition (3.1) expresses an imbedding
between the appropriate spaces provided all functions live in a bounded ex-
tension domain; generally it should be understood as a measurement of the
large values of |f | in terms of integrability properties of its rearrangement
near the origin.

Note also that Theorem 3.1 can be viewed as a certain multivariate
Lorentz refinement of the critical imbeddings in [KS1], in the same spirit as
the Sobolev space W k,p in the sublimiting case is imbedded into the Lorentz
space Lp∗,p, where p∗ = Np/(N − kp) is the Sobolev exponent, that is, into
a “better” space than the standard target Lp∗ .

To be more specific, we shall consider the multivariate Lorentz-Zygmund
spaces L∞ q

R (logL)−a(logL)−b = L∞ q
R (logL)−a(logL)−b(Ω1 × Ω2), where

Ω1 × Ω2 ⊂ R
N × R

N , |Ω1| = |Ω2| = 1, consisting of functions f with
the finite quasinorm

‖f |L∞ q(logL)−a(logL)−b‖

=

(∫ 1

0

∫ 1

0

[
(R12f)(s, t)

(log e/s)a (log e/t)b

]q
ds

s

dt

t

)1/q (2.15)

in the case adopted to our splitting R
2N = R

N ×R
N . Let us observe that in

the same spirit as in [M-S] and [EK] one can introduce and consider more

general multivariate Lorentz-Orlicz spaces L
(Φ1,Ψ1),(Φ2,Ψ2)
R , whose special case

L
(exp tq

′

,tq), (exp tq
′

,tq)
R would correspond to (2.15) with a = b = 1 (cf. the

comments before (2.13)).

If q = ∞, then we have the space L∞,∞
R (logL)−a(logL)−b for a, b 6= 0,

with the quasinorm

sup
0<s,t≤1

(R12f)(s, t)

(log e/s)1/a(log e/t)1/b
.

Proposition 2.2. Let 1 < q <∞, a, b > 0, Ω1, Ω2 ⊂ R
N , |Ω1| = |Ω2| = 1,

and let f be a measurable function in Ω1 ×Ω2. Then

∞∑

k=1

[
‖f |Lk(Ω1 ×Ω2)‖

ka+b

]q

≤ c

∞∑

i=1

∞∑

j=1

[
(R12f)(2−i, 2−j)

iajb

]q

≤ c

∫ 1

0

∫ 1

0

[
(R12f)(s, t)

(log e/s)a (log e/t)b

]q
ds

s

dt

t
.

(2.16)
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Proof. Let k ≥ q. Then Lk,q ↪→ Lk with the norm of the imbedding not
exceeding one (see [SW, Chapter V, Theorem 3.11]).

It follows from (2.9) and (2.7) that

‖f |Lk(Ω1 ×Ω2)‖
q ≤

q2

k2

∫ 1

0

∫ 1

0

[
(st)1/k(R12f)(s, t)

]q ds

s

dt

t

≤
cq2

k2

∞∑

i=0

∞∑

j=0

∫ 2−j

2−j−1

∫ 2−i

2−i−1

[
2−i/k2−j/k(R12f)(2−i−1, 2−j−1)

]q ds

s

dt

t

≤
cq2

k2

∞∑

i=0

∞∑

j=0

2−qi/k2−qj/k
[
(R12f)(2−i−1, 2−j−1)

]q
.

Hence

∞∑

k=[q]+1

[
‖f |Lk(Ω1 ×Ω2)‖

ka+b

]q

≤ cq2

∞∑

i=0

∞∑

j=0

[
(R12f)(2−i−1, 2−j−1)

]q
∞∑

k=[q]+1

[
k−aq−12−qi/k

] [
k−bq−12−qj/k

]
.

Denote the last sum by S(a, b, q); there holds

S(a, b, q) ≤

( ∞∑

k=[q]+1

k−aq−12−qi/k

)( ∞∑

k=[q]+1

k−bq−12−qj/k

)
.

Replacing the first sum on the right hand side by an integral and changing
variables, we get for i > 0,

∞∑

k=1

k−bq−12−qi/k ∼

∫ ∞

1

ξ−aq exp

(
−
qi

ξ
log 2

)
dξ

ξ

∼

∫ qi log 2

0

ξaq−1

(
1

qi log 2

)aq

e−ξ dξ

=

(
1

qi log 2

)aq

Γ(aq)

≤ ci−aq.

An analogous estimate holds true for the second sum. Hence we get, for
i, j > 0,

S(a, b, q) ≤ ci−aqj−bq,

which proves the first inequality in (2.16).
To prove the right wing inequality in (2.16) consider

2−k−1 ≤ s ≤ 2−k and 2−`−1 ≤ t ≤ 2−`.
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By virtue of the monotonicity properties of R1,2f and of log we have

∫ 2−k

2−k−1

∫ 2−`

2−`−1

[
(R12f)(s, t)

(log e/s)a(log e/t)b

]q
ds

s

dt

t
≥ c

[
(R12f)(2−k, 2−`)

ka`b

]q

and the assertion follows by summing over k and `.

Corollary 2.3. Let the assumptions on Ωj, j = 1, 2, and f from the previ-
ous Proposition be satisfied. Then

∫ 1

0

[
f ∗(t)

(log e/t)2

]r
dt

t
≤ c

∫ 1

0

∫ 1

0

[
(R12f)(s, t)

(log e/s) (log e/t)

]r
ds

s

dt

t
(2.17)

for any 1 < r <∞.

Proof. Discretizing the integral on the left hand side of (2.17) we can write

∫ 1

0

[
f ∗(t)

(log e/t)2

]r
dt

t
≤ c

∞∑

k=1

f ∗(2−k)r

k2r

≤ c

∞∑

k=1

1

k2r

(∫ 2−k

2−k+1

f ∗(t)k dt

)r/k

≤ c

∞∑

k=1

[
‖f |Lk‖

k2

]r

.

(2.18)

Now (2.17) follows on invoking Proposition 2.2 with a = b = 1.

Remark 2.4. The left hand side of (2.18) equals to ‖f |L∞,r;−2‖r; see (2.10).
The above proof shows that ‖f |L∞,r;−2‖ can be estimated from above by
a series similar to (2.14) (with k in the denominator replaced by k2). One
can prove that the converse estimate holds, too, hence there is in fact an
equivalence. An analogous equivalence can be proved for all the spaces
‖f |L∞,r;−a‖ (1 < r < ∞, a > 0). We omit the details and refer to [CUK]
for the idea of the proof.

Proposition 2.5. Let the assumptions on Ωj, j = 1, 2, a, b, and f from
the previous Proposition be satisfied. Then

sup
k

‖f |Lk(Ω1 ×Ω2)‖

ka+b
≤ c sup

0<s<1
sup

0<t<1

(R12f)(s, t)

(log e/s)a(log e/t)b
. (2.19)

Proof. Let the right hand side of (2.19) be finite, otherwise there is nothing
to prove. Then,

(R12f)(s, t) ≤ γ
(
log

e

s

)a (
log

e

t

)b

.
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for some constant γ > 0. After integration (because f is equimeasurable
with R12f),

‖f |Lk(Ω1 ×Ω2)‖ =

(∫ 1

0

∫ 1

0

[(R12f)(s, t)]k dsdt

)1/k

≤ γ

(∫ 1

0

[
log

e

s

]ak

ds

)1/k (∫ 1

0

[
log

e

t

]bk

dt

)1/k

.

The integrals with the logarithmic function can be estimated as follows. We
have, after changes of variables,

∫ 1

0

[
log

e

s

]ak

ds = e

∫ ∞

e

(log x)ak dx

x2

= e

∫ ∞

1

yake−y dy ≤ eΓ(ak + 1)

= eakΓ(ak),

where Γ denotes the Gamma function. Hence

(∫ 1

0

[
log

e

s

]ak

ds

)1/k

≤ (eakΓ(ak))1/k ≤ c(Γ(ak))1/k.

By Stirling’s formula,

Γ(ak)1/k ≤
[
(ak)ak−1/2e−ak

]1/k
≤ cka−1/(2k)

≤ cka.

This gives (∫ 1

0

[
log

e

s

]ak

ds

)1/k

≤ cka

so that

‖f |Lk(Ω1 ×Ω2)‖ ≤ cγka+b.

Next we compare the usual exponential spaces with their multivariate
“diagonal case”.

Corollary 2.6. Under the assumptions of Proposition 2.2,

sup
0<t≤1

f ∗(t)

(log e/t)2a ≤ c sup
0<t≤1

sup
0<s≤1

(R12f)(s, t)

(log e/s)a(log e/t)a
. (2.20)
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Proof. It is enough to use the fact that the left hand side of (2.20) is equiv-
alent to the left hand side of (2.19) when a = b (see (2.11) and (2.12));
note for completeness that the left hand side of (2.20) is equivalent to

‖f |Lexp t1/(2a)
‖.

Remark 2.7. It is possible to give an alternative proof of (2.20) without
invoking the equivalence of various extrapolation characterizations of the
exponential Orlicz spaces in question. Indeed, let

ϕ(s, t) = (log e/s)(log e/t), s, t > 0,

and assume that the right hand side of (2.20) is finite. Then

(R12f)(s, t) ≤ γ [ϕ(s, t)]a

with some 0 < γ <∞. However, it is not difficult to show that

ϕ∗(τ) ∼ (log e/τ)2 .

Since f and R12f are equimeasurable it follows that

f ∗(τ) = (R12f)∗(τ) ≤ [ϕ∗(τ)]a ≤ c1 (log e/τ)2a ,

which proves the Corollary.

Remark 2.8. Denote, for brevity, byQ∞,a,b(f) the right hand side of Propo-
sition 2.5, that is, ‖f |L∞,∞

R (logL)−a(logL)−b‖. Then

Q∞,a,b(f) ∼ ‖‖f |Lexp t1/b

(y)‖ |Lexp t1/a

(x)‖ ‖,

where on the right hand side there is a mixed norm of the function f =
f(x, y), first taken with respect to the variable y and then with respect to x
(which is indicated here by the occurrence of the variable in the symbol for
the space). Because of the equimeasurability one can alternatively write R2

in the inner norm, the rearrangement R1 of it, and finally the norm with
respect to the variable x. In other words, Q∞,a,b(f) can be viewed as a
certain “mixed iterated quasinorm”.

Indeed,

(R12f)(s, t)

(log e/s)a(log e/t)b
=

1

(log e/s)a
R1

(
(R2f)(x, .)(t)

log e/t)b

)
(s)

≤
1

(log e/s)a
R1

(
sup

0<t≤1

(R2f)(x, .)(t)

(log e/t)b

)
(s)

≤
c

(log e/s)a
R1

(
‖f(x, .)|Lexp t1/b

‖
)

(s)



14 M. Krbec and H.-J. Schmeisser

≤ c sup
0<s≤1

1

(log e/s)a
R1

(
‖f(x, .)|Lexp t1/b

‖
)

(s)

≤ c
∥∥∥ ‖f(x, .)|Lexp t1/b

‖
∣∣∣Lexp s1/a

∥∥∥ .

On the other hand, there exists c > 0 such that for every x there exists
t = tx such that

(R2f)(x, tx)

(log e/tx)b
≥
c

2
‖R2f(x, .)|Lexp t1/b

‖.

Hence also

sup
0<s≤1

1

(log e/s)a
R1

(
sup

0<t≤1

(R2f)(x, t)

(log e/t)b

)
(s)

≥ sup
0<s≤1

1

(log e/s)a
R1

( c
2
‖R2f(x, .)|Lexp t1/b

‖
)

(s)

≥
c2

4
Q∞,a,b(f).

The inequality (2.20) can therefore be understood as a comparison of
of the usual Orlicz exponential space with the diagonal case of the mixed
norm space with the multivariate rearrangements, the latter space being
nothing but a special (diagonal) case of a more general exponential mixed
norm space. Hence there is a natural question whether the diagonal case
gives the usual norm, i.e. whether there is an equivalence in (2.20). Rather
surprisingly this is not true. Let us give a simple example. For sake of
clarity let us temporarily use the variable in the symbols for the spaces. Let
N = 1, a = 1, and consider g = g(y) , 0 < y ≤ 1, such that ‖g|Lk(y)‖ ∼ k2,
k ∈ N. Then g /∈ Lexp t(y); equivalently supk ‖g|Lk(y)‖/k = ∞. Put

f(x, y) = g(y), 0 < x, y ≤ 1.

Plainly

‖f |Lk(x, y)‖ ∼ k2

hence the left hand side of (2.20) is finite whereas the right hand side is
infinite.

Similar analysis can be carried out for other estimates in this section;
as agreed earlier our major in this paper concern will be the critical imbed-
dings.

In the last two assertions we shall compare the multivariate expressions
of the exponential Orlicz and Lorentz-Orlicz type (cf. [Tri2, Section 12]).
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Proposition 2.9. Let 1 < q <∞ and a, b, > 0. Then

sup
0<s<1

sup
0<t<1

(R12f)(s, t)

(log e/s)a(log e/t)b

≤ c

(∫ 1

0

∫ 1

0

[
(R12f)(s, t)

(log e/s)a(log e/t)b

]q
ds

s log e/s

dt

t log e/t

)1/q

.

Proof. We have
([

log
e

s

]−aq
)

= −aq
(
log

e

s

)−aq−1 (
−
e

s

)

= eaq
1

(log e/s)aq

1

s log e/s
.

Thus (
log

e

s

)−aq

≤ eaq

∫ s

0

1

(log e/u)aq

du

u log e/u

and
(
log

e

s

)−aq (
log

e

t

)−bq

≤ e2abq2

∫ s

0

∫ t

0

1

(log e/u)aq (log e/v)bq

du

u log e/u

dv

v log e/v
.

Since R12f is non-increasing with respect to the both variables this implies

(R12f)(s, t)

(log e/s)a(log e/t)b

≤ c

(∫ s

0

∫ t

0

[
(R12f)(u, v)

(log e/u)a(log e/v)b

]q
du

u log e/u

dv

v log(e/v

)1/q

≤ c

(∫ 1

0

∫ 1

0

[
(R12f)(u, v)

(log e/u)a(log e/v)b

]q
du

u log e/u

dv

v log e/v

)1/q

,

which proves the claim.

Corollary 2.10. Let 1 < q <∞. Then

sup
0<s<1

sup
0<t<1

(R12f)(s, t)

[(log e/s)(log e/t)]1/d′

≤ c

(∫ 1

0

∫ 1

0

[
(R12f)(s, t)

(log e/s)(log e/t)

]d
dt

s

dt

t

)1/d

≤ c

(∫ 1

0

∫ 1

0

[
(R12f)(s, t)

(log e/s)(log e/t)

]r
dt

s

dt

t

)1/r

(2.21)

for every 1 < r < d <∞, 1
d

+ 1
d′

= 1.
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Proof. Let 1 < d < ∞. Then the first inequality in (2.21) follows immedi-
ately from Proposition 2.9 on putting a = b = 1/d′.

If 1 < r < d, then discretizing the middle term in (2.21) we get

(∫ 1

0

∫ 1

0

[
(R12f)(s, t)

(log e/s)(log e/t)

]d
dt

s

dt

t

)1/d

∼

( ∞∑

k=1

∞∑

`=1

[
(R12f)(2−k, 2`)

k`

]d)1/d

≤

( ∞∑

k=1

∞∑

`=1

[
(R12f)(2−k, 2`)

k`

]r)1/r

≤ c

(∫ 1

0

∫ 1

0

[
(R12f)(s, t)

(log e/s)(log e/t)

]r
dt

s

dt

t

)1/r

.

Remark 2.11. Using the Orlicz-Lorentz type notations mentioned earlier,
the inequalities in (2.21) express imbeddings

Lexp tr
′

,tr

R ↪→ Lexp td
′

,td

R ↪→ L∞,∞
R (logL)−1/d′(logL)−1/d′ ,

which are nothing but Orlicz type generalizations of monotonicity properties
of usual Lorentz spaces with respect to the parameters. Here, one has to
replace inequalities for parameters of Lorentz spaces by the usual ordering of
Young functions: It is Ψ1 ≺ Ψ2 if there exists c > 0 such that Ψ1(t) ≤ Ψ2(ct)
for large values of t. Similar interpretation, giving a more transparent idea
of behaviour of the multivariate exponential spaces, can be carried out in
the case of the other inequalities above, too.

2.3 Spaces with dominating mixed smoothness

Let us recall definitions of the spaces that we shall work with. Let ψ be
a real-valued infinitely differentiable function such that 0 ≤ ψ(x) ≤ 1,
ψ(x) = 1 if |x| ≤ 1, and ψ(x) = 0 if |x| ≥ 2. Put

ϕ0(x) = ψ(x),

ϕ1(x) = ϕ0(x/2) − ϕ0(x)

ϕj(x) = ϕ1(2
−j+1x) j = 2, 3, . . . .

Plainly
∞∑

j=0

ϕj(x) = 1, x ∈ R
N .

The system of functions {ϕj} is the smooth dyadic decomposition of the
unity.
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Now we give the definitions of the spaces with dominating mixed deriv-
atives. We shall restrict ourselves to the special splitting R

2N = R
N × R

N .
Let {ϕj(x)}

∞
j=0 be a smooth dyadic resolution of unity in R

N . For
f ∈ S ′(R2N) we put

fj,k(x, y) := [F−1ϕj(ξ)ϕk(η)Ff ](x, y)

(j, k = 0, 1, . . . ).

Definition 2.12. (i) Let 0 < p, q ≤ ∞, r ∈ R
1. Then

Sr
p qB(RN × R

N) = {f ∈ S ′(R2N) : ‖f |Sr
p qB(RN × R

N)‖

= ‖2rj+rkfj,k(x, y)|Lp|`q‖ <∞}.

(ii) Let additionally 0 < p <∞. Then

Sr
p qF (RN × R

N) = {f ∈ S ′(R2N) : ‖f |Sr
p qF (RN × R

N)‖

= ‖2rj+rkfj,k(x, y)|`q|Lp‖ <∞}.

Of course the mixed norms in the definition of Sr
p qB(RN × R

N) should
be understood in the sense

‖2rj+rkfj,k(x, y)|Lp(R
N × R

N)|`q(N0 × N0)‖,

similarly in (ii).

For the definition of the usual Besov and Lizorkin-Triebel spaces
Br

p q(R
M) and F r

p q(R
M) we refer to [Tri1].

Remark 2.13. The spaces defined above are special cases of those intro-
duced and studied in [ScT, Chapter 2] and one can find further references
there. Up to equivalent (quasi)norms these spaces do not depend on a par-
ticular choice of the dyadic resolutions of unity. In [ScT] there are given
further equivalent characterizations, in particular, those in terms of differ-
ences and derivatives.

Remark 2.14. We recall important properties of the Sobolev spaces with
dominating mixed smoothness (see [ScT, Chapter 2]). Let 1 < p <∞. Then

Sr
p 2F (RN × R

N) = Sr
pH(RN × R

N) := {f ∈ S ′(R2N) : ‖f |Sr
pH(RN × R

N)‖

= ‖F−1
[
(1 + |ξ|2)r/2(1 + |η|2)r/2Ff

]
|Lp(R

n × R
N)‖ <∞}.

(2.22)

If additionally r = 0, 1, 2, . . . , then Sr
pH(RN × R

N) = Sr
pW (R2N), where

Sr
pW (R2N) := {f ∈ Lp(R

2N) : D(α1,α2)f ∈ Lp, |α
j| ≤ r (j = 1, 2)},
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and whereD(α1,α2) stands forDα1

x Dα2

y , with equivalence of the corresponding
norms. Observe also that

‖f |Sr
pW (R2N)‖ ∼ ‖f |Lp(R

2N)‖ +
N∑

j=1

∥∥∥∥
∂rf

∂xr
j

∣∣∣Lp(R
2N)

∥∥∥∥

+
N∑

j=1

∥∥∥∥
∂rf

∂yr
j

∣∣∣Lp(R
2N)

∥∥∥∥ +
N∑

j,k=1

∥∥∥∥
∂2rf

∂xr
j∂y

r
k

∣∣∣Lp(R
2N)

∥∥∥∥ ,

(2.23)

which is a very illustrative justification for the name of the spaces: there
are no “pure” derivatives of order bigger than r, the mixed derivatives of
order 2r “dominate”.

Note that S0
pH(RN × R

N) = Lp(R
2N).

Remark 2.15. The following sharp imbeddings hold (see [ScT] and [ScSi]
for details):

Sr0
p0 q0

B(RN × R
N) ↪→ Sr

p qB(RN × R
N)

if

0 < p0 < p ≤ ∞, 0 < q0 ≤ q ≤ ∞, r < r0,

r0 −
N

p0

= r −
N

p
,

and
Sr0

p0 q0
F (RN × R

N) ↪→ Sr
p p0
B(RN × R

N)

if
0 < p0 < p <∞, 0 < q0 ≤ ∞, r < r0.

3 The main theorem

We shall investigate the imbeddings of the spaces S
N/p
p q B(RN × R

N) for

0 < p < ∞, 1 < q ≤ ∞, as well as of S
N/p
p q F (RN × R

N) for 1 < p < ∞,
0 < q ≤ ∞, into multivariate Lorentz-Orlicz spaces. Our approach will be
based on atomic characterization (see [Tri2], [H]), which permits a reduction
of the integral inequalities to corresponding problems in sequence spaces,
which are easier to handle.

Our main result reads as follows:

Theorem 3.1. Let 0 < p <∞ and 1 < q ≤ ∞. Then

∫ 1

0

∫ 1

0

[
(A12f)(s, t)

(log e/s) (log e/t)

]q
ds

s

dt

t
≤ c‖f |SN/p

p q B(RN × R
N)‖q (3.1)
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and

sup
0<s≤1

sup
0<t≤1

(A12f)(s, t)

[(log e/s) (log e/t)]1/q′
≤ c‖f |SN/p

p q B(RN × R
N)‖ (3.2)

holds for all f ∈ S
N/p
p q B(RN × R

N) (with an appropriate modification if
q = ∞). Analogous inequalities holds for A21f .

Corollary 3.2. Let 1 < p <∞ and 0 < q ≤ ∞. Then

∫ 1

0

∫ 1

0

(
(A12f)(s, t)

(log e/s)(log e/t)

)p
ds

s

dt

t
≤ ‖f |SN/p

p q F (RN × R
N)‖p. (3.3)

Proof. Using the imbeddings in Remark 2.15 we get

SN/p
p q F (RN × R

N) ↪→ SN/u
u p B(RN × R

N)

if 1 < p < u <∞. Now (3.3) is a consequence of (3.1).

Remark 3.3. Taking into account the equivalences (2.22) and (2.23), Corol-

lary 3.2 applies to the spaces S
N/p
p H(RN × R

N) and S
N/p
p W (R2N), too.

A natural question arises about the case 0 < q ≤ 1 in Theorem 3.1 and
about 0 < p ≤ 1 in Corollary 3.2. Invoking imbedding theorems in [ScT]
and the sharp imbeddings from Remark 2.15 one can infer that in both cases
functions in these spaces are uniformly continuous and bounded in R

2N .

Remark 3.4. The Sobolev imbeddings in the subcritical case have been
recently refined in [K] with use of multivariate rearrangements. For sim-
plicity, let us restrict ourselves to the case N = 2 and assume that r = 1
and 1 < p < 2. Then

W 1
p (R2) = H1

p (R2) ↪→ Lp∗,p
R (R2),

where H1
p (R2) is the space of Bessel potentials and

p∗ =
2p

2 − p

(see (2.7) for the definition of the target space).

An example of critical imbeddings for the “standard” Besov spaces in
R

2N and of S
N/p
p q B(RN ×R

N), throwing some more light on the structure of
the spaces with dominating mixed derivatives, can be found after the proof
of the main theorem.

Note for completeness that the multivariate rearrangements have been
recently also used to strengthen subcritical imbeddings of anisotropic Lip-
schitz spaces in [P].
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Proof of Theorem 3.1. Step 1. Since A12f is non-increasing with respect
to s and t we can discretize the integral on the left hand side of (3.1). For
any D ≥ 2N we obtain

∫ 1

0

∫ 1

0

[
(A12f)(s, t)

(log e/s) (log e/t)

]q
ds

s

dt

t

≤
∞∑

k=1

∫ 2−kND

2−(k+1)ND

∞∑

`=k0

∫ 2−`ND

2−(`+1)ND

[
(A12f)(s, t)

(log e/s) (log e/t)

]q
ds

s

dt

t

≤ c

∞∑

k=1

∞∑

`=1

[
(A12f)(2−kND, 2−`ND)

k`

]q

.

(3.4)

Note that the constant c may depend on the choice of D.

Step 2. By virtue of the first imbedding in Remark 2.15 we can suppose
that p > 1. Recall (see [R] and [V]) that f ∈ S

N/p
p q B(RN × R

N) if and only
if there is a decomposition

f =
∞∑

i=0

∞∑

j=0

∑

m∈ZN

∑

n∈ZN

bm,n
i,j am,n

i,j (x, y), (3.5)

where am,n
i,j (x, y) are atoms, that is,

am,n
i,j ∈ C∞

0 (RN × R
N),

supp am,n
i,j ⊂ dQi(m) × dQj(n) with some d > 1,

where Qi(m) = {y : 2−imr ≤ yr < 2−i(mr + 1), r = 1, . . . , N},

|D(α,β)am,n
i,j (x, y)| ≤ 2i|α|+j|β|,

and

‖b‖q
p,q :=

∑

(i,j)∈N0×N0

( ∑

(m,n)∈ZN×ZN

|bm,n
i,j |p

)q/p

<∞. (3.6)

Moreover,

inf
b
‖b‖p,q ∼ ‖f |SN/p

p q B(RN × R
N)‖.

Step 3. Let f be decomposed as in (3.5). We wish to estimate the right
hand side of (3.1) by (3.6) multiplied by a constant independent of the
particular choice of the coefficients bm,n

i,j and of the atoms am,n
i,j (x, y). Put

fi,j(x, y) =
∑

m∈ZN

∑

n∈ZN

bm,n
i,j am,n

i,j (x, y), (i, j) ∈ N0 × N0. (3.7)
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By (3.5), (3.7), and by the subadditivity of A12 we have

∞∑

k=1

∞∑

`=1

[
(A12f)(2−kND, 2−`ND)

k`

]q

≤

∞∑

k=1

∞∑

`=1

[
1

k`

∞∑

i=0

∞∑

j=0

(A12fi,j)(2
−kND, 2−`ND)

]q

.

(3.8)

Denote byRH(f) the expression on the right hand side of (3.8). We estimate
RH(f) by four terms as follows:

RH(f) ≤
∞∑

k=1

∞∑

`=1

[
1

k`

k∑

i=0

l∑

j=0

(A12fi,j)(2
−kND, 2−`ND)

]q

+
∞∑

k=1

∞∑

`=1

[
1

k`

∞∑

i=k+1

∞∑

j=`+1

(A12fi,j)(2
−kND, 2−`ND)

]q

+
∞∑

k=1

∞∑

`=1

[
1

k`

k∑

i=0

∞∑

j=`+1

(A12fi,j)(2
−kND, 2−`ND)

]q

+
∞∑

k=1

∞∑

`=1

[
1

k`

∞∑

i=k+1

∑̀

j=0

(A12fi,j)(2
−kND, 2−`ND)

]q

=
∑

1
+

∑
2
+

∑
3
+

∑
4
.

(3.9)

Step 4. We claim that there exist constants c > 0 and D ≥ 2N such that

(A12fi,j)(s, t) ≤
c

µν

µ∑

α=1

ν∑

β=1

(R12bi,j)(α, β)

= b∗∗i,j(µ, ν)

(3.10)

provided

(s, t) ∈ (2−iND(µ−1), 2−iNDµ]×(2−jND(ν−1), 2−iNDν], µ, ν ∈ N. (3.11)

To show this recall that

fi,j(x, y) =
∑

m∈ZN

∑

n∈ZN

bm,n
i,j am,n

i,j (x, y)

and since the atoms are bounded by 1 from above we have

|fi,j(x, y)| ≤
∑

fin

∑

m∈ZN

∑

n∈ZN

|bm,n
i,j |χm+

�

m,n+
�

n
i,j (x, y),
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where χm+
�

m,n+
�

n
i,j is the characteristic function of the cube Qi,j(m + m̃, n +

ñ) = Qi(m + m̃) × Qj(n + ñ) and by virtue of the properties of atoms
(compact supports) the first sum is taken over a finite index set, whose
cardinality is independent of i and j. Hence there exists a constant c1 ∈
(0, 1/2] such that

(R12fi,j)(s, t) ≤
∑

fin

R12

( ∑

m∈ZN

∑

n∈ZN

|bm,n
i,j |χm+

�

m,n+
�

n
i,j

)
(c1s, c1t)

and this is

≤ cR12

( ∑

m∈ZN

∑

n∈ZN

|bm,n
i,j |χm,n

i,j

)
(c1s, c1t)

= c
∞∑

µ=1

∞∑

ν=1

(R12bi,j)(µ, ν)(χ
µ
i )(s)(χν

j )(t),

where χµ
i stands for the (one-dimensional) characteristic function of the

interval [2−iNc−N
1 (µ − 1), 2−iNc−N

1 µ). Therefore if (3.11) holds with D =
c−N
1 ≥ 2N , we have, invoking (2.4), that

(A12fi,j)(s, t) ≤
1

st

∫ t

0

∫ s

0

(R12fi,j)(u, v) dudv

≤ c2iN+jN 1

µν

µ∑

α=1

ν∑

β=1

(R12bi,j)(α, β)

∫ t

0

χα
i (u) du

∫ s

0

χβ
j (v) dv.

Since two last integrals are ≤ 2−iND and ≤ 2−jND, resp., this is

≤
c

µν

µ∑

α=1

ν∑

β=1

(R12bi,j)(α, β).

Summarizing the above estimates we have (3.10) for all (s, t) satisfying
(3.11).

Step 5. We estimate
∑

1. Since i ≤ k and j ≤ ` we have

(2−kND, 2−`ND) ∈ (0, 2−iND] × (0, 2−jND].

The estimate (3.10) with µ = ν = 1 yields

(A12fi,j)(2
−kND, 2−`ND) ≤ c(R12bi,j)(1, 1).

Hence by the maximal inequality from Lemma 2.1 we obtain, for any 1 <
q ≤ ∞ and 1 < p <∞,

∑
1
≤ c

∞∑

k=1

∞∑

`=1

[
1

k`

k∑

i=0

∑̀

j=0

(R12bi,j)(1, 1)

]q



Critical imbeddings with multivariate rearrangements 23

≤ c
∞∑

i=0

∞∑

j=0

[(R12bi,j)(1, 1)]q

≤ c
∞∑

i=0

∞∑

j=0

[
max
m,n

|bm,n
i,j |

]q

≤ c
∞∑

i=0

∞∑

j=0

( ∑

m∈ZN

∑

n∈ZN

|bm,n
i,j |p

)q/p

= c‖b‖q
p,q.

Step 6. We shall estimate the term
∑

2. Fix i ∈ {k + 1, . . . } and j ∈
{`+ 1, . . . }. It is

2−kND = 2−iND2(i−k)N ,

2−`ND = 2−jND2(j−`)N .

The estimate (3.10) with µ = 2(i−k)N and ν = 2(j−`)N implies

(A12fi,j)(2
−kND, 2−`ND)

≤ c
1

2(i−k)N

1

2(j−`)N

2(i−k)N∑

α=1

2(j−`)N∑

β=1

(R12bi,j)(α, β).
(3.12)

We have [
b∗∗i,j(2

κN , 2λN)
]p

≤
[
b∗∗i,j(ρ, σ)

]p
(3.13)

for κ, λ = 1, 2, . . . , and

2(κ−1)N < ρ ≤ 2κN ,

2(λ−1)N < σ ≤ 2λN .

Summing up (3.13) over such ρ and σ we get (the number of the terms on
the left is 2(κ−1)N+(λ−1)N(2N − 1)2)

2(κ−1)N+(λ−1)N
[
b∗∗i,j(2

κN , 2λN)
]p

≤

2κN∑

ρ=2(κ−1)N+1

2λN∑

σ=2(λ−1)N+1

[
b∗∗i,j(ρ, σ)

]p
.

It follows that

[
b∗∗i,j(2

κN , 2λN)
]p

≤ c2−(κ+λ)N

∞∑

ρ=1

∞∑

σ=1

[
b∗∗i,j(ρ, σ)

]p
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After applying the maximal inequality for sequences this is

≤ c2−(κ+λ)N

∞∑

α=1

∞∑

β=1

[(R12)(α, β)]p

= c2−(κ+λ)N
∑

m∈ZN

∑

n∈ZN

|bm,n
i,j |p

= c2−(κ+λ)N‖bi,j|`p‖
p.

(3.14)

Putting κ = i− k and λ = j − ` we get from (3.14) and (3.12) that

(A12fi,j)(2
−kND, 2−`ND) ≤ c2−(i−k)N/p−(j−`)N/p‖bi,j|`p‖.

This implies

∑
2
≤ c

∞∑

k=1

∞∑

`=1

[
1

kq`q

∞∑

i=k+1

∞∑

j=`+1

2−(i−k)N/p−(j−`)N/p‖bi,j|`p‖

]q

.

By Hölder’s inequality it follows for q > 1 that
∑

2
≤ c‖b‖q

p,q.

Step 7. We estimate the term
∑

3. Let i = 0, 1, . . . , k and j = `+1, `+2, . . .
be fixed. Then 2−kND ∈ (0, 2−iND] and 2−`ND = 2−jND2(j−`)N . The
estimate (3.10) from Step 4 with µ = 1 and ν = 2(j−`)N yields

(A12fi,j)(2
−kND, 2−`ND) ≤

c

2(j−`)N

2(j−`)N∑

β=1

(R12bi,j)(1, β). (3.15)

Arguing as before in Step 6 we get for p > 1 and λ = 1, 2 . . . ,

[
1

2λN

2λN∑

β=1

(R12bi,j)(1, β)

]p

=
[
(A2 ◦R1bi,j)(1, 2

λN)
]p

≤ c2−κN

∞∑

σ=1

[(A2 ◦R1bi,j)(1, σ)]p

and by the maximal inequality this is

≤ c2−λN

∞∑

β=1

[(R2 ◦R1bi,j)(1, β)]p

≤ c2−λN
∑

n∈ZN

|(R1bi,j)(1, n)|p.
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Invoking (3.15) we obtain

(A12fi,j)(2
−kND, 2−`ND) ≤ c2−(j−`)N/p

( ∑

m∈ZN

|(R1bi,j)(1, n)|p
)1/p

≤ c2−(j−`)N/p

( ∑

m∈ZN

∑

n∈ZN

|bm,n
i,j |p

)1/p

= c2−(j−`)N/p‖bi,j|`p‖.

(3.16)

Inserting (3.15) and (3.16) into
∑

3 we get

∑
3
≤ c

∞∑

k=1

∞∑

`=1

(
1

k`

k∑

i=0

∞∑

j=`+1

2−(j−`)N/p‖bi,j|`p‖

)q

.

Denoting ci,` =
∑∞

j=`+1 2−(j−`)N/p‖bi,j|`p‖ this becomes

= c

∞∑

`=1

1

`q

∞∑

k=1

(
1

k

k∑

i=0

ci,`

)q

and by the maximal inequality this is

≤ c
∞∑

`=1

1

`q

∞∑

i=0

cqi,`

= c
∞∑

i=0

∞∑

`=1

1

`q

( ∞∑

j=`+1

2−(j−`)N/p‖bi,j|`p‖

)q

.

By Hölder’s inequality the last line above is

≤ c
∞∑

i=0

∞∑

`=1

1

`q

( ∞∑

j=`+1

2−(j−`)Nq′/p

)q/q′ ∞∑

j=0

‖bi,j|`p‖
q

≤ c

( ∞∑

`=1

1

`q

) ∞∑

i=0

∞∑

j=0

‖bi,j|`p‖
q

= c‖b‖q
p,q.

Step 8. It remains to establish an estimate for
∑

4. Let i = k + 1, . . .
and j = 0, . . . , ` be fixed. Then 2−kND = 2−iND2(i−k)N and 2−`ND ∈
(0, 2−jND]. Employing (3.10) with µ = 2(i−k)N and ν = 1 and arguing as
in Step 6, we can write

(A12fi,j)(2
−kND, 2−`ND)
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≤
c

2(i−k)N

2(i−k)N∑

α=1

(R12bi,j)(α, 1)

= c(bi,j)
∗∗(2(i−k)N , 1)

≤ c2−(i−k)N/p

( ∞∑

ρ=1

[(bi,j)
∗∗(ρ, 1)]p

)1/p

,

which is, after application of the maximal inequality,

≤ c2−(i−k)N/p

( ∞∑

α=1

∞∑

β=1

|(R12bi,j)(α, β)|p
)1/p

= c2−(i−k)N/p‖bi,j|`p‖.

(3.17)

Inserting (3.17) into
∑

4 gives

∑
4
≤ c

∞∑

k=0

∞∑

`=0

(
1

k`

∞∑

i=k+1

∑̀

j=0

2−(i−k)N/p‖bi,j|`p‖

)q

= c

∞∑

k=0

1

kq

∞∑

`=0

[
1

`

∑̀

j=0

( ∞∑

i=k+1

2−(i−k)N/p‖bi,j|`p‖

)]q

.

Denote

dk,j =
∞∑

i=k+1

2−(i−k)N/p‖bi,j|`p‖.

Then by Hölder’s inequality,

dk,j ≤ c

( ∞∑

i=0

‖bi,j|`p‖
q

)1/q

=: ej

independently of k. Applying once more the maximal inequality we arrive
at

∑
4
≤

∞∑

`=0

(
1

`

∑̀

j=0

ej

)q

≤ c
∞∑

j=0

eq
j

= c

∞∑

j=0

∞∑

i=0

‖bi,j|`p‖
q

= c‖b‖q
p,q.

Finally, the estimate (3.2) follows directly from (3.1) and Corollary 2.10.
The theorem is proved.
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4 Sharpness and envelopes

In this section we discuss the sharpness of estimates (3.1) and (3.3). At first
we observe that

‖f1 ⊗ f2|S
r
p qB(RN × R

N)‖ = ‖f1|B
r
p q(R

N)‖ ‖f2|B
r
p q(R

N)‖ (4.1)

and

‖g1 ⊗ g2|S
r
p qF (RN × R

N)‖ = ‖g1|F
r
p q(R

N)‖ ‖g2|F
r
p q(R

N)‖ (4.2)

for all f1, f2 ∈ Br
p q(R

N) and g1, g2 ∈ F r
p q(R

N), resp. Note in passing that
((R12)(f ⊗ g))(s, t) = f ∗(s)g∗(t) for measurable f = f(x) and g = g(y),
x, y ∈ R

N .

Theorem 4.1. (1) Let 0 < p <∞ and 1 < q ≤ ∞. Then

sup{(R12f)(s, t) : ‖f |SN/p
p q B(RN × R

N)‖ ≤ 1}

∼ (log e/s)1/q′ (log e/t)1/q′
(4.3)

for all s, t, 0 < s ≤ 1, 0 < t ≤ 1.
(2) Let 1 < p <∞ and 0 < q ≤ ∞. Then

sup{(R12f)(s, t) : ‖f |SN/p
p q F (RN × R

N)‖ ≤ 1}

∼ (log e/s)1/q′ (log e/t)1/q′
(4.4)

for all s, t, 0 < s ≤ 1, 0 < t ≤ 1.

Proof. One direction follows from (3.2) in the case (1) and from (3.2) com-
bined with Corollary 3.2 in the case (2).

The converse claim follows using (4.1), (4.2), and tensor products of

extremal functions in B
N/p
p q (RN), which were introduced in [ET], [Tri2],

and [H]. We do not give details here since the proof follows an analogous
assertion in [KS3].

Theorem 4.2. (1) Let 0 < p < ∞ and 1 < q ≤ ∞. If there exists c > 0
such that

∫ 1

0

∫ 1

0

[
(R12f)(s, t)

(log e/s)1/q′ (log e/t)1/q′

]u
ds

s log e/s

dt

t log e/t

≤ c‖f |SN/p
p q B(RN × R

N)‖u

for all f ∈ S
N/p
p q B(RN × R

N), then q ≤ u.
(2) Let 1 < p <∞ and 0 < q ≤ ∞. If there exists c > 0 such that

∫ 1

0

∫ 1

0

[
(R12f)(s, t)

(log e/s)1/p′ (log e/t)1/p′

]u
ds

s log e/s

dt

t log e/t

≤ c‖f |SN/p
p q F (RN × R

N)‖u

for all f ∈ S
N/p
p q F (RN × R

N), then p ≤ u.
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The proof is again an appropriate modification of the arguments from
Section 5 of [KS3]. One uses tensor products of extremal functions, (4.1)
and (4.2).

Remark 4.3. The left hand side of (4.3) and (4.4) can be considered as
a local multivariate growth envelope function in the spirit of [Tri2] or [H].
In this sense Theorem 4.1 and Theorem 4.2 establish the local multivariate
growth envelopes for the spaces S

N/p
p q B(RN × R

N) and S
N/p
p q F (RN × R

N),
respectively.

5 The standard case revisited, comparisons

We shall discuss the question what can be said about the behaviour of the
normal rearrangement f ∗(t). Moreover, it is of interest to compare our
results with those for isotropic spaces of the same “order of smoothness”,
close to the spaces with dominating mixed smoothness. While it is clear that
for a non-negative integer r the spaceW 2r

p (R2N) is imbedded into Sr
pW (R2N)

the analogous claim for the Besov spaces is not immediate. Nevertheless,
such an imbedding is true and we state both imbeddings as the following

Proposition 5.1. (1) If 1 < p <∞ and r ∈ N0, then

W 2r
p (R2N) ↪→ Sr

pW (R2N).

(2) If 1 ≤ p ≤ ∞, 0 < q ≤ ∞, and 0 < r <∞, then

B2r
p, q(R

2N) ↪→ Sr
p qB(RN × R

N).

Proof. As observed above the statement in (1) is trivial. As to (2) we have—
somewhat surprisingly—to dig much deeper. Let (ϕj(ξ)) be a smooth dyadic
resolution of unity in R

N and put

ψ`(ξ, η) =
∑

max(j,k)=`

ϕj(ξ)ϕk(η), ` = 1, 2, . . . ,

ψ0(ξ, η) = ϕ0(ξ)ϕ0(η).

Then
∞∑

`=0

ψ` ≡ 1

and (ψ`) is a dyadic resolution of unity in R
2N , subordinated to “dyadic

corridors”, and we have

‖f |B2r
p, q(R

2N)‖ ∼

( ∞∑

`=0

22rq‖F−1ψ`Ff |Lp(R
2N)‖q

)1/q

.
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Put

Ψ0 = ψ0 + ψ1

Ψ` = ψ`−1 + ψ` + ψ`+1, ` = 1, 2, . . . .

If max(j, k) = `, then

ϕj(ξ)ϕk(η) = ϕj(ξ)ϕk(η)Ψ
`(ξ, η)

since Ψ` ≡ 1 on suppϕj ⊗ ϕk. Moreover, if max(j, k) = `, then by Young’s
inequality,

‖F−1[ϕj ⊗ ϕkFf ]|Lp(R
2N)‖ = ‖F−1[ϕj ⊗ ϕkF(F−1Ψ`Ff)]|Lp(R

2N)‖

≤ c‖F−1(ϕj ⊗ ϕk)|L1(R
2N)‖ ‖F−1(Ψ`Ff)|Lp(R

2N)‖

≤ c‖F−1(Ψ`Ff)|Lp(R
2N)‖,

where the constant c is independent of j and k. Hence

‖f |Sr
p qB(RN × R

N)‖q ≤
∞∑

`=0

∑

max(j,k)=`

2(j+k)rq‖F−1ϕj ⊗ ϕkFf |Lp(R
2N)‖q

≤ c

∞∑

`=0

‖F−1Ψ`Ff |Lp(R
2N)‖q

∑

max(j,k)=`

2(j+k)rq

≤ c
∞∑

`=0

‖F−1Ψ`Ff |Lp(R
2N)‖q

(∑̀

j=0

2(`+j)rq +
`−1∑

k=0

2(`+k)rq

)

≤ c

∞∑

`=0

‖F−1Ψ`Ff |Lp(R
2N)‖q

(
22`rq+1

∑̀

j=0

2(j−`)rq

)

and the last sum on the right hand side is ≤ c iff r > 0 and it is ≤ c` for
r = 0. We can conclude that

‖f |Sr
p qB(RN × R

N)‖q ≤ c
∞∑

`=0

22r`q‖F−1Ψ`Ff |Lp(R
2N)‖q

≤ c
∞∑

`=0

22r`q‖F−1ψ`Ff |Lp(R
2N)‖q.

Remark 5.2. If r = 0, then

‖f |S0
p qB(RN × R

N)‖ ≤ c

( ∞∑

`=0

[
‖(`+ 1)1/q‖F−1ψ`Ff |Lp(R

2N)‖

]q)1/q

= c‖f |B0,1/q
p ,q (R2N)‖;

there is a space with generalized smoothness on the right hand side. For
properties of these spaces we refer to [L].
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In the subcritical case the following imbeddings hold:

W 2r
p (R2N) ↪→ Sr

pW (RN × R
N) ↪→ Lp∗(R

N × R
N)

and

B2r
p q(R

2N) ↪→ Sr
p qB(RN × R

N) ↪→ Lp∗(R
N × R

N),

where 1 < p <∞, 0 < q ≤ ∞, and

r −
N

p
= −

N

p∗

(
that is, p∗ =

Np

N − rp

)
.

None of these imbeddings can be improved with respect to p∗. Now we
consider the critical case r = N/p. Then all spaces under consideration
contain unbounded functions and the question about a measurement of
their unboundedness makes sense. This turns out to be different in these
cases. It is known from the theory of the growth envelopes (see [H], [Tri2])
that for small ε,

sup{f ∗(t) : ‖f |W 2N/p
p (R2N)‖ ≤ 1} ∼ | log t|1/p′ , 0 < t < ε, (5.1)

and ∫ ε

0

[
f ∗(t)

| log t|

]p
dt

t
≤ c‖f |W 2N/p

p (R2N)‖p. (5.2)

The exponent p on the left hand side is sharp. Moreover, if 0 < p <∞ and
1 < q ≤ ∞, then

sup{f ∗(t) : ‖f |B2N/p
p, q (R2N)‖ ≤ 1} ∼ | log t|1/q′ (5.3)

and ∫ ε

0

[
f ∗(t)

| log t|

]q
dt

t
≤ c‖f |B2N/p

p, q (R2N)‖q, (5.4)

where again the exponent q on the left hand side is sharp.

Theorem 5.3. (1) Let 1 < p < ∞ and let f ∈ S
N/p
p W (R2N) be supported

in Ω1 ×Ω2 ⊂ R
N × R

N , |Ω1| = |Ω2| = 1. Then

sup{f ∗(t) : ‖f |SN/p
p W (R2N)‖ ≤ 1} ∼

(
log

e

t

)2/p′

(5.5)

for all t, 0 < t ≤ 1, and

∫ 1

0

[
f ∗(t)

(log e/t)2

]p
dt

t
≤ c‖f |SN/p

p W (R2N)‖p. (5.6)
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Moreover, S
N/p
p W in (5.5) and (5.6) can be replaced by S

N/p
p q F with an

arbitrary q, 0 < q ≤ ∞.
(2) Let 1 ≤ p <∞, 1 < q <∞, and let f ∈ S

N/p
p q B(RN × R

N) be supported
in Ω1 ×Ω2 ⊂ R

N × R
N , |Ω1| = |Ω2| = 1. Then

sup{f ∗(t) : ‖f |SN/p
p q B(RN × R

N)‖ ≤ 1} ∼
(
log

e

t

)2/q′

(5.7)

for all t, 0 < t ≤ 1, and
∫ 1

0

[
f ∗(t)

(log e/t)2

]q
dt

t
≤ c‖f |SN/p

p q B(RN × R
N)‖q. (5.8)

Proof. To prove the equivalence in (5.5) and (5.7) we use again the argu-
ments from [KS3, Theorem 5.4] (extremal functions), now in combination
with the arguments in Remark 2.7. This gives the estimates of the envelope
function from below. The remaining part of (1) follows from Corollary 3.2,
Corollary 2.10, Corollary 2.6, and Corollary 2.3. As to (2) the remaining
estimate is a consequence of (3.2), Corollary 2.6, and Corollary 2.3.

Remark 5.4. We point out the interesting appearance of different expo-
nents: 2/p′ and 2/q′ in (5.5)-(5.8), and 1/p′ and 2/q′ in (5.1)-(5.4).
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