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1 . Preliminaries

1.1. Introduction. In this paper we study the impulsive periodic boundary value
problem

u′′ =f(t, u, u′),(1.1)

u(t1+) = J(u(t1)), u′(t1+) = M(u′(t1−)),(1.2)

u(0) = u(T ), u′(0) = u′(T ).(1.3)

Our basic assumption is the existence of strict lower and upper functions σ1 and σ2

of the problem (1.1)-(1.3) (see Definitions 1.5 and 1.6). Using these functions we
construct open bounded sets Ω1 and Ω2 and evaluate the Leray-Schauder topological
degree of the operator I − F generated by the problem (1.1)-(1.3) (see Theorems
3.2 and 4.3). We prove that deg(I − F, Ω1) = 1 and deg(I − F, Ω2) = −1, which
immediately guarantees the existence of solutions of (1.1)-(1.3) lying in these sets
(see Corollaries 3.3, 3.4, 4.4 and 4.5). Finally, in Section 5 we indicate possible
generalizations of the existence results presented in Corollaries 3.3, 3.4, 4.4, 4.5.

In our considerations we distinguish two cases:

(i) functions σ1 and σ2 are well ordered (Section 3), i.e. σ1(t) < σ2(t) for t ∈ [0, T ],

(ii) functions σ1 and σ2 are not well ordered (Section 4), i.e. either σ1(t) > σ2(t)
for t ∈ [0, T ] or σ1, σ2 are not ordered at all.

As we can see in References, there are several papers dealing with existence
results for similar problems (cf. [1], [2], [4], [6]-[8], [10] and [13]). Some of them ([1],
[2], [6]-[8]) work with upper and lower functions. All these works consider the case
(i) only. The papers [4] and [13] are also well related to our work because, similarly
as we do in this paper, they work with the topological degree of operators generated
by periodic impulsive boundary value problems.

In [4], the vector case of (1.1)-(1.3) with f continuous on [0, T ]×R2 is considered
and existence results based on the curvature bound sets are proved there. In the
scalar case these results yield the existence of solutions to (1.1)-(1.3) provided the
well ordered constant strict lower and upper functions of (1.1)-(1.3) are available.
The same is true for [13], where the impulse conditions differ a little bit from (1.2).
However, also the existence results in [13] cover only the well ordered case (i). The
authors believe that till now, there has been no existence result for the second
order periodic impulsive boundary value problems in the case of the existence of
non well ordered lower and upper functions. In this paper we want to start serious
considerations of this case. To this aim we modify the methods developed in our
previous paper [11].
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1.2. Notation. For a real valued function x defined a.e. on [0, T ], we put

‖x‖∞ = sup ess
t∈[0,T ]

|x(t)| and ‖x‖1 =

∫ T

0

|x(s)| ds.

By G[0, T ] we denote the set of functions regulated on [0, T ], i.e. the set of functions
x : [0, T ] 7→ R for which the one-sided limits

(1.4) x(t+) = lim
τ→t+

x(τ) and x(s−) = lim
τ→s−

x(τ)

exist and are finite for t ∈ [a, b) and s ∈ (a, b]. Furthermore,

GL [0, T ] = {x ∈ G[0, T ] : x(t−) = x(t) for t ∈ (0, T ] and x(0+) = x(0)}.

Having x ∈ G[0, T ] and t ∈ (0, T ), we denote ∆x(t) = x(t+)− x(t−). Notice that if
x ∈ G[0, T ], then we have

‖x‖∞ = sup
t∈[0,T ]

|x(t)|.

By C̃[0, T ] we denote the set of functions x ∈ GL [0, T ] which are continuous at every
point t ∈ (0, T ) \ {t1}. It is well-known (cf. e.g. [5]) that G[0, T ] is a Banach space

with respect to the norm ‖.‖∞ and GL [0, T ] and C̃[0, T ] are its closed subspaces.

Furthermore, G̃[0, T ] is the set of functions x : [0, T ] \ {t1} 7→ R for which the

limits (1.4) exist and are finite for t ∈ [a, b) and s ∈ (a, b]. By C̃1[0, T ] we denote

the set of functions x ∈ C̃[0, T ] with x′ ∈ G̃[0, T ] and such that x′ is continuous at
every point t ∈ [0, T ] \ {t1}. (We put x′(0) = x′(0+) and x′(T ) = x′(T−).) It is easy
to see that when equipped with the norm

‖x‖C̃1 = ‖x‖∞ + ‖x′‖∞,

C̃1[0, T ] becomes a Banach space. Notice that if x ∈ C̃1[0, T ], then we have

‖x′‖∞ = sup
t∈[0,t1)∪(t1,T ]

|x′(t)|.

As usual, by AC[0, T ] and L[0, T ] we denote the spaces of functions x : [0, T ] 7→
R which are respectively absolutely continuous and Lebesgue integrable on [0, T ].

ÃC1[0, T ] stands for the set of functions x ∈ C̃1[0, T ] which are absolutely continuous
on [0, t1) ∪ (t1, T ].

Car([0, T ] × R2) is the set of functions f : [0, T ] × R2 7→ R which fulfil the
Carathéodory conditions on [0, T ] × R2, i.e. (i) for each x ∈ R and y ∈ R the
function f(., x, y) is measurable on [0, T ]; (ii) for almost every t ∈ [0, T ] the func-
tion f(t, ., .) is continuous on R2; (iii) for each compact set K ⊂ R2 the function
mK(t) = sup (x,y)∈K |f(t, x, y)| is Lebesgue integrable on [a, b].
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Having a Banach space X and its subset M, then cl(M) and ∂M stand for the
closure and the boundary of M, respectively.

If Ω is an open bounded subset in X, the operator F : cl(Ω) 7→ X is completely
continuous and F x 6= x for all x ∈ ∂ Ω, then deg(I − F, Ω) denotes the Leray-
Schauder topological degree of I−F with respect to Ω, where I is the identity operator
on X. For a definition and properties of the degree see e.g. [3] or [9].

1.3. Assumptions. Throughout the paper we assume

0 < t1 < T,(1.5)

f ∈ Car([0, T ]× R2),(1.6)

J and M are continuous mappings of R into R,(1.7)

J is increasing on R and M is nondecreasing on R.(1.8)

1.4. Definition. By a solution of the impulsive problem (1.1), (1.2) we understand

a function u ∈ ÃC1[0, T ] fulfilling (1.2) and such that

(1.9) u′′(t) = f(t, u(t), u′(t)) for a.e. t ∈ [0, T ].

A solution u ∈ ÃC1[0, T ] of the impulsive problem (1.1), (1.2) which satisfies (1.3)
is called a solution to the boundary value problem (1.1)-(1.3).

1.5. Definition. A function σ1 ∈ ÃC1[0, T ] is a lower function of (1.1)-(1.3) if

σ′′1(t) ≥ f(t, σ1(t), σ
′
1(t)) for a.e. t ∈ [0, T ],(1.10)

σ1(t1+) = J(σ1(t1)) and σ′1(t1+) ≥ M(σ′1(t1−)),(1.11)

σ1(0) = σ1(T ), σ′1(0) ≥ σ′1(T ).(1.12)

Similarly, a function σ2 ∈ ÃC1[0, T ] is an upper function of (1.1)-(1.3) if

σ′′2(t) ≤ f(t, σ2(t), σ
′
2(t)) for a.e. t ∈ [0, T ],(1.13)

σ2(t1+) = J(σ2(t1)) and σ′2(t1+) ≤ M(σ′2(t1−)),(1.14)

σ2(0) = σ2(T ), σ′2(0) ≤ σ′2(T ).(1.15)
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1.6. Definition. A lower function σ1 of (1.1)-(1.3) which is not a solution of (1.1)-
(1.3) is called a strict lower function of (1.1)-(1.3) if there exists ε > 0 such that

σ′′1(t) ≥ f(t, x, y) for a.e. t ∈ [0, T ](1.16)

and all (x, y) ∈ [σ1(t), σ1(t) + ε]× [σ′1(t)− ε, σ′1(t) + ε].

Similarly, an upper function σ2 of (1.1)-(1.3) which is not a solution of (1.1)-(1.3)
is called a strict upper function of (1.1)-(1.3) if there exists ε > 0 such that

σ′′2(t) ≤ f(t, x, y) for a.e. t ∈ [0, T ](1.17)

and all (x, y) ∈ [σ2(t)− ε, σ2(t)]× [σ′2(t)− ε, σ′2(t) + ε].

1.7. Remark. Assume (1.5)-(1.7) and

(1.18) M(0) = 0.

Furthermore, let r1 ∈ R, J(r1) = r1 and f(t, r1, 0) ≤ 0 for a.e. t ∈ [0, T ]. Then
σ1(t) ≡ r1 is a lower function of the problem (1.1)-(1.3). If, moreover, there is ε > 0
such that

(1.19) f(t, x, y) ≤ 0 for a.e. t ∈ [0, T ] and all (x, y) ∈ [r1, r1 + ε]× [−ε, ε]

then σ1 is a strict lower function of (1.1)-(1.3).

Similarly, if r2 ∈ R and ε > 0 are such that (1.18), J(r2) = r2 and f(t, r2, 0) ≥ 0
for a.e. t ∈ [0, T ] or

(1.20) f(t, x, y) ≥ 0 for a.e. t ∈ [0, T ] and all (x, y) ∈ [r2 − ε, r2]× [−ε, ε]

hold, then σ2(t) ≡ r2 is an upper function or a strict upper function of (1.1)-(1.3),
respectively.

2 . Auxiliary assertions

In Section 3 we construct an operator representation (I − F)x = 0 of the problem
(1.1)-(1.3). To this aim we need an explicit form of a solution of the related linear
impulsive problem (2.1)-(2.3) (see Lemma 2.1) and a priori estimates of solutions of
nonlinear impulsive problems (Lemmas 2.3, 2.5, 2.7 and 2.8).
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2.1. Lemma. Let h ∈ L[0, T ] and c, d, e ∈ R. Then there is a unique function

ξ ∈ ÃC1[0, T ] fulfilling

ξ′′(t) = h(t) for a.e. t ∈ [0, T ], ∆ξ(t1) = d, ∆ξ′(t1) = e,(2.1)

ξ(0) = ξ(T ) = c.(2.2)

This function is given by

ξ(t) = c + g̃(t, t1) d + g(t, t1) e +

∫ T

0

g(t, s) h(s) ds on [0, T ],(2.3)

where

g̃(t, s) =


T − t

T
if 0 ≤ s < t ≤ T,

− t

T
if 0 ≤ t ≤ s ≤ T,

(2.4)

and

g(t, s) =


s (t− T )

T
if 0 ≤ s < t ≤ T,

t (s− T )

T
if 0 ≤ t ≤ s ≤ T.

(2.5)

Proof. Let us choose x̃ ∈ R and define

(2.6) ξ(t) =


c + t x̃ +

∫ t

0

(t− s) h(s) ds if t ∈ [0, t1],

c + t x̃ + d + e (t− t1) +

∫ t

0

(t− s) h(s) ds if t ∈ (t1, T ].

We have

ξ′(t) =


x̃ +

∫ t

0

h(s) ds if t ∈ [0, t1),

x̃ +

∫ t

0

h(s) ds + e if t ∈ (t1, T ]

and it is easy to see that ξ ∈ ÃC1[0, T ] fulfils (2.1) and ξ(0) = c. Furthermore, we
will have ξ(T ) = c whenever

(2.7) T x̃ = −d− e (T − t1)−
∫ T

0

(T − s) h(s) ds
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is true. Inserting (2.7) into (2.6), we get

ξ(t) = c− t

T
d +

t (t1 − T )

T
e +

∫ t

0

(t− T ) s

T
h(s) ds

+

∫ T

t

t (s− T )

T
h(s) ds for t ∈ [0, t1]

and

ξ(t) = c +
T − t

T
d +

t1 (t− T )

T
e +

∫ t

0

(t− T ) s

T
h(s) ds

+

∫ T

t

t (s− T )

T
h(s) ds for t ∈ (t1, T ],

wherefrom, taking into account (2.4)-(2.6), we obtain the representation (2.3).

On the other hand, if we had two functions ξ1 and ξ2 ∈ ÃC1[0, T ] fulfilling
(2.1)-(2.2), then for η = ξ1 − ξ2 we would have

η′′(t) = 0 a.e. on [0, T ], η(0) = η(T ) = 0,

i.e. η(t) ≡ 0 on [0, T ].

After inserting c = d = e = 0, Lemma 2.1 reduces to

2.2. Corollary. For every h ∈ L[0, T ] the function

z(t) =

∫ T

0

g(t, s) h(s) ds, t ∈ [0, T ]

with g(t, s) given by (2.5) is a unique solution of the Dirichlet boundary value problem

(2.8) z′′(t) = h(t) for a.e. t ∈ [0, T ], z(0) = z(T ) = 0.

Using the properties of strict upper functions we prove inequalities (2.10) and
(2.22) which enable us to estimate solutions of nonlinear impulsive problems from
above.

2.3. Lemma. Assume that (1.5)− (1.8) hold and let σ2 be a strict upper function

of (1.1)− (1.3). Furthermore, let f̃ ∈ Car([0, T ]× R2) and

f̃(t, x, y) > f(t, σ2(t), y) for a.e. t ∈ [0, T ](2.9)

and all (x, y) ∈ (σ2(t),∞)× R.
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Then

(2.10) u(t) ≤ σ2(t) on [0, T ]

holds for any solution u of the impulsive problem (1.2),

(2.11) u′′ = f̃(t, u, u′)

having the property u(0) = u(T ) ≤ σ2(0).

Proof. Let u be a solution of (2.11), (1.2) and let u(0) = u(T ) ≤ σ2(0). Denote
v(t) = u(t)− σ2(t) for t ∈ [0, T ].

(i) First, we shall show that v does not have any point of a positive local maximum
in [0, t1) ∪ (t1, T ].

Indeed, let ε > 0 be such that (1.17) is true and let α ∈ [0, t1)∪ (t1, T ] be a point
of a positive local maximum of v. We have

(2.12) v(0) = v(T ) = u(0)− σ2(0) ≤ 0.

Hence α ∈ (0, t1) ∪ (t1, T ). Moreover, v(α) > 0 and v′(α) = 0, which guarantees the
existence of β ∈ (α, T ] such that [α, β] ⊂ (0, t1) ∪ (t1, T ],

(2.13) |v′(t)| ≤ ε and v(t) > 0

on [α, β]. Using (2.9) and (1.17), we get

v′′(t) = u′′(t)− σ′′2(t) = f̃(t, u(t), u′(t))− σ′′2(t) > f(t, σ2(t), u
′(t))− σ′′2(t) ≥ 0

for a.e. t ∈ [α, β]. Hence,

0 <

∫ t

α

v′′(s) ds = v′(t)

for all t ∈ (α, β], which contradicts the fact that v has a local maximum at α. This
completes the proof of our claim.

(ii) Let

(2.14) v(t) ≤ v(t1) for all t ∈ [0, t1) and v(t1) > 0.

Then necessarily v′(t1−) ≥ 0. Furthermore, taking into account also (1.8), we have

u(t1) > σ2(t1) =⇒ J(u(t1)) > J(σ2(t1)),(2.15)

and

u′(t1−) ≥σ′2(t1−) =⇒ M(u′(t1−)) ≥M(σ′2(t1−)),(2.16)
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which means that v(t1+) = J(u(t1)) − J(σ2(t1)) > 0 and v′(t1+) ≥ M(u′(t1−)) −
M(σ′2(t1−)) ≥ 0. If v′(t1+) > 0 were valid, then, in view of (2.12) and (2.14), v
would have a point of a positive local maximum in (t1, T ], contrary to (i). Provided
that v′(t1+) = 0, we can find β ∈ (t1, T ] such that (2.13) is satisfied for t ∈ (t1, β].
Using (2.9) and (1.17) as in part (i), we get v′′(t) > 0 for a.e. t ∈ (t1, β] and therefore
v′(t) > 0 for all t ∈ (t1, β]. Thus, by virtue of the fact that v(T ) ≤ 0, v has a point of
a positive local maximum in (t1, T ], which is impossible due to (i). Therefore (2.14)
cannot occur.

(iii) It remains to show that neither

(2.17) v(t1+) ≥ v(t) for all t ∈ (t1, T ] and v(t1+) > 0

can occur. Indeed, if (2.17) holds, then v′(t1+) ≤ 0. Moreover, by (1.8) we have

(2.18) J(u(t1)) > J(σ2(t1)) =⇒ u(t1) > σ2(t1)

and thus v(t1−) > 0. Assume that v′(t1+) = 0. Then there is β ∈ (t1, T ] such that
(2.13) holds on (t1, β]. As in part (i), this implies that v′(t) > 0 for all t ∈ (t1, β],
contrary to (2.17). Hence, v′(t1+) < 0. In view of (1.8) we have

(2.19) M(u′(t1−)) < M(σ′2(t1−)) =⇒ u′(t1−) < σ′2(t1−),

i.e. v′(t1−) < 0, which, in view of (2.12) and of the fact that v(t1−) > 0, means
that v has a point of a positive local maximum in [0, t1), contrary to (i).

2.4. Remark. In Lemma 2.3 we can weaken the assumption (1.8) concerning mono-
tonicity of J and M on R. In particular, the assertion of Lemma 2.3 remains true if
we suppose instead of (1.8) that for each x, y ∈ R the conditions

J(x) > J(σ2(t1)) ⇐⇒ x > σ2(t1),(2.20)

y ≥ σ′2(t1−) =⇒ M(y) ≥ M(σ′2(t1−))(2.21)

are fulfilled. Indeed, if we consider the proof of Lemma 2.3, we see that we make use
of (1.8) just to get (2.15), (2.16), (2.18) and (2.19). But all these conditions follow
from (2.20) and (2.21), as well.

2.5. Lemma. Assume that (1.5)− (1.8) hold and let σ2 be a strict upper function
of the problem (1.1)− (1.3). Then for any solution u of (1.1)− (1.3) fulfilling (2.10)
we have

(2.22) u(t) < σ2(t) for t ∈ [0, T ] and u(t1+) < σ2(t1+).
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Proof. Denote v = u− σ2. We have

(2.23) v(t) ≤ 0 for t ∈ [0, T ].

First, let us notice that the following assertion is true:

Let α ∈ [0, T ) and

(2.24) v(α+) = v′(α+) = 0.

Then there exists β ∈ (α, T ] such that the identities

(2.25) v(t) = 0 and v′(t) = 0

are true for t ∈ (α, β].
Indeed, let ε > 0 be such that (1.17) is true. According to (2.23) and (2.24), we

can choose β ∈ (α, T ] in such a way that

(2.26) −ε < v(t) ≤ 0 and |v′(t)| ≤ ε for t ∈ (α, β].

By (1.17) and (2.26), we get

v′′(t) = f(t, u(t), u′(t))− σ′′2(t) ≥ 0 a.e. on (α, β].

If v′(τ) < 0 held for some τ ∈ (α, β], we would have

0 ≤
∫ τ

α

v′′(t) dt = v′(τ) < 0,

a contradiction. Thus, 0 ≤ v′(t) ≤ ε for t ∈ (α, β]. On the other hand, if v′(τ) > 0
held for some τ ∈ (α, β], then we would have

v(τ) =

∫ τ

α

v′(t) dt > 0,

a contradiction with (2.23). Therefore v′(t) = 0 on (α, β] and, consequently, v(t) = 0
on (α, β]. This completes the proof of our claim.

(i) Now, assume that v(T ) = 0. Then, owing to the periodic conditions, we have
v(0) = 0 and, in view of (2.23), also

0 ≥ v′(0) = u′(0)− σ′2(0) ≥ u′(T )− σ′2(T ) = v′(T ) ≥ 0,

i.e. v′(0) = v′(T ) = 0. Hence (2.24) is true with α = 0 and we can choose β ∈ (0, t1)
so that the relations (2.25) are satisfied on [0, β]. Let us put

(2.27) t∗ = sup
{

s ∈ (0, t1] : v(t) = 0 on [0, s]
}

.
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Then t∗ ≥ β, v(t∗) = 0 and v′(t∗−) = 0. Let us assume that t∗ < t1. Then we have
(2.24) with α = t∗. Hence we can find β∗ ∈ (t∗, t1] such that (2.25) is true for all
t ∈ [0, β∗], which contradicts (2.27). Therefore t∗ = t1 and we get

(2.28) v(t) = 0 for t ∈ [0, t1]

and v′(t1−) = 0. Consequently,

v(t1+) = J(u(t1))− J(σ2(t1)) = 0

and, by (1.14),

v′(t1+) ≥ M(u′(t1−)−M(σ′2(t1−)) = 0.

Since v′(t1+) > 0 implies v(t) > 0 for some t ∈ (t1, T ], contrary to (2.23), we
necessarily have v′(t1+) = 0. To summarize, we have

(2.29) v(t1+) = v′(t1+) = 0,

i.e. (2.24) with α = t1 is true. Hence there is β ∈ (t1, T ] such that (2.25) holds for
all t ∈ (t1, β]. Put

(2.30) r∗ = sup
{

s ∈ (t1, T ] : v(t) = 0 on (t1, s]
}

.

Then r∗ ≥ β and v(r∗) = v′(r∗−) = 0. Thus, if r∗ < T were valid, we would
have (2.24) with α = r∗ and (2.25) on (t1, β] with β ∈ (r∗, T ], contrary to (2.30).
Therefore, r∗ = T and, by virtue of (2.28), we get

(2.31) u(t) = σ2(t) for all t ∈ [0, T ],

which contradicts Definition 1.6.

(ii) Let v(α) = 0 for some α ∈ (t1, T ). Then v′(α) = 0 and we can find β ∈ (α, T ]
such that (2.25) is valid for t ∈ [α, β]. Define

r∗ = sup
{

s ∈ (α, T ] : v(t) = 0 on [α, s]
}

.

As in part (i) of this proof we get r∗ = T. Therefore v(T ) = 0 and we arrive at
(2.31) as in part (i).

(iii) Let v(t1+) = 0. Then, as (1.8) implies

(2.32) J(u(t1)) = J(σ2(t1)) =⇒ u(t1) = σ2(t1),

we have v(t1) = 0. Furthermore, (2.23) implies that both v′(t1−) ≥ 0 and v′(t1+) ≤ 0
are true. On the other hand, in view of (1.8) we have (2.16). Thus, using (1.14) and
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the fact that v′(t1−) ≥ 0 we get v′(t1+) ≥ 0, as well. Therefore (2.29) is true and
we can follow part (i) to get (2.31).

(iv) If v(t1) = 0, then also v(t1+) = 0 and we can follow part (iii).

(v) If v(α) = 0 for some α ∈ (0, t1), then necessarily v′(α) = 0 and we can find
β ∈ (α, t1] such that (2.25) is valid for all t ∈ [α, β]. Analogously as before, put

t∗ = sup
{

s ∈ (α, t1] : v(t) = 0 on [α, s]
}

.

As in part (i) we get t∗ = t1. This means that v(t1) = 0 and hence, by part (iv), we
can again conclude that (2.31) is true.

2.6. Remark. The assertion of Lemma 2.5 remains valid if we replace the condition
(1.8) with (2.21) and moreover suppose that

(2.33) J(x) = J(σ2(t1)) ⇐⇒ x = σ2(t1).

Going through the proof of Lemma 2.5 we observe that (1.8) is used for the validity
of (2.16) and (2.32). But both of them are included in (2.21) and (2.33).

The proofs of the lower estimates dual to (2.10) and (2.22) are based on the
properties of strict lower functions and they are omitted due to their similarity to
the proofs of Lemmas 2.3 and 2.5.

2.7. Lemma. Assume that (1.5) − (1.8) hold and let σ1 be a strict lower function

of (1.1)− (1.3). Furthermore, let f̃ ∈ Car([0, T ]× R2) and

f̃(t, x, y) < f(t, σ1(t), y) for a.e. t ∈ [0, T ] and all (x, y) ∈ (−∞, σ1(t))× R.

Then u(t) ≥ σ1(t) on [0, T ] holds for any solution u of the impulsive problem (2.11),
(1.2) satisfying u(0) = u(T ) ≥ σ1(0).

2.8. Lemma. Assume that (1.5) − (1.8) hold and let σ1 be a strict lower function
of the problem (1.1)− (1.3). Then for any solution u of (1.1)− (1.3) fulfilling u(t) ≥
σ1(t) for t ∈ [0, T ] we have u(t) > σ1(t) for t ∈ [0, T ] and u(t1+) > σ1(t1+).

2.9. Remark. Lemma 2.7 remains valid if instead of (1.8) we suppose that for each
x, y ∈ R the conditions

J(x) < J(σ1(t1)) ⇐⇒ x < σ1(t1),

y ≤ σ′1(t1−) =⇒ M(y) ≤ M(σ′1(t1−))(2.34)
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are fulfilled. Similarly, in Lemma 2.8 we can replace (1.8) with the conditions (2.34)
and

J(x) = J(σ1(t1)) ⇐⇒ x = σ1(t1).

3 . Well ordered strict lower and upper functions

and topological degree

This section is devoted to the evaluation of the Leray - Schauder topological degree
of the operator I− F with respect to an open bounded set Ω1 (see (3.1) and (3.8)).
Here we consider the case that strict lower and upper functions for (1.1)-(1.3) exist
and are well ordered, i.e. the condition (3.5) is satisfied. First, notice that the
periodic conditions (1.3) can be written in the equivalent form

u(0) = u(0) + u′(0)− u′(T ), u(T ) = u(0) + u′(0)− u′(T ).

3.1. Lemma. Assume that (1.5)− (1.8) hold. Let F : C̃1[0, T ] 7→ C̃1[0, T ] be given
by

(F x)(t) = x(0) + x′(0)− x′(T ) +

∫ T

0

g(t, s) f(s, x(s), x′(s)) ds(3.1)

+ g̃(t, t1) (J(x(t1))− x(t1))

+ g(t, t1) (M(x′(t1−))− x′(t1−)), t ∈ [0, T ],

where g(t, s) and g̃(t, s) are defined by (2.5) and (2.4), respectively.

Then F is completely continuous and a function u ∈ C̃1[0, T ] is a solution of
(1.1)− (1.3) if and only if u is a fixed point of the operator F .

Proof. Choose an arbitrary y ∈ C̃1[0, T ] and consider an auxiliary linear problem

x′′(t) = f(t, y(t), y′(t)) for a.e. t ∈ [0, T ],(3.2)

∆x(t1) = J(y(t1))− y(t1), ∆x′(t1) = M(y′(t1−))− y′(t1−),(3.3)

x(0) = y(0) + y′(0)− y′(T ), x(T ) = y(0) + y′(0)− y′(T ).(3.4)

Clearly, f(t, y(t), y′(t)) ∈ L[0, T ] and hence, by Lemma 2.1, the problem (3.2)-(3.4)

has a unique solution x ∈ ÃC1[0, T ]. Furthermore, by virtue of (2.3) and (3.1), this
solution is of the form

x(t) = (F y)(t) for t ∈ [0, T ].
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In particular, u ∈ C̃1[0, T ] is a solution to (1.1)-(1.3) if and only if it is a fixed point
of the operator F, i.e. if and only if it is a solution to the operator equation

u− F u = 0.

Let an operator F1 : C̃1[0, T ] 7→ C̃1[0, T ] be defined by

(F1y)(t) =

∫ T

0

g(t, s) f(s, y(s), y′(s)) ds, t ∈ [0, T ].

By Corollary 2.2 we have F1 y ∈ C1[0, T ] for every y ∈ C̃1[0, T ] and F1 is a compo-
sition of the Green type operator for the Dirichlet problem (2.8) and of the super-
position operator generated by f ∈ Car([0, T ] × R2). Making use of the Lebesgue
Dominated Convergence Theorem and the Arzelà-Ascoli Theorem, we get in a stan-
dard way that F1 is completely continuous. Furthermore, since J and M are contin-
uous, the operator F2 = F−F1 is continuous, as well. Finally, having in mind that
F2 maps bounded sets onto bounded sets and its values are contained in a three-
dimensional subspace of C̃1[0, T ], we conclude that the operators F2 and F = F1 + F2

are completely continuous.

3.2. Theorem. Assume that (1.5)− (1.8) hold. Let σ1 and σ2 be respectively strict
lower and strict upper functions of (1.1)− (1.3) satisfying

(3.5) σ1(t) < σ2(t) on [0, T ]

and let m ∈ L[0, T ] be such that

(3.6) |f(t, x, y)| ≤ m(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ [σ1(t), σ2(t)]× R.

Then the operator F given by (3.1) satisfies

(3.7) deg(I− F, Ω1) = 1,

where

Ω1 = {x ∈ C̃1[0, T ] : σ1(t) < x(t) < σ2(t) on [0, T ],(3.8)

σ1(t1+) < x(t1+) < σ2(t1+), ‖x′‖∞ < C}
and

C ≥ C(m, σ1, σ2) := ‖m‖1 +
(

max{ 1

t1
,

1

T − t1
}+ 1

)
(‖σ1‖C̃1 + ‖σ2‖C̃1).(3.9)
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Proof. Choose C ∈ (0,∞) fulfilling (3.9) and define an auxiliary operator H̃ :

C̃1[0, T ] 7→ C̃1[0, T ] by

(H̃x)(t) = α0(x(0) + x′(0)− x′(T )) +

∫ T

0

g(t, s) h̃(s, x(s), x′(s)) ds(3.10)

+ g̃(t, t1) (J(α1(x(t1)))− α1(x(t1)))

+ g(t, t1) (M(β(x′(t1−)))− β(x′(t1−))) for t ∈ [0, T ],

where α0(x), α1(x), β(y) and h̃(t, x, y) are given for a.e. t ∈ [0, T ] and all (x, y) ∈ R2

by

α0(x) =


σ1(0) if x < σ1(0),

x if σ1(0) ≤ x ≤ σ2(0),

σ2(0) if x > σ2(0),

(3.11)

α1(x) =


σ1(t1) if x < σ1(t1),

x if σ1(t1) ≤ x ≤ σ2(t1),

σ2(t1) if x > σ2(t1),

(3.12)

β(y) =


−C if y < −C,

y if |y| ≤ C,

C if y > C,

(3.13)

h(t, x, y) = f(t, x, β(y))(3.14)

and

h̃(t, x, y) =



h(t, σ1(t), y)− σ1(t)− x

1 + σ1(t)− x
if x < σ1(t),

h(t, x, y) if σ1(t) ≤ x ≤ σ2(t),

h(t, σ2(t), y) +
x− σ2(t)

1 + x− σ2(t)
if x > σ2(t).

(3.15)

We have h̃ ∈ Car([0, T ] × R2), α0, α1 and β are continuous mappings of R into

itself. Consequently, we argue as in the proof of Lemma 3.1 concluding that H̃ is
completely continuous.

Now, consider the parameter system of operator equations

(3.16) u− λ H̃u = 0, λ ∈ [0, 1].
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Taking into account (2.4), (2.5), (3.6), (3.10)-(3.15), we find r ∈ (0,∞) such that

‖H̃x‖C̃1 ≤ r for x ∈ C̃1[0, T ].

Therefore, we can choose R > 0 in such a way that

Ω1 ⊂ K (R) := {x ∈ C̃1[0, T ] : ‖x‖C̃1 < R}

and for any λ ∈ [0, 1] each solution u of (3.16) belongs to K (R). This means that

the operator I− λ H̃ is a homotopy on K (R)× [0, 1] and

(3.17) deg(I− H̃, K (R)) = deg(I, K (R) ) = 1.

Now, let λ = 1 and let u be an arbitrary solution of the corresponding problem
(3.16). According to Lemma 3.1, this is possible if and only if

u′′(t) = h̃(t, u(t), u′(t)) for a.e. t ∈ [0, T ],(3.18)

u(t1+) = J̃(u(t1)), u′(t1+) = M̃(u′(t1−)),(3.19)

u(0) = u(T ) = α0(u(0) + u′(0)− u′(T )),(3.20)

where

J̃(x) = x + J(α1(x))− α1(x) for x ∈ R
and

M̃(y) = y + M(β(y))− β(y) for y ∈ R.

In view of (3.11) and (3.15), we have σ1(0) ≤ α0(u(0) + u′(0)− u′(T )) ≤ σ2(0),

h̃(t, x, y) > h(t, σ2(t), y) for a.e. t ∈ [0, T ]

and all (x, y) ∈ (σ2(t),∞)× R
and

h̃(t, x, y) < h(t, σ1(t), y) for a.e. t ∈ [0, T ]

and all (x, y) ∈ (−∞, σ1(t))× R.

Furthermore, both J̃ and M̃ are continuous on R, J̃ is increasing on R and M̃ is
nondecreasing on R. Consider ε > 0 from Definition 1.6. Since ‖σ1‖C̃1 +‖σ2‖C̃1 < C,
we can find ε1 ∈ (0, ε) such that ‖σ′1‖∞ + ε1 < C, ‖σ′2‖∞ + ε1 < C and so we have
h(t, x, y) = f(t, x, y) for a.e. t ∈ [0, T ] and for all (x, y) ∈ M1(t) ∪ M2(t), where
M1(t) = [σ1(t), σ1(t) + ε1]× [σ′1(t)− ε1, σ

′
1(t) + ε1] and M2(t) = [σ2(t)− ε1, σ2(t)]×

[σ′2(t) − ε1, σ
′
2(t) + ε1]. Therefore, σ1 and σ2 are respectively strict lower and strict
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upper functions for u′′ = h(t, u, u′), (1.2), (1.3). In view of (3.11) and (3.20) we have

σ1(0) ≤ u(0) = u(T ) ≤ σ2(0). Thus, applying Lemmas 2.3 and 2.7 (with h and h̃ in

the place of f and f̃ and with J̃ and M̃ in the place of J and M, respectively) we get

(3.21) σ1(t) ≤ u(t) ≤ σ2(t) on [0, T ].

Now, by the Mean Value Theorem there is ξ1 ∈ (0, t1) such that

|u′(ξ1)| t1 = |u(t1)− u(0)| ≤ (‖σ1‖∞ + ‖σ2‖∞)

and so (3.6), (3.15), (3.18) and (3.19) lead to

|u′(t)| ≤ |u′(ξ1)|+
∣∣∣ ∫ t

ξ1

m(s) ds
∣∣∣

≤ ‖m‖1 +
1

t1
(‖σ1‖∞ + ‖σ2‖∞) for all t ∈ [0, t1).

Similarly,

|u′(t)| ≤ ‖m‖1 +
1

T − t1
(‖σ1‖∞ + ‖σ1‖∞) for all t ∈ (t1, T ]

and therefore, in view of (3.9),

(3.22) ‖u′‖∞ < C.

By (3.12), (3.13), (3.21) and (3.22), we have

α1(u(t1)) = u(t1), β(u′(t1−)) = u′(t1−)

and, according to (3.15),

h̃(t, u(t), u′(t)) = f(t, u(t), u′(t)) for a.e. t ∈ [0, T ].

Hence, (3.18)-(3.20) imply that u satisfies (1.9), (1.2) and u(0) = u(T ). To show that
u is a solution of (1.1)-(1.3) it remains to prove that u′(0) = u′(T ). In particular,
we will prove that

(3.23) σ1(0) ≤ u(0) + u′(0)− u′(T ) ≤ σ2(0)

is valid. Suppose on the contrary

(3.24) u(0) + u′(0)− u′(T ) > σ2(0).

Then by (3.11) we have α0(u(0) + u′(0)− u′(T )) = σ2(0). This together with (1.15)
and (3.20) yields

(3.25) u(0) = u(T ) = σ2(0) = σ2(T ).
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Inserting (3.25) into (3.24) we get

(3.26) u′(0) > u′(T ).

On the other hand, (3.25) together with (3.21) and (3.26) implies that

σ′2(0) ≥ u′(0) > u′(T ) ≥ σ′2(T ),

which is a contradiction with (1.15). Now, assume

(3.27) u(0) + u′(0)− u′(T ) < σ1(0).

Then α0(u(0) + u′(0)− u′(T )) = σ1(0) and (1.12) together with (3.20) gives

u(0) = u(T ) = σ1(0) = σ1(T ),

wherefrom, in view of (3.27), the inequality u′(0) < u′(T ) follows. On the other
hand, taking into account (3.21), we can see that

σ′1(0) ≤ u′(0) < u′(T ) ≤ σ′1(T )

must hold, which is a contradiction with (1.12). Thus, (3.23) is true. Therefore, by
(3.11) and (3.20) we have u′(0) = u′(T ).

To summarize: we have shown that every solution u of (3.16) with λ = 1 solves
the problem (1.1)-(1.3) and satisfies (3.21). Consequently, we can make use of
Lemmas 2.5 and 2.8 to show that

σ1(t) < u(t) < σ2(t) on [0, T ] and σ1(t1+) < u(t1+) < σ2(t1+).

Hence, taking into account (3.22), we conclude that u ∈ Ω1. Now, since F = H̃ on
cl(Ω1) and x 6= F x for all x ∈ ∂Ω1, by (3.17) and by the excision property of the
Leray-Schauder degree we conclude

deg(I− F, Ω1) = deg(I− H̃, Ω1) = deg(I− H̃, K (R)) = 1,

i.e. (3.7) is valid.

Using Theorem 3.2 and the existence property of the Leray - Schauder degree
we immediately get the following existence result.

3.3. Corollary. Let all assumptions of Theorem 3.2 be satisfied. Then the problem
(1.1)− (1.3) has a solution u satisfying

σ1(t) < u(t) < σ2(t) on [0, T ] and σ1(t1+) < u(t1+) < σ2(t1+).
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In particular, in view of Remark 1.7, we have the following simple existence
criterion.

3.4. Corollary. Assume that (1.5)− (1.8), (1.18) and (3.6) are satisfied. Further-
more, let there exist r1, r2 ∈ R and ε > 0 such that r1 < r2, J(r1) = r1, J(r2) = r2,
(1.19) and (1.20) hold. Then the problem (1.1)− (1.3) has a solution u satisfying

r1 < u(t) < r2 on [0, T ] and r1 < u(t1+) < r2.

4 . Topological degree and strict lower and upper

functions which are not well ordered

This section deals with the Leray - Schauder degree of the operator I−F, but here,
in contrast to the previous section, we consider the case that the relation (3.5) is
not satisfied.

The main result is contained in Theorem 4.3, the proof of which is based on
Theorem 3.2 and on the inequalities (4.1) and (4.3).

4.1. Lemma. Let (1.5) − (1.8) be fulfilled and let σ1 and σ2 be respectively strict
lower and strict upper functions of (1.1) − (1.3) such that (3.5) is not valid. Then
the inequality

(4.1) σ1(τ) > σ2(τ) for some τ ∈ [0, T ]

holds.

Proof. We have to show that the case

σ1(t) ≤ σ2(t) on [0, T ] and σ1(s) = σ2(s) for some s ∈ [0, T ]

cannot occur. To this aim, we use the arguments from the proof of Lemma 2.5,
where we put v = σ1 − σ2 and work with σ1 instead of u.

4.2. Lemma. Let (1.5) − (1.8) be fulfilled and let σ1 and σ2 be respectively lower

and upper functions of (1.1) − (1.3). Denote by Ω̃ the set of functions x ∈ C̃1[0, T ]
fulfilling (1.2), (1.3) and

(4.2) σ2(tx) < x(tx) and x(sx) < σ1(tx) for some tx, sx ∈ [0, T ].

Then there is ρ ∈ (0,∞) such that the inequality

(4.3) |x′(ξx)| < ρ for some ξx ∈ [0, T ]

is valid for each x ∈ Ω̃.
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Proof. Let x ∈ Ω̃.
(i) First, suppose that

min{σ1(t), σ2(t)} ≤ x(t) ≤ max{σ1(t), σ2(t)} for t ∈ [0, T ].

Then there is ξ ∈ (0, t1) such that

(4.4) |x′(ξ)| =
∣∣∣x(t1)− x(0)

t1

∣∣∣ ≤ 2 max{‖σ1‖∞, ‖σ2‖∞}
t1

.

(ii) Assume that x(s) > σ1(s) for some s ∈ [0, T ]. Denote v = x − σ1. Since x
satisfies (4.2), the relations

v∗ = inf
t∈[0,T ]

v(t) < 0 and v∗ = sup
t∈[0,T ]

v(t) > 0

are true. Provided

(4.5) v′(ξ) = 0 for some ξ ∈ [0, t1) ∪ (t1, T ],

we have

(4.6) |x′(ξ)| = |σ′1(ξ)| ≤ ‖σ′1‖∞.

Now, suppose that (4.5) is not true. In view of (1.3) and (1.12), we have v(0) =
v(T ) and v′(T ) ≥ v′(0). This is possible only if v′(t) < 0 for t ∈ [0, t1) and v′(t) > 0
for t ∈ (t1, T ]. In particular, we have

v′(t1−) ≤ 0(4.7)

and

v′(t1+) ≥ 0.(4.8)

On the other hand, by (1.8), (1.11) and (4.7) we obtain

v′(t1+) ≤ M(u′(t1−))−M(σ′1(t1−) ≤ 0,

which together with (4.8) yields v′(t1+) = 0. Thus, |x′(t1+)| = |σ′1(t1+)| and, con-
sequently,

(4.9) |x′(ξ)| < ‖σ′1‖∞ + 1 for some ξ ∈ (t1, T ).

(iii) If x(s) < σ2(s) for some s ∈ [0, T ], then we put v = x − σ2 and similarly to
part (ii) we show that

(4.10) |x′(ξ)| < ‖σ′2‖∞ + 1 for some ξ ∈ (0, t1) ∪ (t1, T ).

Taking into account (4.4) and (4.6)-(4.10), we conclude that (4.3) is valid for

ρ =
2 max{‖σ1‖∞, ‖σ2‖∞}

t1
+ ‖σ′1‖∞ + ‖σ′2‖∞ + 1.
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4.3. Theorem. Assume that (1.5)− (1.8) hold, M(0) = 0 and there is m ∈ L[0, T ]
such that

(4.11) |f(t, x, y)| ≤ m(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ R2.

Let σ1 and σ2 be respectively strict lower and strict upper functions of (1.1)− (1.3)
not satisfying (3.5).

Then there are A, B ∈ (0,∞) such that

(4.12) deg(I− F, Ω2) = −1

holds for the operator F and the set Ω2 given respectively by (3.1) and

Ω2 = {x ∈ C̃1[0, T ] : ‖x‖∞ < A, ‖x′‖∞ < B and x satisfies (4.2)}.

Proof. Let ρ ∈ (0,∞) be associated with σ1 and σ2 by Lemma 4.2 and let us choose
A, B ∈ (0,∞) such that

B > ρ + 2 ‖m‖1 + 1 + ‖σ′1‖∞ + ‖σ′2‖∞(4.13)

and

A > ‖σ1‖∞ + ‖σ2‖∞ + B T.(4.14)

Let us consider an auxiliary problem (1.3),

u′′ = f̃(t, u, u′),(4.15)

u(t1+) = J̃(u(t1)), u′(t1+) = M(u′(t1−)),(4.16)

where, for a.e. t ∈ [0, T ] and all (x, y) ∈ R2,

f̃(t, x, y) =



f(t, x, y)−m(t)− 1 if x ≤ −A− 1,

f(t, x, y) + (A + x) (m(t) + 1) if − A− 1 < x < −A,

f(t, x, y) if − A ≤ x ≤ A,

f(t, x, y) + (x− A) (m(t) + 1) if A < x < A + 1,

f(t, x, y) + m(t) + 1 if x ≥ A + 1,

(4.17)

Ã = max{A, J(A), | J(−A)|}+ 1,(4.18)
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J̃(x) =



x if x ≤ −Ã,

−Ã− J(−A)

A− Ã
(x + A) + J(−A) if − Ã < x < −A,

J(x) if − A ≤ x ≤ A,

Ã− J(A)

Ã− A
(x− A) + J(A) if A < x < Ã,

x if x ≥ Ã.

(4.19)

We have f̃ ∈ Car([0, T ]× R2),

(4.20) |f̃(t, x, y)| ≤ m̃(t) := 2 m(t) + 1 for a.e. t ∈ [0, T ] and all (x, y) ∈ R2,

J̃ being increasing on R. Furthermore, σ1 and σ2 are respectively strict lower and
strict upper functions of (1.3), (4.15), (4.16). According to (4.11), for a.e. t ∈ [0, T ]
and all (x, y) ∈ R2 we have

f̃(t, x, y) ≥ 1 if x ≥ A + 1,

f̃(t, x, y) ≤ −1 if x ≤ −A− 1.

Since we assume M(0) = 0, it follows that σ3(t) ≡ −Ã− 1 and σ4(t) ≡ Ã + 1 are
respectively strict lower and strict upper functions of (1.3), (4.15), (4.16) which are
well ordered, i.e.

(4.21) σ3(t) < σ4(t) on [0, T ].

Moreover,

(4.22) σ3(t) < σ2(t) and σ1(t) < σ4(t) on [0, T ].

Let us define sets

Ω = {x ∈ C̃1[0, T ] : ‖x‖∞ < Ã + 1, ‖x′‖∞ < C̃},
∆1 = {x ∈ Ω : σ1(t) < x(t) for t ∈ [0, T ], σ1(t1+) < x(t1+)},
∆2 = {x ∈ Ω : x(t) < σ2(t) for t ∈ [0, T ], x(t1+) < σ2(t1+)},

where

C̃ = (2 (Ã + 1) + ‖σ′1‖∞ + ‖σ′2‖∞)
(
max{ 1

t1
,

1

T − t1
}+ 1

)
+ ‖m̃‖1
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with m̃ defined in (4.20). By virtue of (3.9) we have

(4.23) C̃ ≥ max{C(m̃, σ3, σ4), C(m̃, σ3, σ2), C(m̃, σ1, σ4)}.

Now, consider an operator F̃ : C̃1[0, T ] 7→ C̃1[0, T ] defined by

(F̃x)(t) = x(0) + x′(0)− x′(T ) +

∫ T

0

g(t, s) f̃(s, x(s), x′(s)) ds

+ g̃(t, t1) (J̃(x(t1))− x(t1))

+ g(t, t1) (M(x′(t1−))− x′(t1−)) for t ∈ [0, T ],

where g and g̃ are given by (2.5) and (2.4), respectively. By Lemma 3.1, the operator

F̃ is completely continuous and the problem (1.3), (4.15), (4.16) is equivalent to the
equation

u− F̃u = 0.

According to (4.21) and (4.22) we have 3 pairs {σ3, σ4}, {σ3, σ2}, {σ1, σ4} of well
ordered strict lower and strict upper functions of the problem (1.3), (4.15), (4.16).
Thus, by virtue of (4.20) and (4.23), we can successively apply Theorem 3.2 to the

operator F̃ and to the sets Ω, ∆1, ∆2. In this way we get

deg(I− F̃, Ω) = deg(I− F̃, ∆1) = deg(I− F̃, ∆2) = 1.

Let us denote ∆ = Ω \ cl(∆1 ∪∆2). Then

∆ = {x ∈ Ω : σ2(tx) < x(tx), x(sx) < σ1(sx) for some tx, sx ∈ [0, T ]}.

Lemma 4.1 and the assumption that σ1 and σ2 do not satisfy (3.5) imply that the
sets ∆1 and ∆2 are disjoint and so, by the additivity property of the degree, we have

(4.24) deg(I− F̃, ∆) = deg(I− F̃, Ω)− deg(I− F̃, ∆1)− deg(I− F̃, ∆2) = −1.

Now, let u be a solution of (1.3), (4.15), (4.16) and let u ∈ ∆. By Lemma 4.2 we
have |u′(ξ)| < ρ for some ξ ∈ [0, T ]. If ξ ∈ [0, t1), then, using (4.20), we obtain

|u′(t)| =
∣∣u′(ξ) +

∫ t

ξ

u′′(s) ds
∣∣ < ρ +

∫ t1

0

m̃(s) ds for t ∈ [0, t1).

Furthermore, in view of the periodic conditions (1.3), we have

|u′(T )| = |u′(0)| < ρ +

∫ t1

0

m̃(s) ds

and
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|u′(t)| =
∣∣u′(T )−

∫ T

t

u′′(s) ds
∣∣ < ρ + ‖m̃‖1 for t ∈ (t1, T ].

Therefore

(4.25) |u′(t)| < ρ + ‖m̃‖1 for t ∈ [0, T ].

Similarly we prove the inequality (4.25) provided ξ ∈ (t1, T ]. Hence, taking into
account (4.13), we have proved that

(4.26) ‖u′‖∞ < B

holds.

Since u ∈ ∆, there are tu, su ∈ [0, T ] such that

(4.27) u(tu) > σ2(tu) and u(su) < σ1(su).

Let tu ∈ [0, t1]. Using (4.26), (4.27) and (1.3), we get

u(t) = u(tu) +

∫ t

tu

u′(s) ds > σ2(tu)−B t1 for t ∈ [0, t1]

and

u(T ) = u(0) > σ2(tu)−B t1.

Consequently,

u(t) = u(T )−
∫ T

t

u′(s) ds > σ2(tu)−B (T − t1) for t ∈ (t1, T ],

i.e.

(4.28) u(t) > −‖σ2‖∞ −B T for t ∈ [0, T ].

Similarly, we can show that (4.28) holds in the case that tu ∈ (t1, T ].

If su ∈ [0, t1], then using (4.26), (4.27) and (1.3) again, we get

u(t) = u(su) +

∫ t

su

u′(s) ds < σ1(su) + B t1 for t ∈ [0, t1],

u(T ) = u(0) < σ1(su) + B t1

and

u(t) = u(T )−
∫ T

t

u′(s) ds < σ1(su) + B (T − t1) for t ∈ (t1, T ],
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i.e.

(4.29) u(t) < ‖σ1‖∞ + B T for t ∈ [0, T ].

Assuming that su ∈ (t1, T ] we argue similarly and get (4.29), as well. Thus, by
virtue of (4.14), (4.28) and (4.29), we have

(4.30) ‖u‖∞ < A.

To summarize: if u ∈ ∆ solves (1.3), (4.15), (4.16), then it satisfies the inequali-
ties (4.26), (4.27) and (4.30) and, in particular, u ∈ Ω2. Consequently, by (4.24) and
by the excision property of the Leray-Schauder degree we have

deg(I− F̃, Ω2) = deg(I− F̃, ∆) = −1.

Finally, (4.17)-(4.19) imply that F = F̃ on cl(Ω2), which means that (4.12) is true.

Analogously to the case of Corollary 3.3, the existence property of the Leray -
Schauder degree and Theorem 4.3 yield the following existence result.

4.4. Corollary. Let all assumptions of Theorem 4.3 be satisfied. Then the problem
(1.1)− (1.3) has a solution u satisfying (4.27).

Now, taking into account Remark 1.7, we immediately obtain the following new
simple existence criterion.

4.5. Corollary. Assume that (1.5) − (1.8), (1.18) and (4.11) hold. Furthermore,
let there be r1, r2 ∈ R and ε > 0 such that r1 > r2, J(r1) = r1, J(r2) = r2 and
the conditions (1.19) and (1.20) are satisfied. Then the problem (1.1) − (1.3) has
a solution u satisfying

r2 < u(tu) < r1 for some tu ∈ [0, T ].

5 . Concluding remarks

The existence results presented in Corollaries 3.3 and 4.4 are valid under quite
strong assumptions that σ1 and σ2 are strict lower and upper functions and that
the inequalities (3.5) and (4.1) are strict, as well. But, having such corollaries and
using proper limiting processes we can omit all these strictnesses and obtain better
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existence results which are formulated below as Theorems 5.1 and 5.2 and which will
be proved in detail in our next paper [12]. Moreover, we can consider the impulsive
problem with a finite number of impulses

(5.1) u(ti+) = Ji(u(ti)), u′(ti+) = Mi(u
′(ti−)), i = 1, 2, . . . , p,

where p ∈ N and 0 < t1 < t2 < · · · < tp < T.

5.1. Theorem. Let us suppose that f ∈ Car([0, T ] × R2), that the operators Ji

i = 1, 2, . . . , p, are increasing and continuous mappings of R into R and that the
operators Mi, i = 1, 2, . . . , p, are nondecreasing and continuous mappings of R
into R. Let σ1 and σ2 be respectively lower and upper functions of (1.1), (5.1), (1.3)
satisfying

(5.2) σ1(t) ≤ σ2(t) for t ∈ [0, T ]

and let m ∈ L[0, T ] be such that (3.6) is valid. Then the problem (1.1), (5.1), (1.3)
has a solution u satisfying

(5.3) σ1(t) ≤ u(t) ≤ σ2(t) for t ∈ [0, T ].

5.2. Theorem. Let us suppose that f ∈ Car([0, T ] × R2), that the operators Ji

i = 1, 2, . . . , p, are increasing and continuous mappings of R into R and that the
operators Mi, i = 1, 2, . . . , p, are nondecreasing and continuous mappings of R
into R. Let σ1 and σ2 be respectively lower and upper functions of (1.1), (5.1), (1.3)
such that (5.2) is not fulfilled. Let m ∈ L[0, T ] satisfy (4.11). Then the problem
(1.1), (5.1), (1.3) has a solution u satisfying

(5.4) σ2(tu) ≤ u(tu) and u(su) ≤ σ1(su) for some tu, su ∈ [0, T ].

Finally, let us mention that the conditions (3.6) and (4.11) can be weakened by
using the method of a priori estimates and the above results can be extended to
some classes of unbounded functions f. Moreover, as indicated in Remarks 2.4, 2.6
and 2.9, the monotonicity assumptions on Ji, Mi can be replaced by less restrictive
conditions. For these results we refer to our forthcoming papers.
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