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Summary. This paper deals with the nonlinear impulsive periodic boundary value problem

u′′ =f(t, u, u′),(1.1)

u(ti+) = Ji(u(ti)), u′(ti+) = Mi(u
′(ti)), i = 1, 2, . . . , m,(1.2)

u(0) = u(T ), u′(0) = u′(T ).(1.3)

We establish the existence results which rely on the presence of a well ordered pair (σ1, σ2)
of lower/upper functions (σ1 ≤ σ2 on [0, T ]) associated with the problem. In contrast to
previous papers investigating such problems, the monotonicity of the impulse functions Ji,
Mi is not required here.
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0 . Introduction

In recent years, the theory of impulsive differential equations has become a well
respected branch of mathematics. This is because of its characteristic features
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which provide many interesting problems that cannot be solved by applying
standard methods from the theory of ordinary differential equations. It can
also give a natural description of many real models from applied sciences (see
the examples mentioned in [1], [2]).

In particular, starting with [7], periodic boundary value problems for non-
linear second order impulsive differential equations of the form (1.1) - (1.3) have
received considerable attention; see e.g. [1], [3] [5], [6], [8], [9] and [14], where
the existence results in terms of lower and upper functions can also be found.
However, all impose certain monotonicity requirements on the impulse func-
tions. In contrast to these papers, we provide existence results using weaker
conditions (1.12) - (1.13) instead of monotonicity.

Throughout the paper we keep the following notation and conven-
tions:
For a real valued function u defined a.e. on [0, T ], we put

‖u‖∞ = sup ess
t∈[0,T ]

|u(t)| and ‖u‖1 =
∫ T

0

|u(s)| ds.

For for a given interval J ⊂ R, let C(J) denote the set of real valued functions
which are continuous on J. Furthermore, let C1(J) be the set of functions
having continuous first derivatives on J and L(J) is the set of functions which
are Lebesgue integrable on J.

Let m ∈ N and

0 = t0 < t1 < t2 < · · · < tm < tm+1 = T

be a division of the interval [0, T ]. We denote

D = {t1, t2, . . . , tm}
and define C1

D[0, T ] as the set of functions u : [0, T ] 7→ R,

u(t) =





u[0](t) if t ∈ [0, t1],
u[1](t) if t ∈ (t1, t2],
. . . . . .
u[m](t) if t ∈ (tm, T ],

where u[i] ∈ C1[ti, ti+1] for i = 0, 1, . . . , m. Moreover, AC1
D[0, T ] stands for

the set of functions u ∈ C1
D[0, T ] having first derivatives absolutely continuous

on each subinterval (ti, ti+1), i = 0, 1, . . . , m. For u ∈ C1
D[0, T ] and i =

1, 2, . . . ,m + 1 we write

u′(ti) = u′(ti−) = lim
t→ti−

u′(t), u′(0) = u′(0+) = lim
t→0+

u′(t)(0.1)

and
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‖u‖D = ‖u‖∞ + ‖u′‖∞.

Note that the set C1
D[0, T ] becomes a Banach space when equipped with the

norm ‖.‖D and with the usual algebraic operations.

We say that f : [0, T ] × R2 7→ R satisfies the Carathéodory conditions on
[0, T ]× R2 if

(i) for each x ∈ R and y ∈ R the function f(., x, y) is measurable on [0, T ];

(ii) for almost every t ∈ [0, T ] the function f(t, ., .) is continuous on R2;

(iii) for each compact set K ⊂ R2 there is a function mK(t) ∈ L[0, T ] such
that |f(t, x, y)| ≤ mK(t) holds for a.e. t ∈ [0, T ] and all (x, y) ∈ K.

The set of functions satisfying the Carathéodory conditions on [0, T ]×R2 will
be denoted by Car([0, T ]× R2).

Given a Banach space X and its subset M, let cl(M) and ∂M denote the
closure and the boundary of M, respectively.

Let Ω be an open bounded subset of X. Assume that the operator
F : cl(Ω) 7→ X is completely continuous and Fu 6= u for all u ∈ ∂ Ω. Then
deg(I − F, Ω) denotes the Leray-Schauder topological degree of I − F with
respect to Ω, where I is the identity operator on X. For a definition and
properties of the degree see e.g. [4] or [10].

1 . Formulation of the problem and main assump-
tions

Here we study the existence of solutions to the following problem

u′′ =f(t, u, u′),(1.1)

u(ti+) = Ji(u(ti)), u′(ti+) = Mi(u′(ti)), i = 1, 2, . . . ,m,(1.2)

u(0) = u(T ), u′(0) = u′(T ),(1.3)

where u′(ti) are understood in the sense of (0.1), f ∈ Car([0, T ] × R2),
Ji ∈ C(R) and Mi ∈ C(R).

1.1 Definition. A solution of the problem (1.1) - (1.3) is a function u ∈
AC1

D[0, T ] which satisfies the impulsive conditions (1.2), the periodic conditions
(1.3) and for a.e. t ∈ [0, T ] fulfils the equation u′′(t) = f(t, u(t), u′(t)).
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1.2 Definition. A function σ1 ∈ AC1
D[0, T ] is called a lower function of the

problem (1.1) - (1.3) if

σ′′1 (t) ≥ f(t, σ1(t), σ′1(t)) for a.e. t ∈ [0, T ],(1.4)

σ1(ti+) = Ji(σ1(ti)), σ′1(ti+) ≥ Mi(σ′1(ti)), i = 1, 2, . . . , m,(1.5)

σ1(0) = σ1(T ), σ′1(0) ≥ σ′1(T ).(1.6)

Similarly, a function σ2 ∈ AC1
D[0, T ] is an upper function of the problem

(1.1) - (1.3) if

σ′′2 (t) ≤ f(t, σ2(t), σ′2(t)) for a.e. t ∈ [0, T ],(1.7)

σ2(ti+) = Ji(σ2(ti)), σ′2(ti+) ≤ Mi(σ′2(ti)), i = 1, 2, . . . , m,(1.8)

σ2(0) = σ2(T ), σ′2(0) ≤ σ′2(T ).(1.9)

Throughout the paper we assume:




0 = t0 < t1 < t2 < · · · < tm < tm+1 = T < ∞,

D = {t1, t2, . . . , tm},
f ∈ Car([0, T ]× R2), Ji ∈ C(R), Mi ∈ C(R), i = 1, 2, . . . , m;

(1.10)

{
σ1 and σ2 are respectively lower and upper functions of (1.1)-(1.3)

and σ1 ≤ σ2 on [0, T ];
(1.11)

{
σ1(ti) < x < σ2(ti) =⇒ Ji(σ1(ti)) < Ji(x) < Ji(σ2(ti)),

i = 1, 2, . . . ,m;
(1.12)

{
y ≤ σ′1(ti) =⇒ Mi(y) ≤ Mi(σ′1(ti)),

y ≥ σ′2(ti) =⇒ Mi(y) ≥ Mi(σ′2(ti)), i = 1, 2, . . . ,m.
(1.13)

1.3 Remark. If Mi(0) = 0 for i = 1, 2, . . . , m and r1 ∈ R is such that
Ji(r1) = r1 for i = 1, 2, . . . ,m and

f(t, r1, 0) ≤ 0 for a.e. t ∈ [0, T ],

then σ1(t) ≡ r1 on [0, T ] is a lower function of the problem (1.1) - (1.3).
Similarly, if r2 ∈ R is such that Ji(r2) = r2 for all i = 1, 2, . . . , m and

f(t, r2, 0) ≥ 0 for a.e. t ∈ [0, T ],
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then σ2(t) ≡ r2 is an upper function of the problem (1.1) - (1.3).

2 . A priori estimates

At the beginning of this section we introduce a class of auxiliary problems and
prove uniform a priori estimates for their solutions.

Take d ∈ R, f̃ ∈ Car([0, T ] × R2), J̃i ∈ C(R) and M̃i ∈ C(R), i =
1, 2, . . . ,m, such that

(2.1)





f̃(t, x, y) < f(t, σ1(t), σ′1(t)) for a.e. t ∈ [0, T ], all x ∈ (−∞, σ1(t))

and all y ∈ R such that |y − σ′1(t)| ≤
σ1(t)− x

σ1(t)− x + 1
,

f̃(t, x, y) > f(t, σ2(t), σ′2(t)) for a.e. t ∈ [0, T ], all x ∈ (σ2(t),∞)

and all y ∈ R such that |y − σ′2(t)| ≤
x− σ2(t)

x− σ2(t) + 1
,





J̃i(x) < Ji(σ1(ti)) if x < σ1(ti)

J̃i(x) = Ji(x) if x ∈ [σ1(ti), σ2(ti)]

J̃i(x) > Ji(σ2(ti)) if x > σ2(ti), i = 1, 2, . . . ,m,

(2.2)

{
M̃i(y) ≤ Mi(σ′1(ti)) if y ≤ σ′1(ti)

M̃i(y) ≥ Mi(σ′2(ti)) if y ≥ σ′2(ti), i = 1, 2, . . . ,m,
(2.3)

(2.4) σ1(0) ≤ d ≤ σ2(0)

and consider an auxiliary Dirichlet problem

u′′ =f̃(t, u, u′),(2.5)

u(ti+) = J̃i(u(ti)), u′(ti+) = M̃i(u′(ti)), i = 1, 2, . . . ,m,(2.6)

u(0) =u(T ) = d.(2.7)

2.1 Lemma. Let (1.10)− (1.12) and (2.1) - (2.4) hold. Then every solution u
of (2.5)− (2.7) satisfies

(2.8) σ1 ≤ u ≤ σ2 on [0, T ].
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Proof. Let u be a solution of (2.5) - (2.7). Put v(t) = u(t)− σ2(t) for t ∈ [0, T ].
Then, by (2.4), we have

(2.9) v(0) = v(T ) ≤ 0.

So, it remains to prove that v ≤ 0 on (0, T ).

• Part (i). First, we show that v does not have a positive local maximum at
any point of (0, T ) \D . Assume, on the contrary, that there is α ∈ (0, T ) \D
such that v has a positive local maximum at α; i.e.,

(2.10) v(α) > 0 and v′(α) = 0.

This guarantees the existence of β such that [α, β] ⊂ (0, T ) \D and

(2.11) v(t) > 0 and |v′(t)| < v(t)
v(t) + 1

< 1

for t ∈ [α, β]. Using (1.7), (2.1) and (2.11), we get

v′′(t) = u′′(t)− σ′′2 (t) = f̃(t, u(t), u′(t))− σ′′2 (t) > f(t, σ2(t), σ′2(t))− σ′′2 (t) ≥ 0

for a.e. t ∈ [α, β]. Hence,

0 <

∫ t

α

v′′(s) ds = v′(t)

for all t ∈ (α, β]. This contradicts that v has a local maximum at α.

• Part (ii). Now, assume that there is tj ∈ D such that

max
t∈(tj−1,tj ]

v(t) = v(tj) > 0.

Then v′(tj) ≥ 0. By (2.2) and (2.3), we get

J̃j(u(tj)) > Jj(σ2(tj)) and M̃j(u′(tj)) ≥ Mj(σ′2(tj));

by (2.6) and (1.8), the relations

(2.12) v(tj+) > 0 and v′(tj+) ≥ 0

follow. If v′(tj+) > 0, then there is β ∈ (tj , tj+1) such that

(2.13) v′(t) > 0 on (tj , β].
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If v′(tj+) = 0, then we can find β such that (tj , β] ⊂ (0, T ) \ D and (2.11)
is satisfied on (tj , β]. Consequently, (2.13) is valid in this case, as well. As by
Part (i) v′ cannot change its sign on (tj , tj+1), in both these cases we have

(2.14) v′(t) ≥ 0 on (tj , tj+1).

Now, by (2.12) - (2.14) we get

max
t∈(tj ,tj+1]

v(t) = v(tj+1) > 0.

Continuing inductively we get v(T ) > 0, contrary to (2.9).

• Part (iii). Finally, assume that

(2.15) sup
t∈(tj ,tj+1]

v(t) = v(tj+) > 0

for some tj ∈ D . In view of (2.2), this is possible only if

(2.16) J̃j(u(tj)) > Jj(σ2(tj)).

If u(tj) ∈ [σ1(tj), σ2(tj)], then by (2.2) and (1.12) we have

J̃j(u(tj)) = Jj(u(tj)) ≤ Jj(σ2(tj)),

contrary to (2.16). If u(tj) < σ1(tj), then by (2.2), (1.11) and (1.12) we get

J̃j(u(tj)) < Jj(σ1(tj)) ≤ Jj(σ2(tj)),

again a contradiction to (2.16). Therefore u(tj) > σ2(tj), i.e. v(tj) > 0.
Further, (2.15) gives v′(tj+) ≤ 0. If v′(tj+) = 0, then, as in Part (ii), we
get (2.13), which contradicts (2.15). Therefore, v′(tj+) < 0 which yields, with
(2.3), that v′(tj) < 0. Thus, in view of Part (i), we deduce that v′ ≤ 0 on
(tj−1, tj); i.e., supt∈(tj−1,tj ] v(t) = v(tj−1+) > 0. Continuing inductively we
get v(0) > 0, contradicting (2.9).

To summarize: we have proved that v ≤ 0 on [0, T ] which means that
u ≤ σ2 on [0, T ].

If we put v = σ1− u on [0, T ] and use the properties of σ1 instead of σ2,
we can prove σ1 ≤ u on [0, T ] by an analogous argument.

In the proof of Theorem 3.1 we need a priori estimates for derivatives of
solutions. To this aim we prove the following lemma.
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2.2 Lemma. Assume that r ∈ (0,∞) and that

h ∈ L[0, T ] is nonnegative a.e. on [0, T ],(2.17)

ω ∈ C([1,∞)) is positive on [1,∞) and
∫ ∞

1

ds

ω(s)
= ∞.(2.18)

Then there exists r∗ ∈ (1,∞) such that the estimate

(2.19) ‖u′‖∞ ≤ r∗

holds for each function u ∈ AC1
D[0, T ] satisfying ‖u‖∞ ≤ r and

(2.20)
|u′′(t)| ≤ ω(|u′(t)|) (|u′(t)|+ h(t)) for a.e. t ∈ [0, T ] and for |u′(t)| > 1.

Proof. Let u ∈ AC1
D[0, T ] satisfy (2.20) and let ‖u‖∞ ≤ r. The Mean Value

Theorem implies that there are ξi ∈ (ti, ti+1) such that

|u′(ξi)| ≤ 2 r

∆
+ 1, i = 1, 2, . . . , m,(2.21)

where
∆ = min

i=0,1,...,m
(ti+1 − ti).(2.22)

Put
c0 =

2 r

∆
+ 1 and ρ = ‖u′‖∞.

By replacing u by −u if necessary, we may assume that ρ > c0 and

ρ = sup
t∈(tj ,tj+1]

u′(t) for some j ∈ {0, 1, . . . , m}.

Thus we have

ρ = u′(α) for some α ∈ (tj , tj+1](2.23)
or

ρ = u′(α+) with α = tj .(2.24)

By (2.21), there is β ∈ (tj , tj+1), β 6= α, such that u′(β) = c0 and u′(t) ≥ c0

for all t lying between α and β. Assume that (2.23) occurs. There are two
cases to consider: tj < β < α ≤ tj+1 or tj < α < β < tj+1.

• Case 1. Let tj < β < α ≤ tj+1. Since u′(t) > 1 on [β, α], (2.20) gives

u′′(t) ≤ ω(u′(t)) (u′(t) + h(t)) for a.e. t ∈ [β, α]
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and hence

(2.25)
∫ ρ

c0

ds

ω(s)
=

∫ α

β

u′′(t)
ω(u′(t))

dt ≤
∫ α

β

u′(t) dt + ‖h‖1 ≤ 2 r + ‖h‖1.

On the other hand, by (2.18), there is r∗ > c0 such that

(2.26)
∫ r∗

c0

ds

ω(s)
> 2 r + ‖h‖1,

which is possible only if ρ < r∗, i.e. if (2.19) holds.

• Case 2. Let tj < α < β < tj+1. By (2.20), we get

−u′′(t) ≤ ω(u′(t)) (u′(t) + h(t)) for a.e. t ∈ [α, β]
and ∫ ρ

c0

ds

ω(s)
= −

∫ β

α

u′′(t)
ω(u′(t))

dt ≤ 2 r + ‖h‖1;

so the inequality (2.19) follows.

If (2.24) occurs, a similar argument to that in Case 2 applies and gives
(2.19), as well.

2.3 Remark. Notice, that the condition
∫ ∞

1

ds

ω(s)
= ∞

in (2.18) can be weakened. In particular, the estimate (2.19) holds whenever
r∗ ∈ (0,∞) is such that

∫ r∗

c0

ds

ω(s)
> 2 r + ‖h‖1.

3 . Main results

The main existence result for problem (1.1) - (1.3) is provided by the following
theorem.
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3.1 Theorem. Assume that (1.10)− (1.13) hold. Further, let

|f(t, x, y)| ≤ ω(|y|) (|y|+ h(t))(3.1)
for a.e. t ∈ [0, T ] and all x ∈ [σ1(t), σ2(t)], |y| > 1,

where h and ω fulfil (2.17) and (2.18). Then the problem (1.1) − (1.3) has
a solution u satisfying (2.8).

Before proving this theorem, we prove the next key proposition where we
restrict ourselves to the case that f is bounded by a Lebesgue integrable
function.

3.2 Proposition. Assume that (1.10)− (1.13) hold. Further, let m ∈ L[0, T ]
be such that

(3.2) |f(t, x, y)| ≤ m(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ [σ1(t), σ2(t)]× R.

Then the problem (1.1)− (1.3) has a solution u fulfilling (2.8).

Proof.
• Step 1. We construct a proper auxiliary problem.

Let ∆ be given by (2.22). Put

(3.3) c = ‖m‖1 +
‖σ1‖∞ + ‖σ2‖∞

∆
+ ‖σ′1‖∞ + ‖σ′2‖∞

and for t ∈ [0, T ] and (x, y) ∈ R2 define

α(t, x) =





σ1(t) if x < σ1(t),

x if σ1(t) ≤ x ≤ σ2(t),

σ2(t) if x > σ2(t)

(3.4)

and

β(y) =

{
y if |y| ≤ c,

c sgn y if |y| > c.

For a.e. t ∈ [0, T ] and all (x, y) ∈ R2, ε ∈ [0, 1] define functions

ωk(t, ε) = sup
y∈[σ′k(t)−ε,σ′k(t)+ε)]

|f(t, σk(t), σ′k(t))− f(t, σk(t), y)|, k = 1, 2,
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(3.5)

{
J̃i(x) = x + Ji(α(ti, x))− α(ti, x),

M̃i(y) = y + Mi(β(y))− β(y), i = 1, 2, . . . ,m,

(3.6) f̃(t, x, y) =





f(t, σ1(t), y)− ω1(t,
σ1(t)− x

σ1(t)− x + 1
)− σ1(t)− x

σ1(t)− x + 1

if x < σ1(t),

f(t, x, y) if σ1(t) ≤ x ≤ σ2(t),

f(t, σ2(t), y) + ω2(t,
x− σ2(t)

x− σ2(t) + 1
) +

x− σ2(t)
x− σ2(t) + 1

if x > σ2(t).

We see that ωk ∈ Car([0, T ] × [0, 1]) are nonnegative and nondecreasing in
the second variable and ωk(0) = 0 for k = 1, 2. Consequently, f̃ ∈ Car([0, T ]×
R2). Furthermore, J̃i, M̃i ∈ C(R), i = 1, 2, . . . ,m. The auxiliary problem is
(2.5), (2.6), and

(3.7) u(0) = u(T ) = α(0, u(0) + u′(0)− u′(T )).

• Step 2. We prove that problem (2.5), (2.6), (3.7) is solvable.
Let

G(t, s) =





t (s− T )
T

if 0 ≤ t ≤ s ≤ T,

s (t− T )
T

if 0 ≤ s < t ≤ T,

G1(t, s) =





− t

T
if 0 ≤ t ≤ s ≤ T,

T − t

T
if 0 ≤ s < t ≤ T.

Define an operator F̃ : C1
D[0, T ] 7→ C1

D[0, T ] by

(F̃u)(t) = α(0, u(0) + u′(0)− u′(T )) +
∫ T

0

G(t, s) f̃(s, u(s), u′(s)) ds(3.8)

+
m∑

i=1

G1(t, ti) (J̃i(u(ti))− u(ti)) +
m∑

i=1

G(t, ti) (M̃i(u′(ti))− u′(ti)).
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As in [12, Lemma 3.1] we get that F̃ is completely continuous and u is
a solution of (2.5), (2.6), (3.7) if and only if u is a fixed point of F̃.

Denote by I the identity operator on C1
D[0, T ] and consider the parameter

system of operator equations

(3.9) (I− λ F̃)u = 0, λ ∈ [0, 1].

For R ∈ (0,∞), define B(R) = {u ∈ C1
D[0, T ] : ‖u‖D < R}. By (3.2),

(3.4) - (3.6) and (3.8), we can find R0 ∈ (0,∞) such that u ∈ B(R0) for
each λ ∈ [0, 1] and each solution u of (3.9). So, for each R ≥ R0 the
operator I − λ F̃ is a homotopy on cl(B(R)) × [0, 1] and its Leray-Schauder
degree deg(I − λ F̃,B(R)) has the same value for each λ ∈ [0, 1]. Since
deg(I,B(R)) = 1, we conclude that

(3.10) deg(I− F̃, B(R)) = 1 for R ∈ [R0,∞).

By (3.10), there is at least one fixed point of F̃ in B(R). Hence there exists a
solution of the auxiliary problem (2.5), (2.6), (3.7).
• Step 3. We find estimates for solutions of the auxiliary problem.

Let u be a solution of (2.5), (2.6), (3.7). We derive an estimate for ‖u‖∞.

By (3.5), (3.6) and (1.13), we obtain that f̃ , J̃i, M̃i, i = 1, 2, . . . , m, satisfy
(2.1) - (2.3). Moreover, in view of (3.4) we have

σ1(0) ≤ α(0, u(0) + u′(0)− u′(T )) ≤ σ2(0).

Thus u satisfies (2.8) by Lemma 2.1.
We find an estimate for ‖u′‖∞. By the Mean Value Theorem and (2.8),

there are ξi ∈ (ti, ti+1) such that

(3.11) |u′(ξi)| ≤ ‖σ1‖∞ + ‖σ2‖∞
∆

, i = 1, 2, . . . , m.

Moreover, by (2.8) and (3.6), u satisfies (1.1) for a.e. t ∈ [0, T ]. Therefore,
integrating (1.1) and using (3.2), (3.3) and (3.11), we obtain

(3.12) ‖u′‖∞ ≤ |u′(ξi)|+ ‖m‖1 < c.

Hence, by (3.5) and (3.7), we see that u fulfils (1.2) and u(0) = u(T ) (i.e.
the first condition from (1.3) is satisfied).
• Step 4. We verify that u fulfils the second condition in (1.3).

We must prove that u′(0) = u′(T ). By (3.7), this is equivalent to

(3.13) σ1(0) ≤ u(0) + u′(0)− u′(T ) ≤ σ2(0).
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Suppose, on the contrary, that (3.13) is not satisfied. Let, for example,

(3.14) u(0) + u′(0)− u′(T ) > σ2(0).

Then, by (3.4), we have α(0, u(0)+u′(0)−u′(T )) = σ2(0). Together with (1.9)
and (3.7), this yields

(3.15) u(0) = u(T ) = σ2(0) = σ2(T ).

Inserting (3.15) into (3.14) we get

(3.16) u′(0) > u′(T ).

On the other hand, (3.15) together with (2.8) and (3.16) implies that

σ′2(0) ≥ u′(0) > u′(T ) ≥ σ′2(T ),

a contradiction to (1.9).
If we assume that u(0)+u′(0)−u′(T ) < σ1(0), we can argue similarly and

again derive a contradiction to (1.9).
So, we have proved that (3.13) is valid which means that u′(0) = u′(T ).

Consequently, u is a solution of (1.1) - (1.3) satisfying (2.8).

Proof of Theorem 3.1. Put

c = r∗ + ‖σ′1‖∞ + ‖σ′2‖∞,

where r∗ ∈ (0,∞) is given by Lemma 2.2 for r = ‖σ1‖∞ + ‖σ2‖∞. For a.e.
t ∈ [0, T ] and all (x, y) ∈ R2 define a function

(3.17) g(t, x, y) =





f(t, x, y) if |y| ≤ c,

(2− |y|
c

) f(t, x, y) if c < |y| < 2 c,

0 if |y| ≥ 2 c.

Then σ1 and σ2 are respectively lower and upper functions of the auxiliary
problem (1.2), (1.3), and

(3.18) u′′ = g(t, u, u′).

There exists a function m∗ ∈ L[0, T ] such that

|f(t, x, y)| ≤ m∗(t)
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for a.e. t ∈ [0, T ] and all (x, y) ∈ [σ1(t), σ2(t)]× [−2 c, 2 c]. Hence

|g(t, x, y)| ≤ m∗(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ [σ1(t), σ2(t)]× R.

Since g ∈ Car([0, T ] × R2), we can apply Proposition 3.2 on problem (3.18),
(1.2), (1.3) and get that this problem has a solution u fulfilling (2.8). Hence
‖u‖∞ ≤ r. Moreover, by (3.1), u satisfies (2.20). Therefore, by Lemma 2.2,
‖u′‖∞ ≤ r∗ ≤ c. This implies that u is a solution of (1.1) - (1.3).

The next simple existence criterion, which follows from Theorem 3.1 and
Remark 1.3, extends both [5, Theorem 4] and [12, Corollary 3.4].

3.3 Corollary. Let (1.10) hold. Furthermore, assume that:

(i) Mi(0) = 0 and y Mi(y) ≥ 0 for y ∈ R and i = 1, 2, . . . , m;

(ii) there are r1, r2 ∈ R such that r1 < r2, f(t, r1, 0) ≤ 0 ≤ f(t, r2, 0) for
a.e. t ∈ [0, T ], Ji(r1) = r1, Ji(x) ∈ (r1, r2) if x ∈ (r1, r2), Ji(r2) = r2,
i = 1, 2, . . . , m.

(iii) there are h and ω satisfying (2.17) and (2.18) with σ1(t) ≡ r1 and
σ2(t) ≡ r2 and such that (3.1) holds.

Then the problem (1.1)− (1.3) has a solution u fulfilling r1≤u≤r2 on [0, T ].

3.4 Remark. Let σ1 < σ2 on [0, T ] and σ1(ti+) < σ2(ti+) for i =
1, 2, . . . ,m. Having G and G1 from the proof of Proposition 3.2, we de-
fine an operator F : C1

D[0, T ] 7→ C1
D[0, T ] by

(F u)(t) = u(0) + u′(0)− u′(T ) +
∫ T

0

G(t, s) f(s, u(s), u′(s)) ds(3.19)

+
m∑

i=1

G1(t, ti) (Ji(u(ti))− u(ti)) +
m∑

i=1

G(t, ti) (Mi(u′(ti))− u′(ti)).

Let r∗ be given by Lemma 2.2 for r = ‖σ1‖∞ + ‖σ2‖∞. Define a set

Ω = {u ∈ C1
D[0, T ] : ‖u′‖∞ < r∗, σ1(t) < u(t) < σ2(t) for t ∈ [0, T ],(3.20)

σ1(ti+) < u(ti+) < σ2(ti+) for i = 1, 2, . . . , m}.
As in [12, Lemma 3.1] we get that F is completely continuous and u is a solution
of (1.1)–(1.3) if and only if u is a fixed point of F . The proofs of Theorem 3.1 and
of Proposition 3.2 yield the following result about the Leray-Schauder degree of
the operator I− F with respect to Ω.
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3.5 Corollary. Let σ1 < σ2 on [0, T ] and σ1(ti+) < σ2(ti+) for i = 1, 2, . . . , m,
and let the assumptions of Theorem 3.1 be satisfied. Further assume that F and
Ω are respectively defined by (3.18) and (3.19). If F u 6= u for each u ∈ ∂Ω, then

deg(I− F, Ω) = 1.

Proof. Consider c and g from the proof of Theorem 3.1 and define J̃i, M̃i,
i = 1, 2, . . . , m, and f̃ by (3.5) and (3.6), where we insert g instead of f. Suppose
that F u 6= u for each u ∈ ∂Ω, define F̃ by (3.8) and put Ω1 = {u ∈ Ω : σ1(0) <
u(0) + u′(0)− u′(T ) < σ2(0)}. We have

F = F̃ on cl(Ω1)(3.21)
and

(Fu = u and u ∈ Ω) =⇒ u ∈ Ω1.(3.22)

By the proof of Proposition 3.2, each fixed point u of F̃ satisfies (1.3), (2.8) and,
consequently, ‖u‖∞ ≤ r. Hence, in view of (3.1), (3.6) and (??), we have

|u′′(t)| = |g(t, u(t), u′(t))| ≤ ω(|u′(t)|) (|u′(t)|+ h(t))

for a.e. t ∈ [0, T ] and for |u′(t)| > 1. Therefore Lemma 2.2 implies that ‖u′‖∞ ≤
r∗. So, u ∈ cl(Ω) and, due to (1.3), u ∈ Ω1. Now, choose R in (3.10) so that
B(R) ⊃ Ω. Then, by (3.21), (3.22) and by the excision property of the degree,
we get

deg(I− F,Ω) = deg(I− F̃, Ω1) = deg(I− F̃,Ω1)) = deg(I− F̃, B(R)) = 1.

3.6 Remark. Following the ideas from [11] and [12], the evalution of deg(I−
F, Ω) enables us to prove the existence of solutions to the problem (1.1) - (1.3)
also for nonordered lower/upper functions. This will be included in our next
paper [13].
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logical Degree. Faculty of Science, Palacký Univ. Olomouc, Preprint 9/2002 (2002), to
appear in Funct. Differ. Equ. (Israel Sem.).
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