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Construction of non-constant lower and upper

functions for impulsive periodic problems

Irena Rach̊unková∗ and Milan Tvrdý†

Summary. We present conditions ensuring the existence of piecewise linear lower and upper
functions for the nonlinear impulsive periodic boundary value problem u′′ = f(t, u, u′), u(ti+) =
Ji(u(ti)), u′(ti+) = Mi(u

′(ti)), i = 1, 2, . . . , m, u(0) = u(T ), u′(0) = u′(T ). This together with
the existence principles which we proved in [5]–[7] allows us to prove new existence criteria, see
Theorems 3.1 and 3.2.
Mathematics Subject Classification 2000. 34B37, 34B15, 34C25

Keywords. Second order nonlinear ordinary differential equation, impulse, periodic solution,

lower function, upper function.

1 . Introduction

This paper deals with the impulsive periodic boundary value problem

u′′ =f(t, u, u′),(1.1)

u(ti+) = Ji(u(ti)), u′(ti+) = Mi(u
′(ti)), i = 1, 2, . . . , m,(1.2)

u(0) = u(T ), u′(0) = u′(T ),(1.3)

where

(1.4)





0 < t1 < · · · < tm < T < ∞,

f satisfies the Carathéodory conditions on [0, T ] × R2,

Ji and Mi, i = 1, 2, . . . , m, are continuous functions on R.

There are several papers providing the existence results for such problems in terms
of lower and upper functions, see e.g. [1]–[4], [8] and our papers [5]–[7]. However,
up to now, only Proposition 1.3 in [6] gives conditions ensuring the existence of
nonconstant (in particular, piecewise constant) lower and upper functions. The main
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goal of this paper is to find conditions for f, Ji, Mi giving piecewise linear lower and
upper functions for (1.1)–(1.3). This together with the existence principles which
we proved in [5]–[7] allows us to present new existence criteria.

Throughout the paper we keep the following notation and conventions: For
J ⊂ R, C(J) is the set of real valued functions which are continuous on J, C1(J)
is the set of functions having continuous first derivatives on J, L(J) is the set of
functions Lebesgue integrable on J and L∞(J) is the set of functions essentially
bounded on J. For u ∈ L∞[0, T ], we denote ‖u‖∞ = sup esst∈[0,T ] |u(t)|. Further,
D = {t1, t2, . . . , tm}, t0=0, tm+1=T and C

1
D[0, T ] is the set of functions u: [0, T ] 7→ R

of the form

u(t) =





u[0](t) if t ∈ [0, t1],

u[1](t) if t ∈ (t1, t2],
. . . . . .
u[m](t) if t ∈ (tm, T ],

where u[i] ∈ C1[ti, ti+1] for i = 0, 1, . . . , m. Moreover, AC1
D[0, T ] stands for the set

of functions u ∈ C1
D[0, T ] having first derivatives absolutely continuous on each

subinterval (ti, ti+1), i = 0, 1, . . . , m. For u ∈ C
1
D[0, T ] and i = 1, 2, . . . , m + 1 we

define u′(ti) = u′(ti−) = limt→ti− u′(t) and u′(0) = u′(0+) = limt→0+ u′(t).

1.1 Definition. A solution of the problem (1.1)–(1.3) is a function u ∈ AC
1
D[0, T ]

which satisfies the conditions (1.2) and (1.3) and for a.e. t ∈ [0, T ] fulfils the equation
(1.1).

1.2 Definition. A function σ1 ∈ AC1
D[0, T ] is called a lower function of the problem

(1.1)–(1.3) if

σ′′
1 (t) ≥ f(t, σ1(t), σ

′
1(t)) for a.e. t ∈ [0, T ],(1.5)

σ1(ti+) = Ji(σ1(ti)), σ′
1(ti+) ≥ Mi(σ

′
1(ti)), i = 1, 2, . . . , m,(1.6)

σ1(0) = σ1(T ), σ′
1(0) ≥ σ′

1(T ).(1.7)

A function σ2 ∈ AC
1
D[0, T ] is an upper function of (1.1)–(1.3) if it satisfies

σ′′
2(t) ≤ f(t, σ2(t), σ

′
2(t)) for a.e. t ∈ [0, T ],(1.8)

σ2(ti+) = Ji(σ2(ti)), σ′
2(ti+) ≤ Mi(σ

′
2(ti)), i = 1, 2, . . . , m,(1.9)

σ2(0) = σ2(T ), σ′
2(0) ≤ σ′

2(T ).(1.10)
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2 . Construction of nonconstant lower and upper

functions

2.1 Theorem. Assume (1.4) and

lim
x→∞

(Ji(x) − x) = ci ∈ R for i = 1, 2, . . . , m.(2.1)

Denote

c = −
1

T

m∑

i=1

ci(2.2)

and suppose that there are A ∈ R, δ > 0 and ν ∈ {1, 2} such that

(−1)ν f(t, x, y) ≥ 0 for a.e. t ∈ [0, T ] and all x ≥ A, y ∈ [c − δ, c + δ](2.3)

and

(−1)ν (Mi(y) − y) ≥ 0 for y ∈ [c − δ, c + δ], i = 1, 2, . . . , m.(2.4)

Then for each Ã ∈ [A,∞) there exist k̃ ∈ (c− δ, c+ δ) and σν ∈ AC1
D[0, T ] such that

σν(t) ≥ Ã, σ′
ν(t) = k̃ for t ∈ [0, T ] and, for ν = 1 (ν = 2), σν is a lower (upper)

function of (1.1)−(1.3).

Proof. Let ν = 2 and Ã ∈ [A,∞).
• Step 1. For a, k ∈ R, x ∈ R and i = 1, 2, . . . , m, define

ϕ(t, a, k) =

{
a + k t if t ∈ [0, t1],

Ji(ϕ(ti, a, k)) + k (t − ti) if t ∈ (ti, ti+1], i = 1, 2, . . . , m,

and

εi(x) = Ji(x) − x − ci.

By virtue of (2.1), there are constants Ai > Ã, i = 1, 2, . . . , m, such that

(2.5) |εi(x)| <
δT

m
for all x ≥ Ai and i = 1, 2, . . . , m.

Furthermore, we have

(2.6) ϕ(t, a, k) =





a + k t if t ∈ [0, t1],

a + k t +
∑i

j=1

(
cj + εj(ϕ(tj, a, k))

)

if t ∈ (ti, ti+1], i = 1, 2, . . . , m.

Put

ã = max
j=1,...,m

Aj + 2
( m∑

j=1

|cj| + δ T
)

and suppose that k ∈ [c − δ, c + δ]. Then
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ϕ(t1, ã, k) = ã + k t1 ≥ A1 +
(
1 −

t1
T

) m∑

j=1

|cj| ≥ A1.

Furthermore, by (2.5), we have |ε1(ϕ(t1, ã, k))| ≤
δT

m
. Consequently, in view of (2.6),

we get

ϕ(t1+, ã, k) = ã + k t1 + c1 + ε1(ϕ(t1, ã, k))

≥ A2 + |c1| + δ T + (1 −
t1
T

)
m∑

j=1

|cj| − |c1| −
δT

m
≥ A2.

Now, let 1 < i ≤ m and let

(2.7) ϕ(tj+, ã, k) ≥ Aj+1 and ϕ(tj, ã, k) ≥ Aj

for each j = 1, 2, . . . , i − 1. Then, by (2.5), we have

|εj(ϕ(tj, ã, k))| ≤
δT

m
for each j = 1, 2, . . . , i − 1.

Hence, using (2.6) and (2.5), we get

ϕ(ti, ã, k) ≥ Ai +
m∑

j=1

(
1 −

ti
T

)
|cj| +

m∑

j=i

|cj| +
(
1 −

i − 1

m

)
δ T ≥ Ai

and |εi(ϕ(ti, ã, k))| ≤
δT

m
. In view of (2.6), we have

ϕ(ti+, ã, k) = ã + k ti +

i∑

j=1

(cj + εj(ϕ(tj, ã, k)))

≥ Ai+1 +
m∑

j=1

(
1 −

ti
T

)
|cj| +

(
1 −

i

m

)
δ T ≥ Ai+1

which means that (2.7) is true for any j ∈ {1, 2, . . . , m}. Similarly we can show that
ϕ(T, ã, k) ≥ Am. Thus

(2.8)





ϕ(t, ã, k) ≥ Ã and |εi(ϕ(ti, ã, k))| <

δT

m

for all t ∈ [0, T ], k ∈ [c − δ, c + δ] and i = 1, 2, . . . , m.

• Step 2. We will prove that there is k̃ ∈ (c − δ, c + δ) such that

(2.9) ϕ(0, ã, k̃) = ϕ(T, ã, k̃).
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By virtue of (2.6) and (2.8),
∑m

i=1 |εi(ϕ(ti, ã, k)| < δ T and

ϕ(T, ã, k) − ϕ(0, ã, k) = T
(
k − c +

1

T

m∑

i=1

εi(ϕ(ti, ã, k))
)

for each k ∈ [c − δ, c + δ]. In particular, ϕ(T, ã, c − δ) − ϕ(0, ã, c − δ) < 0 and

ϕ(T, ã, c+δ)−ϕ(0, ã, c+δ) > 0. Since ϕ is continuous, the existence of k̃ ∈ (c−δ, c+δ)
satisfying (2.9) follows.

• Step 3. Define σ2(t) = ϕ(t, ã, k̃) for t ∈ [0, T ]. Then σ′
2(t) = k̃ for t ∈ [0, T ] and

σ2(ti+) = Ji(σ2(ti)) for i = 1, 2, . . . , m. By (2.4) we have k̃ ≤ Mi(k̃), i.e. σ2 satisfies

(1.9). Moreover, by (2.8) and (2.9), we have σ2(t) ≥ Ã on [0, T ] and σ2(0) = σ2(T )
and so (1.10) is true. Finally, by (2.3), σ2 fulfils (1.8), i.e. σ2 is an upper function
for (1.1)–(1.3).

The case ν = 1 can be treated analogously.

Theorem 2.1 gives piecewise linear lower and upper functions which are bounded
below. Now we will show conditions guaranteeing the existence of lower or upper
functions bounded above. This is the contents of the next theorem. Its proof is
similar to that of Theorem 2.1.

2.2 Theorem. Assume (1.4). Further, let di ∈ R, i = 1, 2, . . . , m, d, B ∈ R, η > 0
and ν ∈ {1, 2} be such that

lim
x→−∞

(Ji(x) − x) = di ∈ R for i = 1, 2, . . . , m, d = −
1

T

m∑

i=1

di,

(−1)ν f(t, x, y) ≥ 0 for a.e. t ∈ [0, T ] and all x ≤ B, y ∈ [d − η, d + η],

(−1)ν (Mi(y) − y) ≥ 0 for y ∈ [d − η, d + η], i = 1, 2, . . . , m,

Then for each B̃ ≤ B there exist k̃ ∈ (d − η, d + η) and σν ∈ AC1
D[0, T ] such that

σν(t) ≤ B̃, σ′
ν(t) = k̃ for t ∈ [0, T ] and, for ν = 1 (ν = 2), σν is a lower (upper)

function of (1.1)−(1.3).

2.3 Remark. Let (1.4) hold. Assume that ci, di ∈ R and A ∈ (0,∞) are such that

Ji(x) =

{
x + ci for x ≥ A

x + di for x ≤ −A, i = 1, 2, . . . , m,

{
f(t, x, c) ≥ 0 for a.e. t ∈ [0, T ] and all x ≥ A,

f(t, x, d) ≤ 0 for a.e. t ∈ [0, T ] and all x ≤ −A,
(2.10)

and
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Mi(c) ≥ c, Mi(d) ≤ d, i = 1, 2, . . . , m.(2.11)

Let Ã ≥ A. Then, according to the proof of Theorem 2.1, we can see that

σ2(t) =

{
Ã +

∑m

j=1 |cj| + c t for t ∈ [0, t1),

Ã +
∑m

j=1 |cj| + c t +
∑i

j=1 cj for t ∈ (ti, ti+1], i = 1, 2, . . . , m

and

σ1(t) =

{
−Ã −

∑m

j=1 |dj| + d t for t ∈ [0, t1),

−Ã −
∑m

j=1 |dj| + d t +
∑i

j=1 dj for t ∈ (ti, ti+1], i = 1, 2, . . . , m

are respectively upper and lower functions of (1.1)–(1.3) satisfying

Ã ≤ σ2(t) ≤ Ã + 2

m∑

j=1

|cj| and − Ã − 2

m∑

j=1

|dj| ≤ σ1(t) ≤ −Ã for t ∈ [0, T ].

If all inequalities in (2.10) and (2.11) are reversed, then σ2 becomes a lower function
and σ1 an upper function.

3 . New existence criteria

Our main results are Theorems 3.1 and 3.2 which provides new existence criteria for
the problem (1.1)–(1.3).

3.1 Theorem. Let the assumptions of Theorem 2.1 be satisfied for ν = 2 and let the

assumptions of Theorem 2.2 be satisfied for ν = 1. Assume that Ji are increasing on

R and Mi are nondecreasing on R for i = 1, 2, . . . , m. Finally, let for each compact

interval K ⊂ R there exist hK ∈ L[0, T ] and ωK ∈ C([1,∞)) such that hK ≥ 0 on

[0, T ], ωK > 0 on [1,∞),
∫ ∞

1
ds/ωK(s) = ∞ and |f(t, x, y)| ≤ ωK(|y|) (|y|+ hK(t))

for a.e. t ∈ [0, T ] and all x ∈ K, |y| > 1. Then the problem (1.1)−(1.3) has

a solution.

Proof. By Theorem 2.1, for each Ã ≥ A, there is an upper function σ2 of (1.1)–(1.3)

such that σ2 ≥ Ã on [0, T ]. By Theorem 2.2, for each B̃ ≤ B, there is a lower

function σ1 of (1.1)–(1.3) such that σ1 ≤ B̃ on [0, T ]. Choose Ã, B̃ in such a way

that B̃ ≤ Ã. Hence σ1 ≤ σ2 on [0, T ] and all the assumptions of [5, Theorem 3.1]
are satisfied. Therefore (1.1)–(1.3) has a solution.

3.2 Theorem. Let the assumptions of Theorem 2.1 be satisfied for ν = 1 and let

the assumptions of Theorem 2.2 be satisfied for ν = 2. Assume that Ji are increasing

on R and Mi are nondecreasing on R for i = 1, 2, . . . , m. Finally, let there exist

h ∈ L[0, T ] such that |f(t, x, y)| ≤ h(t) for a.e. t ∈ [0, T ] and all x, y ∈ R. Then

the problem (1.1)−(1.3) has a solution.

EJQTDE, Proc. 7th Coll. QTDE, 2004 No. 19, p. 6



Proof. By Theorems 2.1 and 2.2 there are a lower function σ1 and an upper function
σ2 of (1.1)–(1.3). The existence of a solution to (1.1)–(1.3) follows by [7, Theorem
3.1].

3.3 Example. Let k ∈ N ∪ {0}, γ ∈ (0,∞), pj ∈ L∞[0, T ], j = 0, 1, . . . , 2k,
p2k+1 ∈ L[0, T ], p2k+1 ≥ γ a.e. on [0, T ], q1, q2 ∈ L∞[0, T ], ci ∈ (0,∞), αi ∈ [0, 1)
and βi ∈ R, i = 1, 2, . . . , m. Consider the problem (1.1)–(1.3), where

f(t, x, y) =
2k+1∑

j=0

pj(t) xj +q1(t) y+q2(t) y2, Ji(x) = x+
2ci

π
arctan x, Mi(y) = αi y+βi

for a.e. t ∈ [0, T ], all x, y ∈ R and i = 1, 2, . . . , m. Let c be given by (2.2) and let
βi ∈ (c (1 − αi),−c (1 − αi)), i = 1, 2, . . . , m. Then the conditions of Theorem 2.1
are satisfied for ν = 2 and the conditions of Theorem 2.2 are satisfied for ν = 1 and
di = −ci, i = 1, 2, . . . , m. Since ci > 0 and αi ≥ 0, the functions Ji are increasing and
Mi are nondecreasing on R for i = 1, 2, . . . , m. Choose an arbitrary compact interval
K ⊂ R and denote κ1 = maxx∈K

(
|x|2k+1

)
and κ2 =

∑2k

j=1

(
‖pj‖∞ maxx∈K |x|j

)
.

Then |f(t, x, y)| ≤ ω(|y|) (|y|+ h(t)) for a.e. t ∈ [0, T ] and all x ∈ K, |y| > 1, where
ω(s) = 1 + ‖q1‖∞ + ‖q2‖∞ s and h(t) = κ1 |p2k+1(t)| + κ2. Thus, the existence of
a solution to (1.1)–(1.3) follows by means of Theorem 3.1.

3.4 Example. Let γ ∈ (0,∞), p ∈ L∞[0, T ], q1 ∈ L[0, T ], q2 ∈ L∞[0, T ], q1 ≥ 0,
q2 ≥ 0 and q1 + q2 ≥ γ a.e. on [0, T ], ϕ ∈ C(R), lim|x|→∞ ϕ(x) = 0. Consider the
problem (1.1)–(1.3), where

f(t, x, y) = p(t) ϕ(x) + q1(t) y + q2(t) y2 sgn y for a.e. t ∈ [0, T ] and all x, y ∈ R

and Ji(x) and Mi(y), i = 1, 2, . . . , m, are given as in Example 3.3, but with ci ∈
(−π/2, 0) and αi ∈ (1,∞), i = 1, 2, . . . , m. Let c be given by (2.2) and let βi ∈
(c (1 − αi), c (αi − 1)) for i = 1, 2, . . . , m. We have c > 0, Mi(c) > c, Mi(−c) <
−c, f(t, x, c) > 0 and f(t, x,−c) < 0 for a.e. t ∈ [0, T ] and all x ∈ R with |x|
sufficiently large. Thus, the assumptions of Theorem 2.1 are satisfied for ν = 2 and
the assumptions of Theorem 2.2 are satisfied for ν = 1 and di = −ci, i = 1, 2, . . . , m.
Furthermore, Ji are increasing and Mi are nondecreasing on R for i = 1, 2, . . . , m.
Since ϕ is bounded on R, we can find ω ∈ C([1,∞)) such that ω > 0 on [1,∞),∫ ∞

1
ds/ω(s) = ∞ and |f(t, x, y)| ≤ ω(|y|)|y| for a.e. t ∈ [0, T ] and all x ∈ R, |y| > 1.

Thus, by Theorem 3.1, the given problem has a solution.

3.5 Example. Let γ ∈ (0,∞), p ∈ L∞[0, T ], q ∈ L[0, T ], q ≥ γ a.e. on [0, T ],
ϕ ∈ C(R), lim|x|→∞ ϕ(x) = 0. Consider the problem (1.1)–(1.3), where

f(t, x, y) = p(t) ϕ(x) +
q(t) y

1 + y2
for a.e. t ∈ [0, T ] and all x, y ∈ R
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and Ji(x) and Mi(y), i = 1, 2, . . . , m, are given as in Example 3.4, but with ci ∈
(0,∞). We can see that the assumptions of Theorem 2.1 are satisfied for ν = 1 and
the assumptions of Theorem 2.2 are satisfied for ν = 2 and di = −ci, i = 1, 2, . . . , m.
As in the previous examples, Ji are increasing and Mi are nondecreasing on R for
i = 1, 2, . . . , m. Moreover, since the functions ϕ and y

y2+1
are bounded on R, we can

find h ∈ L[0, T ] such that |f(t, x, y)| ≤ h(t) for a.e. t ∈ [0, T ] and all x, y ∈ R. Thus,
by Theorem 3.2, our problem has a solution.
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[6] I. Rach̊unková and M. Tvrdý. Periodic boundary value problems for nonlinear second
order differential equations with impulses - Part II. Math. Inst. Acad. Sci Czech Rep., Preprint
151/2002, available on \http://www.math.cas.cz/ ˜tvrdy/i3.ps.
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