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Abstract. In this paper we investigate systems of linear integral equations in the space G} of
n-vector valued functions which are regulated on the closed interval [0, 1] (i.e. such that can have
only discontinuities of the first kind in [0, 1]) and left-continuous in the corresponding open interval
(0,1). In particular, we are interested in systems of the form

£(t) — A(t)z(0) - / Bt s)d[z(s)] = (1),

where f € G, the columns of the n x n-matrix valued function A belong to G}, the entries of
B(t,.) have a bounded variation on [0, 1] for any ¢t € [0,1] and the mapping t € [0,1] — B(¢,.) is
regulated on [0, 1] and left-continuous on (0, 1) as the mapping with values in the space of n x n-
matrix valued functions of bounded variation on [0, 1]. The integral stands for the Perron-Stieltjes
one treated as the special case of the Kurzweil-Henstock integral.

In particular, we prove basic existence and uniqueness results for the given equation and obtain
the explicit form of its adjoint equation. A special attention is paid to the Volterra (causal) type
case. It is shown that in that case the given equation possesses a unique solution for any right-hand
side from G}, and its representation by means of resolvent operators is given.

The results presented cover e.g. the results known for systems of linear generalized differential
equations

z(t) — 2(0) —/0 d[A(s)lz(s) = f(t) = f(0)

as well as systems of Stieltjes integral equations

o) = [[E ) = g0) or o) = [ (4K 5kl = a0
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0 . Introduction

The paper is devoted to linear operator equations of the form
(0.1) r—Zx = f,

where ¢ is a linear compact operator on the space G7 of column n-vector valued
functions z : [0, 1] — R" which are regulated on [0, 1] and left-continuous on (0, 1),
and f € G7 is given. Due to Schwabik (cf. [15, Theorem]) it is known that &
is a linear compact operator on G if and only if there are n x n-matrix valued
functions A(t) and B(t, s) respectively defined on [0, 1] and [0, 1] x [0,1] and such
that

(0.2) (2z)(t) = A(t)z(0) + /01 B(t,s)d[z(s)] for z € G} and t € [0,1],

while the columns of A belong to G} (4 € G[*"), the entries of B(t,.) have
a bounded variation on [0, 1] for any ¢ € [0,1] (B(¢,.) € BV"*") and the map-

ping
Mp:teE [0,1] l—)./fB(t) :B(t,) e BV™"

is regulated on [0, 1] and left-continuous on (0,1) (i.e. B € 7", see Definitions 2.2
and 2.3). The integral on the right-hand side of (0.2) stands for the Perron-Stieltjes
one treated as the special case of the Kurzweil-Henstock integral.

In Sections 3 and 4 we prove basic existence and uniqueness results for the
equation (0.1) and obtain the explicit form of its adjoint equation. An important
tool for the proofs of our main results is in particular the theorem on the interchange
of the integration order for Stieltjes type integrals (i.e. the Bray Theorem). Its proof
for the Perron-Stieltjes integral is given in Sec.2 (cf. Theorem 2.13).

Special attention (cf. Sec. 5) is paid to the causal case, i.e. to the Volterra-
Stieltjes integral equations of the form

x(t)—A(t)ff(O)—/O B(t,s)d[z(s)] = f(t), t€]0,1],

where A(0) = 0.

Similar problems in the space of regulated functions were treated e.g. by Ch. S.
Honig [6], [7], L. Fichmann [3] and L. Barbanti 2], where the interior (Dushnik)
integral was used.
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1 . Preliminaries

1.1. Notation. Throughout the paper by RP*? we denote the space of real p x ¢-
matrices, R* = R™*! stands for the space of real column n-vectors, R™*! = R = R.
Given a p X g-matrix M, its elements are denoted by m, ;, i.e.

p

M = (mi,j)i_=1,2,---,pa |M| = _1nax Z |mz]| and MT = (mj,i)j:1,2,...,q-
j=1,2,...,q J=12,....q T 1=1,2,....p
In particular,
n
lz| = Z |zi|, 27 = (21, 29,...,2,) and |27| = jmax |z;| for x € R".

=1

Furthermore, for a given matrix M € RP*?_ its columns are denoted by mb! and
we write M = (ml1);_; 5 _,. Obviously, we have
(M| = max |[mUl| forall M e RP*,
7=1,2,....q
The symbols T and 0 stand respectively for the identity and the zero matrix of the
proper type. Given an n X n-matrix M, det (M) denotes its determinant.

If —oo < a < b < oo, then [a,b] and (a,b) denote the corresponding closed
and open intervals, respectively. Furthermore, [a, b) and (a, b] are the corresponding
half-open intervals. The sets d = {to,t1,...,t,} of points in the closed interval [a, b]
such that a =ty < t; < --- < t,, = b are called divisions of [a,b]. The set of all
divisions of the interval [a, b] is denoted by D(a, b).

Given M C R, xs denotes its characteristic function.

1.2. Regulated functions. Any function f : [a,b] — R which possesses finite
limits
f(t+) = lim f(r) and f(s—)= lim f(7)
T+ T—>85—

for all ¢ € [a,b) and s € (a, b] is said to be regulated on [a,b]. A p X g-matrix valued
function F': [a,b] — RP*? is said to be regulated on [a, b] if all its components f; ; (i =
1,2,...,p, 7 =1,2,...,q) are regulated on [a,b]. The linear space of p x g-matrix
valued functions regulated on [a, b] is denoted by GP*%(a, b), GI*(a,b) denotes the
space of all functions from GP*%(a,b) which are left-continuous on (a,b). It is easy
to see that any function regulated on [a, b] is bounded on [a, b]. For F' € G*(a,b)
we put

[F|l = sup [F(t)].

te(a,b]
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It is well known that both GP*%(a, b) and G¥*%(a, b) are Banach spaces with respect
to this norm (cf. [6, Theorem 1.3.6]). Given F' € G?*%(a,b), t € [a,b) and s € (a,b],
we put

ATF(t) = F(t+) — F(t) and A™F(s) = F(s)— F(s—).

A function F' € GP*? is said to be a finite step function on [0, 1], if there exist

a division d = {to,t1,...,tn} of the interval [0,1] and real numbers c£’j and dﬁ’j,
r=1,2....me=12,...,p,7=1,2,...,q, such that

Fid®) = e X + > dlxen(t)  on [0,1]
r=0 r=0

for any component f;;, i =1,2,...,p, j = 1,2,...,q, of the function F. It is well-
known (cf. in [6, Theorem 1.3.1]) that F' € GP*7 if and only if there is a sequence
{Fy}32, of finite step functions on [0, 1] such that

lim ||F}, — F|| = 0.
k—o00
1.3. Functions of bounded variation. For a given function F' : [a,b] — RP*?
and a given division d = {to, t1,..., t;n} of [a,b] (d € D(a,b)) we define
S(F,d) = [F(t;) = F(tj-1)l.
j=1

If

var’F = sup S(F,d) < oo,
deD(a,b)

we say that the function F' has a bounded variation var®F on the interval [a, b].
BV?*%(q,b) denotes the Banach space of p X ¢g-matrix valued functions of bounded
variation on [a, b] equipped with the norm

F € BV?*(q,b) — ||F|lgv = |F(a)| + var’F.
For a given F' € BV?*%(q,b), we define
vp(t) = var'F for t € [a,b].

It is well known (cf. sections I1.4.7, 11.6.1 and the introduction to Section I1.7 in
[5]) that the relations

(1.1) Atop(t) = ATF(t) forall t € [a,b)

and
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(1.2) A"vp(s) = ATF(s) forall se€ (a,b

are true.
For more details concerning regulated functions or functions of bounded variation
see [[1]], [6], [4] or [5], respectively.

1.4. Notation. In the case [a,b] = [0, 1] we write simply D, GP*?, GF*? and BVP*4
instead of D(0,1), GP*9(0,1), GL*9(0,1) and BVP*9(0, 1), respectively. Further-
more, Gn><1 — Gn, szl — G% and BVn><1 — BV™.

1.5. Functions of two real variables. If a p x ¢g-matrix valued function K is de-
fined on [0,1] x [0,1] and ¢, s € [a, b] are given, then the symbols K (t,.) and K (., s)
denote the functions

K(t,.):7€0,1] — K(t,7) € RP*7
and
K(.,s):7€]0,1] — K(r,5) € R,

respectively. Furthermore, if s € [0,1] and K(.,s) € GP*?, then we put

ATK(r,s)=K(r,s) — K(r—,s) for 7€ (0,1]
and
ATK(r,s) = K(t+,5) — K(1,5) for 7€/0,1).

Similarly, if ¢ € [0,1] and K(¢,.) € GP*9, then we put

A;K(t,o) = K(t,0) — K(t,o—) for o€ (0,1]
and
AJK(t,o) = K(t,o+) — K(t,0) for o €]0,1).

1.6. Notation. For given linear spaces X and Y, the symbols £(X,Y) and £(X,Y)
denote the linear space of all linear bounded mappings of X into Y and the linear
space of linear compact mappings of X into Y, respectively. If X =Y we write £(X)
and K(X). If & € L(X)Y), then R(«), N (=) and &* denote its range, null space
and adjoint operator, respectively.

1.7. Integrals. The integrals which occur in this paper are the Perron-Stieltjes
ones. For the original definition, see [19] or [10]. We use the equivalent summation
definition due to Kurzweil (cf. [8], [9], [16]).
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Let the functions f,g be regulated on [a,b]. If the integral fabf(s)d[g(s)] has
a finite value, then by Theorem 1.3.4 from [8] the function

bt € lab] o /tf(s)d[g(s)] € R

is regulated on [a,b]. Let us note that if both the functions f, g are regulated on
[a,b] and at least one of them has a bounded variation on [a, b], then the integral

[ #e)diats)

has a finite value (cf. [18, Theorem2.8]). In this case the above mentioned Theorem
1.3.4 from [8] implies that

h(t+) = h(t) + f()ATg(t) and  h(s—) = h(s) = f(s)A g(s)

holds for all ¢ € [a,b) and s € (a,b]. Moreover, if g € BV then h € BV, as well.
Further basic properties of the Perron-Stieltjes integral with respect to scalar
regulated functions were described in [18].
Given a p X ¢g-matrix valued function F' and a ¢ X n-matrix valued function G
defined on [a, b] and such that all the integrals

b
/ Foe@®dlges (O] G=1,2, . pk=1,2, 0 qij = 1,2,...,n)

exist (i.e. they have finite values), then

q

/abF(t)d[G(t)] = (Z /abfz-,k(t)d[gfw'(t)])z:1:2 ~~~~~ 4

7=12,...,n

The integrals

/ d[F(H]G(t) and / F)A[GW)]H ()

for matrix valued functions F, G, H of proper types are defined analogously. The
extension of the results obtained in [18] for scalar functions to vector valued or
matrix valued functions is obvious and hence for the basic facts concerning integrals
with respect to regulated functions we will refer to the corresponding assertions from
[18].

In particular, the following lemma follows easily from [18, Theorem 3.8].
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1.8. Lemma. ® is a linear bounded mapping of G} into R™ if and only if there
exists an m X n-matric M and an m X n-matriz valued function K(t) of bounded
variation on [0, 1] such that

bz = Mx(0) + /1 Kt)d[z(t)] forall z e GY.

Furthermore, for a given m X n-matrix M and an m X n-matriz valued function
K(t) of bounded variation on [0, 1], the relation

Mz(0) + /1 K@®)d[z(t)] =0 foral ze G}

holds if and only if
M=0 and K(t)=0 on [0,1].

By a slight modification of Corollary 2 from [15], we can obtain a result analogous
to Lemma 1.8 also for linear bounded mappings of G} into G™.

1.9. Lemma. ¢ is a linear bounded mapping of G into G™ if and only if there
exist n X n-matriz valued functions A € G™" and B : [0,1] x [0,1] — R™™ such
that

(1.3) B(.,s) € G"" for all s €][0,1],
(1.4) B(t,.) € BV™"  forall te]|0,1],
(1.5) there is a 3 < oo such that varjB(t,.) < 3 for all t € [0,1]

and & is given by (0.2). Furthermore, for given n X n-matriz valued functions

A€ G™" and B(t,s) fulfilling (1.3)-(1.5) the relation

A(t)x(())—l—/o B(t,s)d[z(s)]=0 on [0,1]

holds for all x € G™ if and only if
Alt)=0 on [0,1] and B(t,s)=0 on [0,1] x [0, 1].

2 . Functions of the class »"*" and the Bray Theo-
rem
In this section we shall study the properties of the class .#"*™ of n x n-matrix valued

functions which will play a crucial role in our investigations of equations of the form
(0.1.
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2.1. Notation. For a given function K : [0,1] x [0, 1] — R™*" such that K(¢t,.) €
BV"™*" for any t € [0, 1], we denote by .# i the mapping of [0, 1] into BV"™*" defined
by

(21) Mg T E [0, 1] — ///K(t) = K(t, ) e BV,

2.2. Definition. We say that a matrix-valued function K : [0,1] x [0,1] — R” x n
belongs to the class #™*™ if it satisfies the following hypothesis:

(H) K(t,.) € BV" xn for any t € [0, 1];
(Hy)(i) for any t € [0,1) there exists a function K;" = .# k(t+) € BV™*" such that

lim |.# k(1) — K |lBv =0,

(Hz)(ii) for any ¢ € (0, 1] there exists a function K, = .# g(t—) € BV"™*" such that

Tim [k (r) ~ K7 [lsv = 0.

2.3. Definition. We say that a matrix-valued function K : [0,1] x [0,1] — R” xn
belongs to the class #[*" if K € #™" and the mapping .# : [0,1] — BV"™*"
given by (2.1) is left-continuous on (0, 1), i.e.

lim ||K(r,.) — K(t,.)|lBv =0

T—t—

holds for any ¢ € (0,1).

2.4. Remark. Let a matrix-valued function K : [0,1] x [0, 1] = R™*" be such that
K(t,.) € BV"™™ for any ¢t € [0,1] and let the mapping .#x : [0,1] — BV"*"
be defined by (2.1). We say that .# k is regulated on [0, 1] if the condition (Hy)
from Definition 2.2 is satisfied. Obviously, (Hs) is true if and only if the following
assertions are true:

(Hy)(i') for any ¢ € [0,1) and any € > 0 there exists a § > 0 such that ¢ + 0 < 1 and
1K (72,.) = K(n,)|lBv <& for all 7,7 € (t,t 4 9)

(Hy)(ii") for any ¢ € (0,1] and any £ > 0 there exists a ¢ > 0 such that ¢t —§ > 0 and
|K(12,.) — K(71,.)||Bv < € for all 7,7 € (t —6,t).

The following assertion due to Schwabik (cf. [15, Theorem 4]) has been already
mentioned in the introduction.
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2.5. Theorem. % is a linear compact mapping of G into G™ if and only if there
exist n X n-matriz valued functions A € G™" and B : [0,1] x[0, 1] — R™*" such that
B e ™™ and & is given by (0.2). Furthermore, £ is a linear compact mapping
of G} into G7 if and only if there exist n X n-matriz valued functions A € Gp*"
and B : [0,1] x [0,1] — R™™"™ such that B € " and £ is given by (0.2).

Let us summarize some of the further properties of functions of the class .z ™*".

2.6. Lemma. If K € ™" then K(.,s) € G™" for any s € [0, 1].

Proof. Let t € [0,1) and £ > 0 be given. By (Hy)(i') (cf. Remark 2.4) there exists
d > 0 such that t +0 < 1 and

|K(72,.) — K(m1,.)|lsv <& forall m,m € (t,t+9).
Consequently, if s € [0,1] and 71,7 € (¢, + §), then
|K (72, 5) — K (71, )]
< |K(72,0) = K (7, 0)| 4 |K (72, 8) = K(71,5) — K(72,0) + [K(71,0)]
< K(m,.) — K(m,.)||Bv <e&.

This implies that K (., s) possesses a limit lim, ;, K(7,s) = K(t+,s) € R" for any
t €10,1) and any s € [0,1]. Analogously, K., s) possesses a limit lim, ,,_ K(1,s) =
K(t—,s) € R" for any ¢t € (0,1] and any s € [0, 1]. O

2.7. Lemma. If K € ™", then

»x:= sup ||K(t,.)||sv < oc.
te(0,1]

Proof follows directly from Definition 2.2 by means of the Vitali Covering Theorem

(cf. also Remark 2.4). O
2.8. Lemma. If K € ™" and # i is given by (2.1), then

(2.2) M (t+) = K(t+,.) €e BV™™  for all t€[0,1)

and

(2.3) M (t—) = K(t—,.) €e BV forall te (0,1].

Proof. Let t € [0,1) be given. By (Hy)(ii) there exists H € BV™*" such that
lim ||K(7‘, ) - HHBV = 0,

T+

i.e. H= # k(t+). In particular, in virtue of Lemma 2.6 we have

K(t+,s) = 111%r K(7,s) = H(s) forall se]l0,1]
T—

wherefrom the relation (2.2) immediately follows. Analogously we can prove that
the relation (2.3) is true, as well. O
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As a direct consequence of Lemma 2.8 we have the following

2.9. Corollary. If K € »™*", then the relations
lirngK(T, ) — K(t+,)|lsv =0 forall te]0,1)
T—

and

lim [|[K(7,.) — K(t—,.)||Bv =0 for all t € (0,1]

T—t—

are true.

2.10. Lemma. Let K € ™ ", then for any x € G™ the integrals

(2.4) /0 Kt s)dx(s)], tel01]

(2.5) /OK(t—l—,s)d[x(s)], tefo,1)

and

(2.6) /OK(t—,s)d[x(s)], t € (0,1]

have sense and the relations

(2.7) TIHBF i K(T,s)d[x(s)]:/o K(t+, s)d[z(s)] for te€]0,1)
and

@8 Jim [ Kl - /0 K(t—,s)d[z(s)] for te(0,1]
are true.

Proof. All the integrals (2.4) -(2.6) have sense according to [18, Theorem 2.8]. The
relations (2.7) and (2.8) follow then immediately by [18, Theorem 2.7] and by Corol-
lary 2.9. O

2.11. Corollary. If K € c¢™*", then the integral

AK@WM®]

is defined for any x € G™ and any t € [0,1] and the function h : [0,1] — R™ defined
by

h@zAmeM@]

is regqulated on [0,1] (h € G").
Moreover, if K € ", then h € G}.
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2.12. Lemma. If K € """ then the integrals
1
(2.9) / yT(s)d,[K (s,t)], t€][0,1]
0
are defined for any y € BV™ and the function h : [0,1] — R" defined by
1
W) = [ ()l (5. 0)
0

has a bounded variation on [0,1] for any y € BV".

Proof. a) The existence of the integrals (2.9) follows by [18, Theorem 2.8].

b) To prove that h € BV™, let us first assume that n = 1, & € #™*" and
d = {to,t1,...,tm} € D. Then for all z; € Ri = 1,2,...,m such that |z;] < 1 we
have by [18, Theorem 2.8] and Lemma 2.7

‘Z — h(t;1)]x;| = ‘/ zm: (s,t;) (s ti,l)))]xi

< 2yl sup | S0k 1) — ks, 1))

s€[0,1] im1
< 2||y||BV( sup (ZVC $; ;) k(S,ti1)||xi|>)

|:I:i‘<1
s€[0,1]
|z;|<1
< 2|ly|lsv sup (Var(l]k(s, )) =2|ly|lv # < ©.
s€[0,1]
In particular, if we put

xT; = s1gn[h(tl) — h(tzfl)]

for i =1,2,..., m we obtain that the inequality

Z |h(ti ti-1)| < 2x[|yllsv

holds for any division d = {tg,1,...,t,} € D of the interval [0, 1] and any y € BV,
ie.

vargh < 2x||y|lpvy < oo for any y € BV.
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c¢) In the general case of n € N, n > 1, we have for any j = 1,2,...,n, any
y € BV" and any ¢ € [0, 1]

HOEDY /0 yi(s)dy e (5, ).

Consequently, by the second part of the proof of this lemma the inequalities
varyh; < 2( 3 Iwillsv ) = 2llyllsy <
i=1
are true. It follows easily that h € BV" for any y € BV". O

2.13. Theorem. (Bray Theorem) If K € #"*"  then for any x € G™ and any
y € BV" the relation

(2.10) /OlyT(t)dt[/OlK(t, $)d[a(s)]| :/01 (/OlyT(t)dt[K(t, ) dia(s)]

18 true.

Proof. a) Both iterated integrals occurring in (2.10) have sense by Corollary 2.11,
Lemma 2.12 and by [18, Theorem 2.8].

b) Let us first assume n =1, k € #"™*" and y € BV. Let f € G be a finite step
function, i.e. there is a division {t¢,?1,...,t,} of the interval [0, 1] such that f is
on [0, 1] a linear combination of the functions

{X[tr,l]a r= 07 17 ey Ty X (85,10 ] - 07 17 s, = 1}

To show that the relation

ey [wwal [ resarer] = ([ s

is true for any finite step function f on [0, 1], it is sufficient to show that (2.11) is
true for any function from the set

{X[r,u, T €0, 1]} U {X(a,l}, o € |0, 1)}

If f = Xxp,,ie. f(t) =1 on [0,1], then obviously both sides of (2.11) equal 0.
Furthermore, let 7 € (0,1] and f = x(-1j. Then by [18, Proposition 2.3],

/0 k(t, 5)d[f(s)] = k(t, 7),
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i.e.

/Oly(t)dt[/ol’f(t’ $)d[f(s)]] = /Oly(t)dt[k(t,r)].

On the other hand, we have by [18, Proposition 2.3],

/01 (/Oly(t)dt[k(t, 8)])d[f(s)] = /Oly(t)dt[k(t,r)],

as well.

Analogously we would prove that (2.11) holds also for f = x(s,11, 0 € [0,1). Now,
if z € G, let {z,}22, be a sequence of finite step functions on [0, 1] such that z,
tends to x uniformly on [0, 1] as r — oo. By the previous part of the proof, we have

/Oly(t)dt[/olk(t, s)d[:cr(s)]] = /01 (/Oly(t)dt[k(t, 5)])d[xr(s)]

for any r € N. According to [18, Corollary 2.9] it follows that

lim (/01 </01y(t)dt[k(t’ 5)]>d[$r(5)]) :/01 (/Oly(t)dt[k(t7 5)])d[a:(8)]-

On the other hand, by Lemma 2.7 and by [18, Theorem 2.8] we have for any r € N
and any ¢ € [0, 1]

‘/Olk(t, $)dlz, (s)] - /Olk(t, s)dlr(s)]| = ‘/Olk(t, 3)dlr, (s) - 2()]
<2kt vz, — zf| < 25|z, — 2]

and consequently

1 1
lim (/ k(1. 5)dlr, ()] :/ k(t, 5)d[z(s)]
r—00 0 0

uniformly with respect to ¢ € [0,1]. Thus, making use of [18, Corollary 2.9] once
more, we obtain that the relation

1

1 1 1
i [y [ ke ]] = [Cuod] [ Kesi)
r—eo Jo 0 0 0
is true. It follows immediately that the relation (2.11) is true for any y € BV and
any [ € G.
c¢) The proof can be extended to the general case n € N, n > 1, similarly as it
was done at the end of the proof of Lemma 2.12. O
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2.14. Remark. For the proof of the Bray Theorem in the case of the interior
Dushnik integral see [6, Theorem II.1.1].

In the following text we shall make use of the following assertion, as well.

2.15. Lemma. Let K € #™*" and let
Hit,s) = K(t,s+)  for t€[0,1] and s€]0,1),
U K(t,1-)  for te€][0,1] and s=1.
Then H € ™", Moreover, if K € #7"", then H € 7", as well.

Proof. Analogously as in the proofs of Lemma 2.12 and of Theorem 2.13 it is suffi-
cient to show that the assertion of the lemma is true in the scalar case n = 1.
Let n=1, k € ™" and

Wt s) = k(t,s+) for te]0,1] and se€]0,1),
T k(t,1-)  for te[0,1] and s=1.

a) Let d = {sg, s1,...,sm} be an arbitrary division of the interval [0,1] (d € D).
Then

S(h,d) = »  [h(t;s;) = h(t, 551

1:

3
L

Rt s4) =kt sy 4 k(8 1) = (5014,
1

<.
Il

Let 0 > 0 be such that
Sme1+0<1—=6
and let us denote
(2.12) 00=0,07=s,1+6 for j=1,2,....m, 0441 =1—90, opya=1.
Then
(2.13) ds ={00,01,...,0m2} €D

and according to (Hs), for any 6 > 0 sufficiently small we have

m—1
S(h,ds) = [K(t, ) — k(£,0)] + 3 K(t, 55 +6) — k(t, 551 + )
j=1
k(81— 8) — k(ty st +8)] + K(6, 1) — k(1,1 — 6)
< vargk(t,.) < oo.
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Thus

00 > 6lir51+5(k, ds) = S(h,d) + |ATk(t,0)| + |AT k(t,1)|
_).

and consequently the inequality
S(h,d) < vargh(t,.) — |Agk(t,0)] — |2, k(t, 1)]
holds for any division d € D. Hence
|h(t, )|BY = |k(t,0+)] + varjh(t, .)
< Jk(t, 0)| 4+ |ATk(¢,0)| + vargk(t,.) — |ATk(t, 0)| — [AS k(¢ 1)]
< [|k(, )llBv,

i.e. h fulfils (Hy).

b) Let t € [0,1) and € > 0 be given. According to (Hy)(i’) there is a 69 > 0 such
that t + 09 < 1 and

|k(72,.) — k(71,.)|lBV < €
holds for any couple 11,7, € (¢, + dp). In particular,
(2.14) S(k(ra,.) — k(m,.),A) < e

for any division A € D and any couple 7,7 € (t,t + dy). Now, let an arbitrary
division d = {so, s1,...,Sm} € D be given and let 6 > 0 be such that 6 < §, and
Sm-1+ 0 < 1—20. Let us define the division ds = {09, 01,...,0,} € D as in (2.12)
and (2.13). Making use of (2.14) we obtain

S(h(ry,.)=h(r1,.),d)
= |k(re, s1+) — k(71, $1+) — k(12,04) + k(71,0+)|

+ > k(72 554) — k(71, 554) — (72, sj-1+) + k(71 5514))]

+ |k(19,1=) — k(71,1—=) — k(72, Sp—1+) + k(71, Sm_1+)|

m

= lim (Z (2, 7j1) = (71, 041) = k(m2,03) + (71,05
= lim (S(k(r2,.) = k(n1,.), d5))

— A3 (k(12,0) = k(71,0))| = [A7 (k(72, 1) — k(m1,1))] <e.
This means that for any couple 7,7 € (¢, + J) we have

|h(72,.) — h(71,-)||BV <e,
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i.e. h fulfils (Hy)(i’). Similarly we could show that A fulfils also (Hy)(ii). Thus
h e KL

c) Let .4y, : t € [0,1] — k(t,.) € BV be left-continuous on (0,1) and let £ > 0
be given. Then there is a 0y > 0 such that ¢ — g > 0 and

(2.15) S(k(t, ) — k(r,.),A) < &

holds for any 7 € (t — dp,t) and any A € D. Let an arbitrary division d =
{s0,81,-.-,5m} € D be given and let ds = {09,01,...,0mi2} € D be given for
§ € (0, min{dy, ~=2=}) by (2.12) and (2.13). Then making use of (2.15) we obtain
similarly as in part b) of this proof

S(h(t,.)=h(T,.),d)
= lim (Z k(t,7701) = k(r, 0301) — K(t, 05) + k(r, )]
= Jlim (S(k(t,.) = k(r..),dy))

— |AF (k(t,0) = k(7,0))| — |A (k(t, 1) = k(7,1))] <,
wherefrom the desired relation

lim [[A(t,.) = h(7,)|lBv =0

T—t—

easily follows. O

2.16. Remark. Analogously we could show that if K € #™*" and if

Hit,s) = K(t,04) for te[0,1] and s=0,
5= K(t,s—) for te][0,1] and se€ (0,1],

then H € ™" Moreover, if K € 7", then H € ¢ ["", as well.

2.17. Lemma. Let K € #™*" and let
Hit,s) = { K(t+,s)  for t€[0,1) and se€]|0,1],
’ K(l1—,s)  for t=1 and s€ 0,1
and
Gt s):{ K(0+,s)  for t=0 and s € [0,1],
’ K(t—,s)  for te€(0,1] and se€][0,1

Then H € ™" and G € x]*".
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Proof. We shall prove that under the assumptions of the lemma H € #"*". The
proof of the latter relation would be quite similar.

Let t < 1 and let d € D be an arbitrary division of [0, 1]. Then for any 6 € (0, 1—1)
we have by Lemma 2.7

S(K(t+6,.),d) <varyK(t+9,.) < » < 0.
Letting 0 — 04 we immediately obtain that the inequality
S(H(t,.),d) < »x < oo
is true for any d € D. It means that
vargH (t,.) < 3 < co.
Now, let an arbitrary £ > 0 be given. By (Hy)(i’) there is a § > 0 such that
K (72, ) = K(m1, ) llBV < 5

holds whenever ¢ < 77 < 75 < t + §. It means that for all ¢1,¢, € (¢, + %) and any
7 € (0,2) we have

|K(ty +71,.) = K(ti +7,.)|lBV < -
In particular, we have for any division d € D

K (ty +7,0) — K(t, +7,0)] <

o™

and
S(K(ta+7,.)— K(t; +7,.),d) <

o™

wherefrom we obtain easily that the relation
|H (t2,.) — H(tr,.)|[Bv <¢

is true whenever ¢t < t; <ty <t + %.
Analogously we would prove that if £ > 0, then for any € > 0 there isa ¢ > 0
such that

|H (t2,.) — H(t1,.)|lsv < e

is true whenever ¢t — g <t <ty <t. O
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2.18. Lemma. Let K € ™" ty,s1 € [0,1), and ta, s2 € (0,1]. Then all the limits

K(t1—|—,81+) == lim K(T, O'), K(t1+,82—) = lim K(T, 0'),
(T,a)—)(tl,sl) (T,o’)—)(tl,SQ)
T>t1,0>81 T>t1,0<582
K(ty—,s1+)= lim K(r,0), K(ty—,s0—)= lim K(r,0)
(1,0)—(t2,s1) (1,0)—(t2,s2)
T<t2,0>51 T<t2,0<582

are defined in R"*™.

Proof. We will restrict ourselves to proving the existence of the limits
K(ti+,s1+) e RY" for 1,5 €[0,1).

The modifications of the proofs in the remaining cases are obvious.
Let t; € [0,1) and s; € [0,1) be given. By Lemma 2.15 there exists M € R**"
such that

lim K(ti+,0) = lim ( lim K(T,O’)) = M.
o—Ss+ o—s+ \ T+

Furthermore, since in virtue of Corollary 2.9

lim ||K(r,.) — K(t;+,.)|| =0,

T—t1+
i.e.

lim K(r,0) = K(ti+,0) uniformly with respect to o € [0, 1],

T—t1+

it follows that

lim K(r,0) = M.
(Tao')_>(t1 751)
T>11,0>81

2.19. Lemma. Let K € ™", s € (0,1] and t € [0,1). Then

lim K(r,7—) = lim K(r,7+) = K(t+, t+),

T—t+ T+
lim K(r—,7) = lim K(7+,7) = K(t+,t+),
T—t+ T+
lim K(r,7—) = lim K(r,7+) = K(s—, s—)
T—y5— T—y5—

and
lim K(r—,7) = lim K(7+,7) = K(s—,s—).

T—5— T—5—
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Proof. We will restrict ourselves to the proof of the relations

lim K(r,7—) = K(t+,t+), te€]0,1).

T+

The proofs of the remaining assertions of the lemma would be quite analogous. By
Lemma 2.18 there exists a 0 € (0,1 — ¢) such that

|K(7,0) = K(t+,t4)] < §

holds whenever t <7 < t+ ¢ and t < 0 <t + §. Furthermore, for any 7 € (¢,t + 9)
we may choose a o, € (t,7) such that

|K(1,7—) — K(1,0,)| < 5

is true. Thus for any 7 € (¢,t + J) we have
[K(7,7=) = K(t+,t4)| < |K(7,7=) = K(7,07)| + |[K(7,07) = K(t+,1+)]
<e.
U

2.20. Remark. A matrix valued function K : [0, 1] x [0, 1] — R™*™ is said to be of
bounded Vitali variation on [0,1] x [0,1] if

V10,17x[0,1] (5

= Slép Z ‘K(tz, Sj) — K(ti,h Sj) - K(tl, ijl) + K(ti,h ijl) < 09,

ij=1

where the supremum is taken over all net subdivisions
D:{O:to<t1<---<tm:1;0:so<31<---<sm:1}

of the interval [0, 1] x [0,1]. A matrix valued function K : [0,1] x [0,1] — R**" is
said to be of strongly bounded variation on [0, 1] x [0, 1] if

Uo,11x[0,1)(K) + vargK (0,.) 4+ vargK (0,.) < oc.

Let us denote the set of n x n-matrix valued functions of strongly bounded variation
on [0,1] x [0,1] by SBV™*". It follows by [16, Corollaries 1.6.15 and 1.6.16] that
SBY™*" C e,

On the other hand, the set G.BV™*" of n x n-matrix valued functions K of the
form

K(t,s) = F(t)G(s), (t,s)€[0,1] x[0,1],

where F' € G™" and G € BV"™*", provides the simplest example of the class of
kernels which satisfy the assumptions of this paper, but do not belong in general to
the class SBY™". In fact, it is easy to verify that G.BY"*™ C #™*" holds.
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2.21. Lemma. Let K € #"*" and t € [0,1). Then

(2.16) for any € >0 there exists a § € (0,1 —1t) such that
VarifK(tz, ) <& holds whenever 0 <t <t; <ty <t+0d<1.

Proof (due to I. Vrko¢). Let t € [0,1) be given and let us assume that there is a
v > 0 and sequences {t}} and {¢2} of points in (¢, 1] such that

t <tpp <tis <t <tn <1 holds for any k€N,
klgg() ty = lirgO tt=t and Vari%K(t’;, ) > 2y.
On the other hand, by (Hsy)(ii) there is a natural number £, such that
var) (K (th,.) — K(t%,.)) < .
This means that in the case that (2.16) does not hold we obtain

th
varg K (1) E var2K (th, )

k>ko
>3 [varﬁiK(t’;, ) —var? (K (t5,.) — K(£5°,.))
1 1
k>ko
S IRR
k>ko

This being impossible in virtue of the assumption (Hy), it follows that the assertion
(2.16) is true and this completes the proof of the lemma. O

Analogously we could prove the following assertion, as well.

2.22. Lemma. Let K € ™" and te€ (0,1]. Then

(2.17) for any € >0 there exists a § € (0,t) such that
V&I‘EK(tZ, .) < € holds whenever 0 <t—¢§ <t <ty <t.

3 . Fredholm-Stieltjes integral equations in the
space G}

In this section we will consider linear integral equations of the form

(3.1) £(t) — A(t)z(0) - / B(t, s)dle(s)] = £(t), te 0,1,
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where

AeGY™ and Be "
3.1. Remark. Let us recall that the operator .# given by (0.2), i.e.
1
(3.2) (zz)(t) = A(t)z(0) +/ B(t,s)d[z(s)], z€G,tel0,1]
0

is the general form of a linear compact operator on the space G7 (cf. Theorem 2.5).
The equation (3.1) may be written as the operator equation

(3.3) r—%r=f,

as well.

3.2. Remark. It is also known (cf. [18, Theorem 3.8]) that the dual space (G7)* to
G is isomorphic to the space BV" x R" | while for a given couple (y,v) € BV" x R"
the corresponding linear bounded functional on G is given by

(3.4) € G} o (2, (9,7)) = 1T2(0) + / y7(s)dlz(s)] € R

The compactness of the operator .# immediately implies that the following Fred-
holm alternative type assertions 3.3-3.5 are true.

3.3. Proposition. Let A € GI*" and B € s [*". Then the given equation (3.1)
possesses a unique solution x € G} for any f € G7 if and only if the corresponding
homogeneous equation r — Lx =0, i.e.

1
x(t) — A(t)x(0) —/ B(t,s)d[z(s)] =0, te€]0,1],
0
possesses only the trivial solution.

3.4. Proposition. Let A € GI*", B € #["" and f € G}. Then the equation (3.1)
possesses a solution in G7 if and only if

1
35) 0+ [ ) =0

0
holds for any solution (y,v) € BV"™ x R" of the operator equation

(3.6) (y,7) =2 (y,7) =0 € BV" xR"

adjoint to (3.1).
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3.5. Proposition. Let A € GI*" and B € #[*". Then the relations
dimN(I-2) =dimN(I-2") <

hold for the dimensions of the null spaces N(I1—<2) and N(1—<2*) corresponding
to the operator £ and its adjoint £*, respectively.

3.6. Corollary. Let A € G and B € »["". Then the given equation (3.1)
possesses a unique solution x € G} for any f € G} if and only if the corresponding
homogeneous equation

r—%r =0
possesses only the trivial solution.

Making use of the above mentioned explicit representation (3.4) of the dual
space to G} and of the Bray Theorem we can derive the explicit form of the adjoint
operator £* to &.

3.7. Theorem. Let A € GI*" and B € x"". Then the adjoint operator £* to
the operator & is given by

2 (y,7) € BV' X R" = (Z1(y,7), Z5(y,7)) € BV" x R",

where

(£i)0 = B0+ [ B 0]us), el

and
23(4,7) = AT(O)y + / A[AT (5)]y(s).

Proof. Given z € G, y € BV” and € R, we have by (3.4) and by Theorem 2.13
(20,1 =" (4020) + [ BO.D0)
+ [y oafa0e0 + [ Bosaeo)
= (a0 + [ EAE))0
w [ (7B [ s )
= (#30)0) + [ (#1020 o)

= (z,(£1(y,7), Z5¥,7)))

wherefrom the proof of the theorem immediately follows. O
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Proposition 3.4 and Theorem 3.7 immediately yield the following assertion.

3.8. Theorem. Let A € G"", B € x#7"" and f € G}. Then the equation (3.1)
possesses a solution x € G% if and only if (3.5) holds for any solution (y,v) €
BV" x R" of the system

)= 0,07~ | B0l =0, teo,1],

- AT(O)y - / d[AT(s)]y(s) =0,

3.9. Remark. Let us notice that in virtue of Corollary 2.9, for any solution z € G™
of (3.1) on [0, 1] we have

z(t+) = A(t+)x(0) + /IB(t—i-,S)d[x(s)] + f(t+) forall te€][0,1),
z(t—) = A(t—)z(0) + /01 B(t—, s)d[z(s)] + f(t—) forall te (0,1].

In particular, if A € GI™", B € " and f € G7, then any solution x of (3.1 on
[0,1] is left-continuous on (0, 1).

3.10. Example. Let us consider a linear Stieltjes integral equation

(3.7) £(t) - / A [Pt 8)]a(s) = £(B), € 0,1]

with P € ™" and f € G7. Such equations with kernels P of strongly bounded
variation on [0, 1] x [0,1] (cf. Remark 2.20) were treated in [16].
Let t € [0,1] and 2 € G} be given. Let us put

| P(t,s+) for s<1,
Qt,s) = { P(t,1-) for s=1

and
Z(t,s) = P(t,s) —Q(t,s) for (t,s)€[0,1] x[0,1].
Then

—AJP(t,s) for s<1,
2t 8) = { A P(t, 1) for s=



24 Mathematica Bohemica 123 (1998), No.2, 177-212

Since obviously Q(¢,.) and Z(¢,.) € BV™*" lim, s, P(t,0+) = P(t,s+)if s € [0, 1)
and lim, ,;_ P(t,0+4) = P(t,s—) if s € (0, 1], it is easy to verify that
Z(t,s—)=0 forall se€[0,1) and Z(t,s+)=0 forall se€ (0,1].

Since Z(t,.) € BV™*" this implies that there is an at most countable set W C [0, 1]
of points in [0, 1] such that Z(t,s) = 0 holds for any s € [0,1] \ W. Making use of
[17, Proposition 2.13] we obtain that

/0 d,[Z(t, $)]z(s) = Z(t, D)a(1) — Z(t,0)2(0).

This implies that the relation

/0 ds[P(t, s)]z(s) = /0 d,[Q(t, 8)]z(s) + Ay P(t,0)x(0) + A, P(t,1)z(1)

is true. Furthermore, according to the integration-by-parts formula (cf. [18, Theo-
rem 2.15]) we have

/0 ds[P(t, s)]z(s)

= Q(t, 1)x(1) - / Q(t. )d
+[P(t,0+) P(t, 0)] (0) + [P(t, 1) — P(t,1— )] (1)

1

= P(t,1)z(1) — P(t,0)z(0) — 0 Q(t, s)d[z(s)]

= [P(t,1) — P(t, 0)]:L‘(0)—|—/0 (P(t,1) — Q(t, s))d[z(s)]

= [P(t,1) — P(t,0)]x(0)

! t,1) — P(t, s+), 1
+/0 { PEt71§ - PEt71_;7 =1 }d[x(S)]

and hence

/0 AP 9)le(s) = CO2(0) + [ D(ts)aa(s)]
where

C(t) =1+4+P(t,1) — P(t,0)

and
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P(t,1) — P(t,s+) for s€][0,1),
D(t,s) = { P(t,1) = P(t,1=)  for s—1.

Obviously, under our assumptions we have C' € G*" and D € # 7" (cf. Lemma
2.15). Thus, if P € #7"" and f € G7, then the given equation (3.7) may be
transformed to an equation of the form (3.1) with coefficients A, B and f fulfilling
the assumptions of Theorem 3.8.

4 . The resolvent couple for the Fredholm - Stielt-
jes integral equation

In this section we will consider the special case when the equation (3.1) possesses
a unique solution x € G7 for any f € G7. In particular, in addition to A € G*",
B € o ;"" we will assume that

(4.1) dimN(I-2) =0

(cf. Corollary 3.6).

Under these assumptions the Bounded Inverse Theorem [11, Section III.4.1] im-
plies that the linear bounded operator [ - : G7 — G possesses a bounded inverse
operator (I —¢)~!: G" — G”. Furthermore, as

I-2)"'=1+1-2)"'2,

it follows immediately that the inverse operator (I —.¢) ! may be expressed in the
form

(4.2) (I-2)"' =1+,

where I" is a linear compact operator (I" € (G}, G})). By Theorem 2.5 there exist
functions U € GI*", V' € # ™" such that I is given by

(4.3) I:feG} —=U(@)f0)+ /OIV(t, s)d[f(s)].

The following assertion now follows from Lemma 1.9 and Theorem 2.5.

4.1. Theorem. Let us assume that A € GI™" and B € s [™" are such that (4.1)
holds. Then there exists a uniquely defined couple of functions U € GI*", V € <"
such that for any f € G the corresponding solution x € G to (3.1) is given by

(4.4) z(t) = f(t) + U(t)f(0) + /01 V(t,s)d[f(s)], te]0,1].
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4.2. Theorem. Let us assume that A € GI”*" and B € x4 ["" are such that (4.1)
holds. Then the functions U, V given by Theorem 4.1 satisfy the matriz equations

(4.5) U(t)—AtU(0) — /0 B(t,7)d[U(1)] = A(?)
and X
(4.6) V(t,s) — A(t)V(0,s) — /0 B(t,7)d,[V(r,s)] = B(t, s)

for all t,s € [0, 1].

Proof. Let I' be a linear compact operator defined by (4.2). Inserting (4.2) into
(3.1) we obtain that under our assumptions I" has to satisfy the relation

(4.7) I'f—2(f)=2f forall feGm.

Inserting (4.3) into (4.7) and making use of the Bray Theorem (cf. Theorem 2.13)
we obtain furthermore that

(v®) =400 - [ Be.navE) 0
+/0 (V(t,s)—A(t)V(o,s)—/O B(t,7)d, [V(7,5)]) [ (5)]
=AW + [ B

has to be true for any f € G’, wherefrom by Lemma 1.9 the assertion of the theorem
immediately follows. U

4.3. Definition. We say that a couple of functions U € G*", V € [ " is the
resolvent couple for the equation (3.1) if for any f € G the unique solution z € G}
is given by (4.3).

5 . Volterra-Stieltjes integral equations in G

It is natural to expect that the linear operator equation (3.3) could possess for any
f € G7 a unique solution if the operator . is causal.
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5.1. Definition. An operator . € £(G7}) is said to be causal if
(5.1) (£2)(0) =0 forany =z € GY,
and for a given t € (0, 1)

(5.2) (£x)(t) =0 whenever z € G} and z(r) =0 on [0,].

5.2. Lemma. If A € GI"" and B € #7"", then the linear operator & € L(GT)
given by (3.2) is causal if and only if
(5.3) A(0)=0 and B(t,s)=0  forall t€[0,1) and se€ |t 1].

Proof. a) If (5.3) is satisfied, then obviously the relation

/0 B(t, 5)d[x(s)] = / B(t, 5)d[x(s)]

is true for any x € G and any t € [0,1] whence the causality of ¢ immediately
follows.

b) On the other hand, let us assume that .# is causal. Then by (5.1) the relation

1
A(0)x(0) +/ B(0,s)d[z(s)] =0
0
has to be satisfied for any z € G}. By Lemma 1.8 this means that the relations
A(0)=0 and B(0,s)=0 forall se]l0,1]

have to be satisfied, as well. Furthermore, if ¢ € (0, 1), then (5.2) is true if and only
if

1
/ Bt s)dle(s)] = 0 forall = c G
t

An obvious modification of Lemma 1.8 implies that this may hold only if
B(t,s) =0 forall se€[t1],

wherefrom the assertion of the lemma immediately follows. O
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5.3. Remark. Let us notice that the condition (5.3) does not necessarily imply that
B(1,1) = 0. On the other hand, it is easy to verify that the operator .« € L(G7)
given by (3.2) fulfils a somewhat stronger causality properties (5.1) and

(5.4) (2z)(t) =0 forall te€ (0,1] and x € G} such that z(r) =0 on [0,t)
if and only if
A(0)=0 and B(t,s) =0 whenever 0<t<s<I.
In fact, if z(7) =0 on [0,1), then
(zx)(1) = B(1,1)z(1) =0
holds for any (1) € R if and only if B(1,1) =0.
5.4. Remark. As noticed in the proof of Lemma 5.2, if the assumptions of Lemma,

5.2 and the conditions (5.3) are satisfied, then the Fredholm-Stieltjes equation (3.1)
reduces to the Volterra-Stieltjes equation

(5.5) x(t)—A(t)x(O)—/O B(t,s)d[z(s)] = f(t), te0,1].

To show that the equation (5.5) possesses a unique solution z € G for each f €
G, it is by Proposition 3.4 sufficient to show that the corresponding homogeneous
equation

(5.6) z(t) = A(t)x(0) —i—/o B(t,s)d[z(s)], te€]0,1]

possesses only the trivial solution x = 0.
Let # € G} be an arbitrary solution of (5.6) on [0, 1]. Then obviously z(0) = 0.
Furthermore, since by (5.3) B(0+, s) = 0 whenever s > 0, we have by Lemma 2.10

t 1

z(0+) = lim [ B(t,s)d[z(s)] = lim B(t, s)d[z(s)]

ok /) Am )
_ /OIB(O—i—,s)d[a:(s)] — B(0+,0)A*2(0) = B(0+, 0)z(0+),
i.e.
[I—B(o+, 0)]x(0—|—) = 0.
Thus we have z(04) = 0 whenever

det [I—B(0+,0)] # 0.
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Analogously, if we assume that z(7) = 0 on [0, ¢] holds for a given ¢ € (0,1), then
1
r(t+) = / B(t+, s)d[z(s)] = B(t+, t)x(t+),
t

and thus necessarily z(t4) = 0 whenever det (I —B(t+,t)) # 0. Finally, if we assume
that z(7) = 0 on [0, 1), then the equation (5.6) reduces to

[1—3(1, 1)]35(1) — (1)

This indicates that it is possible to expect that the equation (5.6) will possess
only the trivial solution 2z = 0 on [0, 1] if the relations

(5.7)  det [I-B(1,1)] #0 and det [I-B(t+,t)] #0 forall ¢e€0,1)

will be satisfied.

5.5. Theorem. Let A € GI", B € ™" and let the condition (5.3) be satisfied.
Then the Volterra-Stieltjes equation (5.5) possesses a unique solution x € G7 for
any [ € GV if and only if the relations (5.7) are satisfied.

Proof. First, let us assume that the relations (5.7) are satisfied. We shall show that
then the equation (5.6) possesses only the trivial solution. Indeed, let € G7 be
a solution of (5.6). Then x(0+) = z(0) = 0 and as in Remark 5.4 we have

/tB(O—i—, s)d[z(s)] = B(0+,0)ATz(0) =0 for all ¢t € [0,1].

Consequently, the equation (5.6) can be rewritten as

t
o) = [ (Blt,s) ~ BO+5)dix(s))
0
In virtue of [18, Theorem 2.8, this yields that the inequality

()] < 2B(t,.) — BO+,)llsv ( sup |a(s)])

s€[0,t]
is true for any ¢ € [0, 1]. Furthermore, by Corollary 2.9 there is a § > 0 such that
|B(t,.) — B(0+,.)||lBv < 1 whenever ¢ € (0,6]
and hence also

sup |v(s)| < 3 sup |z(s)],
t€[0,0] t€[0,0]
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wherefrom the relation
r=0 on [0,0]
follows. Now, let us put
= sup{5 €[0,1]: z(t) =0 on [0,5]}.

We know that t* € (0,1] and z(¢) = 0 on [0, ). Since x is left-continuous on (0, 1)
(cf. Remark 3.9), it follows that if ¢* < 1, then z(t*) = z(t*—) = 0, as well. We
close the first part of the proof by showing that t* =1 and z(1) = 0.
Indeed, if t* < 1, taking into account the hypothesis (5.3) and Lemma 2.10 we
would obtain
t 1

ot +) = Jim | B(t,s)d[m(s)]:/o B(t*+, 5)d[z(s)]
= B(t"+,t")x(t"+)
and consequently

[1 —B(t*+,t*)]x(t*+) = 0.

Hence according to (5.7) we would have z(t*+) = 0. By an argument analogous to
that used above for 0 in the place of t*, we can get that there exists 6 > 0 such
that z(t) = 0 on [0, t* + 0], which contradicts the definition of ¢*. Finally, as we have
obviously z(¢) = 0 on [0,1) and hence also z(1—) = 0, the relation (5.6) reduces to
z(1) = B(1,1)z(1) or

[I—B(l,l)]x(l) —0,

wherefrom the desired relation z(1) = 0 immediately follows taking into account
our assumption (5.7).

To show the necessity of the conditions (5.7) for the unique solvability of (5.5)
for any f € G7, let us assume that the set

Sp = {t € [0,1) : det [I—B(t+,1)] = 0}
is nonempty. Let us denote
t* == infSB.

Then t* is not a point of accumulation of Sg. In fact, if this were not true, then
there would exist a sequence {t;}72, of points in Sp such that ¢, > t* for any k € N
and limy_, ot = t*. Since in virtue of (5.3) we have for any o > ¢*

lim B(r,0) =0,

T+
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it follows by Lemma 2.18 that

B(t k +) - (T,U)lir(rz* %) B(T, U) - (71—1>££1+(Tl—1)££1+ B(T’ U)) =0
T>t*,0>t*

and consequently

0= lim det (I—B(ty+,t)) = det (I-B(t*+,t*+)) = det (I) = 1.

k—o0

In particular, t* € Sg and
det (I—B(t*+,t")) = 0.
Hence there is a d € R” such that there is no ¢ € R"* such that
[I-B(t*+,t")]c = d.
Now, let us put

0 for t <t*,
f{t) = { d for t>t*.

By the first part of the proof, for any possible solution zz € G of the equation (5.5
on [0, 1] we have z(¢) = 0 on [0,¢*) and thus

z(t*) = lim z(t) = 0.

t—t*—

By an argument analogous to that used above we can further deduce that the limit
x(t*+) of any possible solution x of (5.5) has to verify the relation

[-B(t"+,t"+) |z(t"+) = f(t*+) = d.

However, by the definition of d this is not possible and consequently the set Sp is
empty. This completes the proof of the theorem. O

5.6. Corollary. Let A € G{*", B € #;*" and let the condition (5.3) be satisfied.
Then the homogeneous equation (5.6 ) possesses only the trivial solution x = 0 if
and only if the relations (5.7) are satisfied.

The proof follows immediately from Proposition 3.3 and Theorem 5.5. O

Similarly, the proof of the following assertion is an easy consequence of Theorems
4.1 and 4.2 and Corollary 5.6.
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5.7. Corollary. Let A € G{"", B € #7"" and let the conditions (5.3) and (5.7)
be satisfied. Then there exists a resolvent couple U € GY*", V. € ™" for the
equation (5.5). The functions U and V' satisfy in addition the relations

(5.8) U)=0 and V(t,s) =0 forall s €0,1),t€]0,s],
(5.9) Ut) - / BULUE) = A()  forall teo.1],
and

(5.10)  V(t,s) — /tB(t,T)dT[V(T, s)] = B(t,s) forall t,se]|0,1].

Proof. Let A € G"*", B € 7 " and let the conditions (5.3) and (5.7) be sa-
tisfied. Then by Theorems 4.1 and 4.2 and Corollary 5.6 there exists a resolvent
couple U € G"", V € " for the equation (5.5) and the functions U,V satisfy
the matrix equations (4.5) and (4.6. Furthermore, as in virtue of (5.3) we have
A(0) = 0, it follows easily from (4.5) that U(0) = 0 holds. Consequently, the
relation (4.5) reduces to (5.9).

Furthermore, let an arbitrary s € (0, 1) be given. Since by (5.3) we have B(t, s) =
0 whenever t < s, it follows easily that the function V'(., s) fulfils the relation

V(t,s) = A(t)V(0,s) + /1 B(t,7)d,[V(r,s)] forall te€]0,s].

By an argument analogous to that used in the proof of Corollary 5.6 we can deduce
now that V' (¢, s) = 0 has to be true for any ¢ € [0, s]. Finally, as by the assumption
(5.3) we have B(0,s) = 0 for any s € [0,1], it follows immediately from (4.6) that
V(0,0) = 0 on [0,1], as well. Thus the relations (5.8) are true and consequently
the relation (4.6) reduces to (5.10). O

5.8. Remark. It is easy to verify that under the assumption of Corollary 5.7 the
resolvent couple (U, V) of (5.5) satisfies in addition to the relations (5.8)-(5.10) the
following relations, as well.

-1
V(t,1)=0on [0,1) and V(1,1)= [1 ~B(1, 1)] B(1,1).
To show that the results of this section cover also the Volterra analogue of the
equation mentioned in Example 3.10 the following lemma is essential.
5.9. Lemma. Let K € #™" and let K* be given by

A | K(t,s) for te]0,1] and se€]0,t],
(5.11) K2t 5) = { K(t,t)  for tel0,1] and se€lt1].
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Then K& € #™". Moreover, if K € 27" and
(5.12) K(t,t—) = K(t,t) forall te€(0,1),
then K& € 7™, as well.

Proof. Let t € (0,1] and € > 0 be given. Then by assumption and by Lemma 2.21
there exists a d € (0,1) such that

K (t2,.) — K(t1,.)|lav < £ and var?K(ts,.) < 5

whenever 0 < t —§ < t; <ty < t. Now, let an arbitrary couple ¢;,ts € [0, 1] such
that t —0 < t; <ty <t be given. Then by (5.11) we have

K(ty,s) — K(ty,s) for 0<s<t,
KA(tQ,S) — KA(tl,S) = K(tQ,S) — K(tl,tl) for tl S S S tz,
K(tg,tg) — K(tl,tl) for tz S S

and it is easy to see that this implies that
[K2(t, ) = K (1, )|lsv
< |K(ty,0) — K(t1,0)| + varg (K (ty,.) — K(t1,.))
+ Varif (K(tz, ) — K(tl, tl))
< ||K(t2, ) — K(tl, -)HBV + V&I‘EK(Z&Q, ) <e€

holds for any couple t,t; € [0,1] such that t —§ < t; < ¢y < t. Analogously we
would show that for any £ > 0 there exists a 6 € (0,¢) such that

| KA (ts,.) — K2(t, ) |lBv < &

holds for any couple #,t5 € [0,1] such that ¢ < t; < ty < t + 0, wherefrom the
relation K2 € ™" immediately follows.
Furthermore, if K € "™ and (5.12) holds, then we obviously have

lim [|K2(t,.) — K2(7,)lsv

< lim ||K(t,.) — K(7,.)||Bv + lir? vart K(t,.) =0
T—t—

T—t—

for any ¢ € [0, 1]. O

5.10. Remark. It follows easily from Lemmas 2.18 and 2.19 that if K € """,
then for any « € G7 the function z(t) given by

z(t):/o ds[K(t,s)]x(s) for te€]0,1]

is left-continuous on (0, 1) if and only if (5.12) holds.
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5.11. Example. Let us consider the linear Volterra-Stieltjes integral equation

(5.13) x(t)—/o 4K (¢, $)|e(s) = £(8), te[0,1]

with K € o7 " fulfilling the relation (5.12) and f € G7. (Such equations with
kernels K of strongly bounded variation on [0,1] x [0,1] (cf. Remark 2.20) were
treated in [16].)

Let us define the function K : [0,1] x [0,1] — R**™ again by (5.11). Then by
Lemma 5.9 we have K2 € ¢ [*". Obviously,

(5.14) /0 A, [K (L, 5)|a(s) = /0 A, [K2 (¢, )] (s)

holds for any x € G™. Let ¢t € [0, 1] and z € G? be given. Analogously as in Example
3.10 we could show that then

(5.15) /0 d[K2(t, 8)]z(s) = A(t)z(0) +/0 B(t, s)d[z(s)],
where

A(t) =T+K2(t,1) — K2(t,0) for t€[0,1]
and
K&(t,1) — K*(t,s+)  for

[0,1] and s €[0,1),
B(t,s) = { K2(t,1) — K&(t,1-)  for 0,1

t e
te€f0,1] and s=1.

It is easy to verify that A € G*" and B € #[*" (cf. Lemma 2.15 and Lemma 5.9)
and

A(t) =1+K(t,t) — K(t,0) for t€][0,1]

and
K(t,t)— K(t,s+) if 0<s <t<1,
Bit.s) = K(tt)—K(tt) if 0<t<s <1,
’ K(t,t)—K(t,t) if 0<t<s =1,
K(1,1) - K(1,1-) if t=s =1.

In particular, we have
A(0)=0 and B(t,s) =0 whenever 0<t<s <1 and t<1.
Furthermore, for an arbitrary ¢ € [0,1) we have

B(t+,t) = lim (K(r,7) — K(71,t+)) = K(t+,t+) — K(t+,t+) =0

T—t+
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(cf. Lemma 2.18). It means that under the above assumptions the Volterra-Stieltjes
integral equation (5.13) may be converted to the causal integral equation of the
form (5.5) whose coefficients A and B satisfy the assumptions of Corollary 5.7 if in
addition we would assume that the relation

det (I—-(K(1,1) — K(1,1-)) #0

is satisfied.
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