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Abstract. The paper deals with boundary value problems of the form
t
(0.1) x(t) — x(0) —/ d[A(s)]x(s) = f(t) — f(0), te€][0,1],
0

(0.2) M z(0) —l—/O K(r)d[z(r)] =

Their solutions are functions regulated on [0, 1] and regular on (0, 1) (i.e. 2z(t) = z(t—)+x(t+)
for all t € (0,1)). We assume that A and K have bounded variations on [0, 1], f is regulated on
[0,1] and all of them are regular on (0, 1). We derive conditions for the existence and uniqueness
of solutions to the given problem. Furthermore, the relationship between the dimensions of the
spaces of solutions of the corresponding homogeneous problem and of its adjoint is established.
Special attention is paid to the case when the additional condition (0.2) reduces to the periodic
boundary condition x(0) = x(1). It is known (cf. [13]) that in the case that A and f are
continuous from the right at ¢ = 0 and from the left at ¢t = 1, the equation (0.1) reduces to the
distributional differential equation

(0.3) o —Aw=f.

Related results concerning the case of solutions left-continuous on (0,1) were obtained
in [18] and similar questions for periodic problems and for linear differential equations with
distributional coefficients of the form (0.3) were recently treated by Z. Wyderka [21], cf. also
[2], [3] or [10].
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1 . Preliminaries

Throughout the paper R"*™ denotes the space of real n xm-matrices, R® = R"*!,
R' = R. Given an n x m-matrix A € R"*™ its elements are denoted by a; ;,
det(A) and rank(A) denote respectively its determinant and its rank, A" stands
for its transposition and |A| = max;—; ., > i [a;;| is its norm, (In particular,
y" = (y1, Y2, ---, yn) for y € R™.) The symbols I and 0 stand respectively for the
identity and the zero matrix of the proper type.

For given n x n-matrices Cj, j = 1,2,...,p, the symbol H?Zl Cj; is defined by

P p—1
[[¢i=ciCs...Cp while [[Cpj=CpCpy...Ch.
j=1 7=0

As usual, by [0,1] and (0,1) we denote the corresponding closed and open
intervals, respectively. Furthermore, [0,1) and (0, 1] are the corresponding half-
open intervals.

Any function F : [0, 1] — R™™ which possesses finite limits

F(t+) = lim F(r) and F(s—)= lim F(r)

T—=t+ T—8§—
for all ¢t € [0,1) and s € (0,1] is said to be regulated on [0,1]. The linear space
of n x m-matrix valued functions regulated on [0, 1] is denoted by G™*™, while
GM*™ stands for the space of functions F' from G™*™ which are regular on (0, 1),

reg
i.e. which satisfy the relations

(1.1) o il G ;F(t“, te(0,1).

Instead of G"*! we write G". Analogously, G"*! = G"

reg reg ®

For z € G™ we put

]| = Sup j(t)].

)

It is well known that both G" and G, are Banach spaces with respect to this
norm (cf. [7, Theorem 3.6]). Given F' € G™*™, we put F(0—) = F(0) and
F(14) = F(1) and, for any t € [0, 1], we define

ATF(t)=F(t+)— F(t), ATF(t)=F(t)— F(t—)
and
AF(t) = F(t+) — F(t—).

As usual, the space of n X m-matrix valued functions continuous on [0, 1] is
denoted by C"*™,
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For a function F' : [0,1] — R™™ and a subdivision D = {0 = ap < oy <
-++ < g = 1} of the interval [0, 1], we put

k
v(F,D) = Z |F(a;) — F(aj 1)] and vargF = sup v(F, D),
j=1

where the supremum is taken over all subdivisions D of [0, 1]. The space of all
functions F' : [0,1] — R™™ gsuch that varjF < oo is denoted by BV"™*™. Tt is
well known that BV "~ equipped with the norm

F e BYV™™ — ||F||BV = |F(O)| + VaI'[l]F

is a Banach space. Obviously, F' € BV™*™ if and only if all its components a; ;
have a bounded variation on [0, 1]. The space of all functions F' € BV"*™ which
are regular on [0, 1] (i.e. satisfy the relation (1.1)) is denoted by BV *™. Instead
of BV or BV"*! we write BV" or BV”, , respectively.

For more details concerning regulated functions or functions of bounded va-
riation see [1], [7], [4] or [6], respectively.

For given linear spaces X and Y, the symbol £(XY) denotes the linear space
of linear bounded mappings of X into Y. If L € £(X]Y) then R(L), V(L) and L*
denote its range, null space and adjoint operator, respectively. For a given linear
bounded functional £ € X*, its value on x € X is denoted by (z, {)x.

The integrals which occur in this paper are the Perron-Stieltjes ones. In
particular, we make use of the equivalent definition of these integrals due to
J. Kurzweil (cf. e.g. [8], [9], [15] and [16]). Let us recall here that if A € G™*™,
z € G" and at least one of them has a bounded variation on [0,1] then the
integral

¢
| e
exists for any ¢ € [0, 1] and the function
t
h:tel0,1] — / d[A(7)]z(T) € R"
0

is regulated on [0,1] (cf. [17, Theorem 2.8]). Moreover, if A € BV"*" then
h € BV™ " and if A € BV].*" then h € BV, , as well. Finally, let us recall that
by [19, Theorem 2.7] the left hand side of the additional condition

M z(0) —i—/o K(r)d[z(r)] =7
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represents the general form of a linear bounded mapping of the space GI., into
R™. Some further details concerning the integration with respect to regulated
functions may be found in [17].

Distributions are considered in the sense of L. Schwartz, i.e. as linear continu-
ous (n-vector valued) functionals on the topological vector space D™ of functions
¢ : R — R possessing for any j € NU {0} a derivative ¢) of the order j which
is continuous on R and such that ¢ (t) = 0 for any t € R\ (0,1). The space D™
is endowed with the topology in which the sequence ¢ € D" tends to ¢y € D™
in D" if and only if

: G _ 0y —
klggoHsOk Yo || 0

for all non negative integers j. The space of distributions on [0, 1] (i.e. the dual
space to D ") is denoted by D"™*. The zero distribution 0 € D™ on [0, 1] is iden-
tified with an arbitrary measurable function vanishing a.e. on [0, 1]. Obviously,
if f € Gthen f=0¢€ D" only if f(t—) = f(s+) = 0 for all ¢t € (0,1] and
all s € [0,1). Consequently, if f € G and f(0+) = f(0) and f(1-) = f(1),
then f = 0 € D™ if and only if f(¢) = 0 for all ¢ € [0,1]. This means that
for a given function g Lebesgue integrable on [0, 1] there may exist at most one
function f € G such that f(0+) = f(0), f(1—) = f(1) and f(t) = g(t) a.e. on
[0,1]. For a given f € D", f’ denotes its distributional derivative, i.e.

f,:(PGDnH <f,790>17" :_<f7(10,>D"'

For more details concerning distributions see e.g. [5] or [14].
Similarly as in [11] we define for given € G"_and A € BV"*"

reg reg

(12) Az peD" o (Az, o)p :/0 goT(t)d[/O d[A()]z(r)]
and

(13)  Ad:peD" o (A7, Q) = /0 goT(t)d[/OtA(t)d[x(t)]].
It follows (cf. [13]) that the relations
(14) A= (/0 JAM)2(r)) and Ax' = (/0 A(r)dia (7))’

are true. Making use of the integration-by-parts formula (cf. [17, Proposition
1.2]) it is easy to verify that for any couple of functions z € G._, A € BV X" the
relation (Az)" = Az’ + A’z is true (cf. [13]).
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2 . General boundary value problem

Throughout the paper we assume

2.1. Assumptions. 0 < m < 2n, A € BV, f € G, M € R™" K ¢
BY ™" r € R™ and

det(I+A1A(0)) det(I—[A~A(t)]?) det(I—A~A(1)) #0
for all ¢t € (0,1).

We will consider the boundary value problem (0.1), (0.2). An n-vector valued
function z : [0, 1] = R™ is said to be its solution if it belongs to G, and satisfies
(0.1) and (0.2).

It is known (cf. [13, Proposition 2.3]) that if
(2.1)  A(0+) = A0), f(0+) = £(0), A(1=) = A(1) and f(1-) = f(1),

then z € G is a solution to (0.1) on [0, 1] if and only if the relation

/0 ([ (t) — / d[A()]a(r) — £(B)] =0

holds for all ¢ € D™, i.e. if and only if 2’ — A’z — f' is the zero distribution. In other
words, if (2.1) is true, then the equation (0.1) is equivalent to the distributional
differential equation (0.3).

It is also known (cf. e.g. [16, Section III.2] or [15, Theorems 6.15 and 6.17])
that under our assumptions there exists U : [0,1] x [0,1] +— R™ ™ such that
x :[0,1] — R™ is a solution to (0.1) on [0, 1] if and only if

(2:2) 2(t) = U(t,0) x(0) + f(t) — f(0)
- [[awemum -0y o o1
The function U is uniquely determined by the relations
(2.3) Ult,s) =1+ /lt d[A(T)]U(7,s) forall t,s€]0,1].
Furthermore, it satisfies the relations
U(t,T)U(r,s) =U(t,s) and det(U(t,s)) # 0 for all t,s,7€[0,1].

Inserting (2.2) into (0.2) we get the following assertion.
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2.2. Proposition. Under the assumptions 2.1 the problem (0.1), (0.2) possesses
a unique solution for any f € G and any r € R™ if and only if

(2.4) m=n and dimN(L)=0,

or equivalently if and only if
1
(2.5) m=mn and det (M —|—/ K(7)d. [U(r, 0)]) #0. O
0

Proof. The problem (0.1), (0.2) obviously possesses a solution if and only if there
is ¢ € R" such that

(2.6) Dc¢=0b,

where

D=M+ /IK(T) d.[U(r,0)]
and

1 1 T
b=r— [ K@@+ [ K@ [ apeare - o).
and this solution is then given by (2.2), where we put z(0) = ¢. Consequently,
the problem (0.1), (0.2) possesses for any (f,7) € Gl x R™ a unique solution if
and only if for any b € R™ the equation (2.6) possesses a unique solution ¢ € R™.
Obviously, this is possible if and only if m = n and the homogeneous equation
Dc = 0 possesses only the trivial solution ¢ = 0, i.e. if and only if (2.5) is true or
equivalently if and only if (2.4) is true. O

2.3. Definition. For given z € G”_and t € [0, 1], we define

reg

ﬂw—xmw—ﬁdmwnﬂ)_

20 @@®:<Mﬂm+ﬁKWﬂﬂﬂ

Using Definition 2.3 we can rewrite the problem (0.1), (0.2) as the operator
equation

f(t) = £(0)

r

Lx =
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Furthermore, L € L(G",G™ x R™) (cf. [17, Proposition 2.16 and Theorem 2.8]).
As we noticed in Section 1 the function h given by

hitel0,1] - /Ot d[A()]a(r) € R

belongs to G for any x € G". Consequently, L. € L(G._, G x R™). Moreover,

reg? reg
analogously as it was done for the case of solutions left-continuous on (0,1] in

the proof of [18, Proposition 2.6] we could utilize the formula (2.2) to show the
following assertion.

2.4. Theorem. Let us assume 2.1 and let the operator L be given by (2.7). Then
the range R(L) of the operator L is closed in G” x R™. ]

Furthermore, in virtue of [19, Theorem 2.7], BV™ x R™ x R™ is the dual space
to G, x R™, while for given y € BV", v € R" and § € R™, the corresponding
linear bounded functional is given by
(2.8) (g9,7) € G, xR™

1
((g:7); (4,7, 0)) g xrm =" g(0) + / y (r)dlg(T)] + 0" r.
0

Let v € G, y € BV", vy € R* and § € R™ be given. Then in virtue of (2.8)
and of the Substitution Theorem (cf. [17, Theorem 2.19]) we have

29) (L Menene = [ 70457 K)le()
4+ 6" Ma(0) —l—/old[/tlyT(T)d[A(T)]]x(t).
Furthermore, integrating by parts (cf. [17, Theorem 2.15]) we obtain
) [ Xl / A0
= ([ oo - [ ([ v@dam)do)

+y"(0)ATA(0)ATz(0) — y"(1)ATA(1)A™z(1).
Define

A(0+) if t=0,
(2.11) Alty=< A(@t) if t€(0,1),
A(l-) if t=1.
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Then making use of [17, Corollary 2.14] for any ¢ € [0, 1] we get

(2.12) /t y (M) d[(A(7) = A(7))] = —y"(DATAQ1) + 2" (1),

where
—yT(0)ATA(0) if ¢t =0,

zT(t){ 0 if ¢e(0,1),
T(1)ATA(L) i t=1.

On the other hand, according to [17, Proposition 2.12] we have
/0 ZT(t)d[z(t)] = y" (DA A A" z(1) — y"(0)ATA0)ATz(0).
Thus, with respect to (2.12), we have
y" (DATA()A™z(1) — y"(0) AT A(0)AT2(0)
—— [ ([ 7o) - A+ A A) dfe(o)

and the relation (2.10) reduces to
[t [ @i = -( [ vndam) «o
[ ([ e
(L, (Y, 7,0))Gp,, xrm
:/1 (")) + 6" K /tly )] = " (A A(D)) (1)
(67 M — / d[A(1)]) x(0).

With respect to the definition of the adjoint operator this completes the proof of
the following assertion.

yT
( d[A(T)] = y" (1)A~A(1)) d[x(1)].
Thus

2.5. Theorem. Let us assume 2.1. Then the operator

*

L:(y",~"d") e BV" xR" x R™ —
(y"(t) + 0" K () —/t y"(r) d[A(T)] — y"(1) ATA(1),
6" M —/0 y'(r)d[A(T)]) €BV"xR"

18 the adjoint operator to L. ]
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2.6. Corollary. Let us assume 2.1 and let A be given by (2.11). Then the prob-
lem (0.1), (0.2) possesses a solution in G if and only if

(2.13) /0 y() d[F ()] + 677 = 0

holds for any couple (y,d) € BV™ x R™ wverifying the system

(2.14)  y'(s)—y"(1) —/ y"(r) d[A(m)] = 6" (K (1) — K(s)) =0, s € [0,1],
(2.15) y7(0) T+A*A(0)] + 67 [K(0) — M] =0,
(2.16) y' (1) [=A~A(1)] + 67 K(1) =0

Proof. For a given f € G and t € [0,1], let us put ¢g(t) = f(¢t) — f(0). Then

reg

((9,7), (4,7, O)ep, xrm :/0 y"(r)d[f(r)] + 6" r

holds for all f € G" ,r e R™, y € BV" v € R” and § € R™. Thus, by Theorems

reg?

2.4 and 2.5 (cf. (2.8) and (2.10), as well) the problem (0.1), (0.2) (or equivalently
the operator equation Lz = (g,7)) possesses a solution if and only if (2.13) is
true for any solution (y,7,d) € BV"™ x R™ x R™ of the system

(2.17) yT(S)Z/ y"(r) d[A(7)] = 6T K (s) — y"(1) A"A(1)  on [0,1],

0= /0 Y () d[A(r)] — 6% M.

(Notice that for v we did not obtain any condition and 7 does not appear in the
condition (2.13), as well.)

Now, making use of (2.12), it is easy to verify that the systems (2.14)-(2.16)
and (2.17) are equivalent and this completes the proof. O

2.7. Corollary. Let us assume 2.1 and let A be given by (2.11). Then the peri-
odic boundary value problem (0.1),

(2.18) 2(0) = z(1)

possesses a solution in G" if and only if

reg

[ vistas=o
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holds for any solution y € BV™ of the system

(219) 6=+ [ v dio) tep
(2.20) y"(0) [[+ATA(0)] =y"(1) [I-A~A(1)].
Proof. Tf we put

(2.21) M=0 and K()=Ion [0,1]

then the condition (2.18) takes the form (0.2). Inserting (2.21) into (2.14)-(2.16)
we obtain (2.19) and (2.20). O

2.8. Definition. The system (2.14)-(2.16) is said to be the adjoint problem to
(0.1), (0.2) (or to the corresponding homogeneous problem Lz = 0).

2.9. Remark. Obviously, y € BV, whenever y is a solution of (2.19). Hence,
making use of the definition (1.2) (cf. also (1.4) ) the equation (2.19) can be
rewritten as the distributional differential equation 3’ = —(AT)Iy.

2.10. Remark. Ifin addition to 2.1 we assumed also ATA(0) = 0 and A~A(1) =
0, then the adjoint problems (2.14)-(2.16) and (2.19), (2.20) would reduce to the
systems

(2.14), ¢ (0) = =07 (K(0) = M), y*(1) = =67 K(1)
and

v =—(A")"y, y7(0) =y (1),

respectively.

3 . Adjoint problem

In this section we will consider the adjoint problem (2.14)-(2.16) to the given
problem (0.1), (0.2). In addition to 2.1 we will assume also that

(3.1) det (I-ATA(0)) det (I+A~A(1)) # 0.

Obviously, under assumptions 2.1, for the function A given by (2.11) we have

AecBV™"  A(0+) = A(0), A(1-) = A1)

reg )

and
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det (T—(A"A(s))*) # 0 on [0,1].

(Let us notice that according to the conventions introduced in Section 1, we put
A~A(0) = ATA(1) = 0.) Hence, for given § € R™ and € R, the equation
(2.14) possesses a unique solution y on [0, 1] such that y(1) = n (cf. [16, Section
[11.4]). This solution is given on [0, 1] by

(32)  y(s) = n"V(Ls) — 6" (K(s) — K(1)
g / (K(r) — KQ)d[V(r )], s e [0.1],

where V' is an n x n-matrix valued function uniquely determined on [0, 1] x [0, 1]
by the relation

(3.3) V(t,s) :I+/tV(t,r)d[Z(r)], t,s € 0,1].

Let s,t € [0,1] such that 0 < s <t < 1 be given. Inserting (2.3) and (3.3)
into the expression

Wi(t,s) ::/ dT[V(t,T)]U(T,t)+/ V(t,7)d [U(,t)]

and making use of the Substitution Theorem (cf. [17, Theorem 2.19]) we get

Wit s) = / V() A — AU ()
= V(t,5)A% (A(s) — A(s))U(s, 1) + A7 (A(t) — A(t))

[ =ATA(0) if s=0 n 0 if t<1
N 0 if s>0 ATA() if t=1 [
On the other hand, the integration-by-parts formula when applied to W(t,s)
yields
W(t,s) = 1=V(t,s)U(s,t) + A" A{t)A™A(t)
— V(t, ) ATA(s)ATA(s)U (s, 1),

where the relations

(34)  U(t+,s)—U(t,s) = ATA®)U(,s), te(0,1],s€]0,1],
V(t,s+)—V(t,s) =-VI(t, S)A+Z(s), te[0,1],s € 0,1),
Ut,s) —U(t—,s)= ATA)U(t,s), te(0,1],s€0,1],
Vit,s) —V(t,s—)=-V(ts)A"A(s) te[0,1],se (0,1],
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which follow from (2.3) and (3.3) were utilized.
Similarly as in the proof of [16, Theorem III.4.1] we can complete the proof
of the following assertion giving the relationship between the functions U and V.

3.1. Proposition. Let us assume 2.1 and (3.1) and let the functions U and V/
be respectively given by (2.3) and (3.3). Then

(3.5) V(t, s)[I—A* A(s)] [[+A* A(s)]
= [[+A AW [I-A"AD]U(t,s) if 0<s<t<1,

V(t,t) =U(t,t) =1 for all t €10,1],

V(t, s)[I+A™A(s)] [I—A~A(s)]
= [[—AYAD)][T+ATAWU(t,s) if 0<t<s<1. O

3.2. Corollary. Under the assumptions of Proposition 3.1 the following relations

are true

(3.6) V(0,00 = U(0,0) =1,
V(t,0)T4+AA(0)] = [T—(AA®)"U,0) for t e (0,1),
V(1,0)[I+ATA0)] =[I-A"A(1)] U(L,0),
V(1 5)[I—(ATA(s))*] = [I-A"A(1)]  U(1,s) for se(0,1)
V(1,1) = U(1,1) =1I. O

3.3. Proposition. Let us assume 2.1 and (3.1) and let the m X n-matriz valued
function Z be given by

(3.7) Z(s) = K(1)A~ A1) [I-A~A(D)]"'V (1, s)

/ K(F)dV(rs)], selo1].

Then a couple (y,0) € BV" xR™ is a solution to the problem (2.14)-(2.16) if and
only if

(3.8) y'(s)=—0"Z(s) on [0,1]
and X
(3.9) 5T(M+/ K(r)d.U(r,0)) = 0.

Proof. Since (I-A~A(1)]' —I)[I-A"A(1)] = A~ A(1), we have
(3.10) I-A AW ' =T=A"AM)[I-A"A)] !
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A couple (y,d) € BV"™ x R™ is a solution to (2.14)-(2.16) if and only if y is
given on [0, 1] by (3.2), where n € R™ is such that (2.15) and (2.16) are satisfied.
Inserting (3.2) into (2.16) we obtain

Nt =" K()[I-AA1)] !
Thus, making use of (3.2) and of the relation (3.11) we get
y'(s) = =" K()(IT-A"A@D)] " =D V(L s)
5T (K / K(r)d,[V(r,)]) = —6% Z(s) for all s € [0, 1.
Consequently, (3.2) reduces to (3.8). In particular, we have
y*(0) = =" K(1)A"A(L)[I-A"A(1)] 'V(1,0)
— 0" (K / K(r)d.[V(7,0)]).
Taking into account (3.6) this yields
(3.11) Yy (0)[I+ATA(0)] = K(1)A~A(1)U(1,0)

(K / K(r)d,[V(r, 0)]) [T +A+A(0)]
Moreover, by (3.6) we also have
(3.12) /0 " K (), [V(r, 0)] [[ LA A(0)]
/ K(1)d,[U(7,0)] = K(1)A~A(1)U(1,0) — K(0)ATA(0).
Inserting (3.12) into (3.11) and (2.15) we finally obtain
Yy (O)I+ATA(0)] + 67 [K(0) — M] = —6" (M + /OIK(T)dT[U(T, 0)]),
wherefrom the proof of the proposition immediately follows. O

3.4. Corollary. Let us assume 2.1 and (3.1). Then

dim/\/(i) = m — rank (M + /0 K()d-[U(r,0)]).
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Proof. Denote
1
r* = m — rank (M + / K(r)d [U(r, 0)])
0

Then the system (3.9) possesses exactly r* linearly independent solutions. It is
easy to see that if {6['], 6121, ... 6”1} is an arbitrary basis of the space of solutions
to (3.9), then the set of couples

{(_ZT(S)(S[I]a 5[1})7 (_ZT(S)(S[%) 6[2])7 RN (_ZT(S)(S[T*L 5[7*})}

with Z given by (3.7) is a basis in N (L"). O
3.5. Corollary. Let us assume 2.1 and (3.1). Then
(3.13) dim A'(L) = dim N(L) + m — n.
Proof. Obviously, € N (L) if and only if
1
z(t) =U(t,0)c on [0,1] and (M +/ K(r)d.[U(r,0)])c = 0.
0
This implies that
1
dim N(L) = n — rank (M + / K(7)d.[U(r,0)]).
0

The proof of our assertion then follows by Corollary 3.4. O
3.6. Lemma. Let us assume 2.1 and (3.1). Let Z € BV™*" be given by (3.7)
and let

(3.14) rank([K(0) — M, K(1)]) = m,

where [K(1), K(0) — M| stands for the m x 2n-matriz formed in o usual way.
Then

(3.15) 0" Z(s)=0 on [0,1]

if and only if 0 =0 € R™.
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Proof. Let § € R™ be such that (3.15) holds. In particular, we have
0=0"2Z(1) =0"K(1)(I+A7A(1)I-ATA(1)]™).
Moreover, since (I—i—A‘A(l)[I —ATA(1)]7H)[I-A~A(1)] =1, we have also

(3.16) [+A A [I-A AW P =T-A AT
and 6" Z(1) = 6" K(1)[I-A~A(1)]"' = 0. This is possible only if
(3.17) 6" K(1) = 0.

On the other hand, inserting (3.7) and s = 0 into (3.15) and making use of
(3.9), (3.12) and (3.17), we obtain

0=4" (K(0) + / KOV O)) [ +A* A(0)]
/ K () [U(r,0)]) = 57 (K (0) - M),

wherefrom, according to (3.17), the relation
OT[K(0)—M,K(1)]=0

follows. By the assumption (3.14) this is possible only if 6 = 0. O

3.7. Remark. Obviously, in the case of periodic conditions (2.18) (i.e. m = n,
M =0 and K(t) = I on [0, 1]) the assumption (3.14) of Lemma 3.6 is satisfied.
The relationship between linearly independent solutions of the linear algebraic
system (3.9) and solutions of the adjoint boundary value problem (2.14)-(2.16)
indicated in Lemma 3.6 could be extended to the general case, as well. Indeed,
making use of (3.17) we obtain from (3.15) that z(t) = K" (s)d has to satisfy the
Volterra-Stieltjes integral equation

1

(3.18) z"(s) +/ 25 (1)d,[V(7,s)] =0on [0,1].
0

Since under our assumptions we have

det (I+(V (s, s+) — V(s,s))) =det (I-ATA(s)) # 0 for s € (0,1]
and
det (I+(V'(0,04) — V(0,0))) = det(I) =1,
it could be shown analogously as it was done in similar situations in the proofs

of [16, Theorem II.3.10] or of [20, Theorem 5.5] that (3.18) may be true only if
z(s) =0 on [0, 1].
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4 . Periodic problem

In this section we will consider the periodic problem (0.1), (2.18) as well as the
corresponding homogeneous problem (4.1), (2.18), where

(A1) x(t)—x(())—/o d[A(s)] z(s) =0, € 0,1].

Obviously, the following assertion is true.

4.1. Proposition. Let A€ BV, f € G" and
(4.2) det (I—A~A(t)) # 0 for all t € (0,1].

Then a function x € G” s a solution to (0.1), (2.18) if and only if there is
c € R" such that x(t) is given on [0,1] by (2.2) and

(4.3) U(1,0) — I e=b,

where

b— / 4 [U, )] (F(7) = £(0) = (F(1) = £(0)). D

Furthermore, from Proposition 3.3, Corollary 3.4 and Lemma 3.6 the next
assertion follows.

4.2. Proposition. Let us assume 2.1 and (3.1). Then both the homogeneous
problem (4.1), (2.18) and its adjoint (2.19), (2.20) have ezactly

n — rank[I —U(1,0)]

linearly independent solutions. A function y € BV™ is a solution to the adjoint
problem if and only if there is a 6 € R™ such that

y'(s) = =0"[[-ATAQ)]7'V(L,5) on [0,1],
where V' is given by (3.3) and § verifies the system
(4.4) 6" [U(1,0) = 1] = 0.

Proof. It remains to show that in the case of periodic boundary conditions (i.e.
M =0 and K(t) =1 on [0,1]) the formula (3.7) reduces to

Z(s) = [[-A~A(1)]"'V (L, 5) for s € [0,1].
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Indeed, inserting K (¢) = I on [0, 1] into (3.7) and taking into account (3.16) we
obtain

Z(s) = ATAM[I-AAD)] 'V (1, 8) +1+V(1,5) — V(s,5)
= (I+A"A()I-AAD)] )V (L, s)
=[I-A"A1)]'V(1,s) for all s€[0,1]. O

4.3. Definition. For a given function A € BV"™*" the symbol A, stands for the
continuous part of the function A. Furthermore, by ® we denote the fundamental
matrix solution corresponding to the equation

x@—mmyiAdMJﬂﬂﬁzo,temJL

i.e. @ is the n X n-matrix valued function defined by the relation
t
O(t) = I+/ d[A.(7)]®(T) for t,s € ]0,1].
0

Finally, by S(A) we denote the set of points of discontinuity of A in [0, 1], i.e.
S(A) = {t € [0,1]; ATA(t) # 0 or ATA(t) #0}.
4.4. Remark. Obviously, ® € BV™*" N C"*". Furthermore, if A, is absolutely

continuous on [0, 1], i.e. if there is an n X n-matrix valued function B(t) Lebesgue
integrable on [0, 1] and such that

t
Am:/mmmﬂm]
0
then & is the fundamental matrix solution of the ordinary differential equation
¥ — B(t)x =0

such that ®(0) = L. In the general case A, € BV™**NC"*" a sequence { Ax(t)}72,
of piecewise linear functions may be constructed (cf. [12]) in such a way that ® is
on [0, 1] the uniform limit of the sequence of fundamental solutions corresponding
to ordinary differential equations

' — Ay = 0.

In addition to assumptions 2.1 and (3.1) we will need the following assump-
tions, as well.
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4.5. Assumptions. S(A) U {0} U {1} = {Tk}zzo, where p € N and 0 = 7y <
n< <, =1

It is easy to see that if A € BV " fulfils (4.2) and 4.5 then there exist
n X n-matrices C, k = 0,1,...,p, such that

Ag(t) = A(t) — A(t) = 2Co (h(t) — ) + zp: 2y h(t — 1) on [0,1],

k=1

where
0 if t<0,
(4.5) hir)=<¢ 3 if t=0,
1 if ¢>0.

Since obviously ATA(7;) = A~ A(r) = Ck for k=0,1,...,p, it is
det(I—C’k) #0for k=1,...,p.
Furthermore, we have

(4.6) U(t,s) = [I-A"AD)] " ®(t) 11 &7 (s) [I+ATA(s))]
if te(mp 1,7 and sé€lm1,m)
for some k,¢ € {1,2,...,p} such that k> ¢,

where
I if k<Y,
(4.7) Iy = [Ty (27 (1) [ +Ch ] [ —Cry] ™ O(7iy))
if k>¢.

(A similar formula was derived for the case of A right-continuous on (0,1] by
Z. Wyderka, cf. [21].)

In particular, we have
(4.8) U(1,0) = 1=[1-C,] ' @)} [T+Cy) - T.

This enables us to complete the proofs of the following assertions providing con-
ditions for the existence of solution to the homogeneous problem (4.1), (2.18)in
terms of ® and C} which are analogous to the results obtained by Z. Wyderka in
[21] for the case of A right continuous on (0, 1].

4.6. Proposition. Let us assume 2.1, (3.1) and 4.5 and let

I, (=1,2,...,p+1,
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be given by (4.7). Then there ezists the inverse matriz (II)) ™! to 1T} and is given
by

p—1

(4.9) )~ =T (27" (m) I-Cy] [1+C,] 7" (7).

j=1
Moreover, the homogeneous problem (4.1), (2.18) has a non-trivial solution if and
only if
(4.10) det (®(1) — [I=Cp] [I+Co)~" (I})~") =0
holds.
Proof. It was mentioned above that under our assumptions all the matrices
[-Cy], k = 1,...,p, are invertible. Of course, assumptions 2.1 and (3.1) en-
sure the existence of the inverse matrices [I+Cy] ™! for k = 0,1,...,p — 1, as

well. Hence the matrix (4.9) is well defined and TT§ (IT7) ' = (IT}) ' I} = 1. The
relation (4.8) may be modified as follows:

(411) U(1,0)—I=
[L—Cp) 7 (R(1) — [ =Cy] [L+Co] ™" (IT)) ) IT} [1+C]

and it is easy to see that det(U(1,0) —I) = 0 holds if and only if the condition
(4.10) is satisfied. O

4.7. Proposition. Let the assumptions of Proposition 4.6 be satisfied and, more-
over, let

(4.12) (1) = [I-C,] [T+Co] (1) 1.
Then any solution = of the homogeneous equation (4.1) on [0,1] is a solution to

the problem (4.1), (2.18), as well.
Proof. Inserting (4.12) into (4.11), we get U(1,0) =1. O

For the nonhomogeneous problem (0.1), (2.18) we have the following asser-
tions.

4.8. Proposition. Let the assumptions of Proposition 4.6 hold. Then the prob-
lem (0.1),(2.18) possesses a solution if and only if

p

(413) ren(> 1 [ e dse) =0

=1 Te-1

holds for all n € R™ such that
(4.14) " (@(1) — [[=Cy] [[+Co] * (T1}) ) =0.
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Proof. By Corollary 2.7, Proposition 4.2 and relation (4.11) the problem (0.1),
(2.18) possesses a solution if and only if

(4.15) v VL) df(r) =

holds for any n € R” fulfilling (4.14). By (3.6) we have

(4.16)  V(1,0) = [I-C,]U(1,0) [I+Cy]~",
V(l,7)= [I CoJU(L,7) [I+ATA(D] I -ATA(D)]if 0<71 <1,
V(1,1) =

Inserting (4.6) into (4.16) we obtain

V(L,7)=@(1) ;& (7) [[-A"A(r)]
for £=1,2,...,p and 7€ [r_1,7).

Now, define
Wy(r) =15 & (1) for 7€ [rp1,7] and (=1,2,...,p.
Making use of the relations

([I—Cz]_l—I)ZCg[I—Ce]_I, 621727"'7])_17
and
I =11, & () [+C) I -C|'®(ry), (=1,2,...,p.

we obtain for £ € {1,2,...,p}

V(1,7) = ®1)Wi(r) =0 if 7€ (15-1,72)-

Furthermore,
V(l, Tg_l) — (I)(I)Wg(Tg_l)
= (VI P ™ (1p—1) (I -Coy] ' = 1)
= o)D" (10_1)Cr 1[I -Cpy]™" if £>1
and

V(l ) — ®(1)Wy(7)
(1)( z+1 ( Ol Ce] — ;27 (7))
(I, @~ (1) ([ -C]™ I+Ce][1 —C ™)
—Q(1) I, @ () Co [I-C) " if €< p.

Moreover, we have
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V(1,0) = @(0)W:1(0) =V (1,1) — ®(1)W,(1) = 0.

Thus,

()W (7)) d[f(r)] = ()50~ (1) Ci [T -Ch] 7,

S(M)W,(7))d[f(7)]

®(1) (H” O (74-1) Com [1=Coq ] " =TI, @7 (7)) Co [T =C4) )
for £=2,3,...,p—1

o
.

and
[ v - ewm)dse)
=o(1)® (Tpfl)cpfl[l Cpfl]il
Consequently,
/0 V(l,T)d[f(T)]—Z@(l)( 5 Wg(T)d[f(T)])
=S ([ e - e dse)
=0(1)( D> (M (r-1) Cor [[-Coa] " AT f(11)))
—®(1)( ; (I, , @' (10) Ce [1=Co] 7" A™ f(7))) = 0,
wherefrom the proof of our proposition immediately follows. O

4.9. Corollary. Let the assumptions of Proposition 4.6 be satisfied. Then the
problem (0.1), (2.18) possesses a unique solution for any f € G™ if and only if

det (2(1) — [[=C,][I+Co] ™" (IT})™" ) #0
is satsified with (TIY)™" is given by (4.9). O

4.10. Corollary. Let the assumptions of Proposition 4.6 be satisfied. Then the
problem (0.1),(2.18) possesses a solution if and only if

p

n"[T=Cp] [T+Co] ™ (D ()™ / et (i) = 0

=1 Te-1

holds for all n € R™ verifying (4.14).
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Proof. Since by (4.7) and (4.9)
-1
M)~y =[] (27" ()L =CiIL+C5) '@ (ry) = ()™,
7=1
the proof follows by inserting of
" ®(1) =" [[=Cy)[I+Co] *(IT7)

into (4.13). 0

4.11. Remark. By Proposition 4.1 the problem (0.1), (2.18) has a solution if
and only if

(4.17) " (/0 d [U(L,7)](f() = f(0)) = (f(1) = f(0))) =0
holds for any § € R™ fulfilling (4.4). According to (3.6) we have
U(l,7) = [1-C,]~'V(1,7)[I+Q(7)] on [0,1],
where
ATA(0) it 7=0,
Q(7) { —(A*A(D)?, i 7€ (0,1),
—A7A(1) it 7=1.
Since obviously Q(0+) = Q(7+) = Q(7—) = Q(1—) =0 for all 7 € (0,1), it is
/0 4 [V(1,7)Q(M](f(r) — F(0)) = V(1,1)Q1)(f(1) — £(0))
= —V(L,DATAQL)(f(1) = £(0)).
Thus, making use of (3.16) we obtain
/0 4{U(L, D7) = F(0)) = (F(1) — £(0)
=0-G1" [ ARl - F(0)
— (I+G,[I=C,]7") (f(1) = £(0)
-G ([ a0 - 10) - () - 1))
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Finally, integrating-by-parts and taking into account that according to (3.4) we
have V(1,.) e BV™2*" V(1,04+) = V(1,0) and V(1,1—) = V(1,1), we get that

reg

57 ( / &LIU(L D) (F(r) = F(0)) — (FQ1) — F(0))
— 5Ty / V(L )l (r)]

is true for any 0 € R" and any f € G, . It follows immediately that the condition
(4.17) is satisfied for any ¢ € R™ such that (4.4) is true if and only if (4.15) holds
for any n € R™ such that (4.14) is true. By the proof of Proposition 4.8 it means
that the condition (4.17) is satisfied for any § € R" verifying (4.4) is true if and
only if (4.13) is true for any n € R™ satisfying (4.14).

4.12. Remark. If

(4.18) (ATA())? = (A A(t))* =0 for all € (0,1)

then

I-AAB)]IT+ATA@H)] =T—(ATA@t))? =1 for all t € (0,1).

In particular, for any j =1,2,...,p — 1 we have
-G =1+, [+ =[1-Cy],
GI-CiI ' =C;,  G[I+C)] =Gy,
1-C;)? =1-2C;, [1+C;)* =1+2C;.

This enables us to simplify the necessary and sufficient condition for the existence
of a solution to the periodic problem (0.1), (2.18) given in Proposition 4.8.

4.13. Corollary. Let the assumptions of Proposition 4.6 be satisfied and let
(4.18) hold. Then the problem (0.1), (2.18) possesses a solution if and only if

p

rem(X 1 [ e i) =0
=1 Te—1
holds for all n € R™ satisfying the system (4.14), where
p—1
()= =[] (@ ()1 —2¢5]0(r;))
j=1

and
p—1

1_111) = H (@_I(Tpfj)[l +20p*j]®(7pfj))'

J=1
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4.14. Remark. The results obtained in this paper may be obviously adapted
to the case of an arbitrary subinterval [y, T] in the place of [0, 1]. Furthermore,
let the functions A : [tp, 00) — R™™ and f : [tg, 00) — R™ be locally of bounded
variation, while the set S(A) of the points of discontinuity of A,

S(A) = {Tj}jeM’ where either M =N or M= {1,2,---,1/,4} ; N,

is ordered in such a way that tp <7 <--- <71 < 7; < Tj41--- < 0o holds for
any j € M such that j +1 € M and the unique accumulation point of S(A) may
be co. Furthermore, let us assume that

det (I-A~A(t)) #0 for all ¢ € [to, o)

and A generates an w-periodic measure i.e. w > 0 and A(t +w) — A(t) = const.
on [tg, 00). Notice that by [21, Lemma 1.4] the function A generates an w-periodic
measure if and only if there is a constant matrix By € R"*" and an w-periodic
function B locally of bounded variation on [ty,c0) and such that

A(t) = 530 £+ B(t) on [ty o)

and there is ky € N such that
Tivko = Tjr A ATjin,) = A A(1y) and AT A(7j44,) = ATA(7))

for all 7 € N.

It is easy to see that if A and f generate w-periodic measures and if they are
regular on (t,ty + w) and A is continuous at tp, then the problem to find an
w-periodic solution to (0.1) is equivalent to the boundary value problem (4.1),
(2.18) (with the interval [tp, to + w] in place of [0, 1]) fulfilling the assumptions of
this section.

4.15. Example. Consider the second order differential equation with distribu-
tional coefficients

(4.19) u" — (at+2qh(t—7m))u=4¢,

where 0 < 71 < 1, o = a?, a > 0, h stands for the Heaviside type function given
by (4.5), g € G,,, and ¢ € R is a parameter. The corresponding periodic problem
(4.19),

(4.20) u(0) = u(1), «'(0)=1'(1)
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may be rewritten in the form (4.1), (2.18), where

A(t) = Aot + QClh(t - 7'1),

to= (2 0)0= (g o) e s0= ()

In particular, we have n = p = 2, S(A) = {r1}, where 0 =7y < 743 < 1 = L.
Moreover, it is

CF =0, det (1=Cy) = Tand (IF) ' = (1) " = B(r)) (1-2) @ (7,

where the fundamental matrix ® corresponding to A (t) = Agt is for any a > 0
given on [0, 1] by

(4.21) O(t) = 2 20
a(eat _ efat) eat + efat
2 2
Inserting (4.21) into (I13)~", we get
1 N q (62(17'1 _ e—?aﬁ) q (eaTl _ e—an)?
()~ = 2a 2a?
1 _q (eaTl + e—aTl)Q 1 B q (62@7'1 e—2a7'1)
2 2a
Denote
M(q) = @(1) — (IIF) .
It is easy to verify that
a —a q(ea — e—a)
det(M(¢q)) =2—e*"—e* - —— 2
a
and
D _pl o0
det(M(q)) =0 ifandonlyif ¢=¢":=a Ze-e
ea _ e—a

By Corollary 4.9 the problem (4.19), (4.20) possesses a unique solution for any
g € G, if and only if ¢ # ¢*. Furthermore,we have
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where

e% +e %)2 + (ean _|_efa7'1)2
ea _ e—a + e2a7'1 _ e—2a7'1 (
O G E ) -

a((e% + e7%)2 — (eaﬁ + e—an)?) (ea _ e—a) _ (e2an _ e—2a7—1)

and it is easy to see that n™ M(¢*) = 0 holds for n € R? if and only if there is

v € R such that
a 2aT11
T _ e’ —e
n _7( aea+62a71’1>'

Consequently, Corollary 4.13 yields that in the case ¢ = ¢* the problem (4.19),
(4.20) possesses a solution if and only if the relation

ea _ e2a7'1

(_am,1)/0 & (s)d[f(s)] = 0

is satisfied. It is easy to check that under our assumptions this condition reduces
to

/OT1 (ea—l—as + eZaTl—as)d[g(S)] +/ (eas + e2aT1+a—a8)d[g(8)] =0.

T1

4.16. Example. Consider the problem from Example 4.15, but with @ = —a?

and a > 0. In this case we have is given by
sin(at
cos(at) sin(at)

d(t) = a , telo,1],
—a sin(at) cos(at)

M(q) = (1) — (1)

in(2 i 2 -1
1+ cos(a) — qsm(a ary) sma(a) L4 (cos( 5271) )

in(2
—a sin(a) + g (cos(2am) +1) —1+ cos(a) + M
a
It can be verified that

det(M(q)) = 2(1 — cos(a) — M)

a

and thus det(M(¢q)) = 0 if and only if either there exists k € N such that a = 2kn
or a # kr for all k € N and ¢ = ¢* := a tan(3).
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By Corollary 4.9 it follows again that the given problem has a unique solution
for any g € G,,, if and only if there is a k € N such that a = (2k+1)7 or a # kn
for all k € N and q # q*.

If a # kn for all £k € N and ¢ = ¢*, then

* a *
M(g) = 2 tan(§)M;,

where

cos(2 + ary)cos(2 — ar
M = —sin(§ + ari) cos(5 — am) (3 1)a (5 1)

a sin(§ + ar)sin(§ —am) —cos(§ +am)sin(§ — am)

Moreover, n™ M(q*) = 0 for n € R? if and only if there is a v € R such that
n* =~ (", where

( (atan(g —am),1) if 7 #45— ”(2;:1) for all leZ,
t(e —
("= ¢ (aCO(2 aﬁ)) if 71#%—%( for all e,
= a
(1,0) if m=3-— ”(2;:1) for some (€ Z,
L (0,1) if m=1-2 for some (€ Z.

and Z stands as usual for the set of integers.
It can be shown that in the first case (i.e. 7 # 3 — W(ijl) for all ¢ € Z) the
necessary and sufficient condition for the existence of a solution to the problem

reduces to

/OTI cos(§ — a(m — s))d[g(s)] + / cos(§ + a(r1 — s))d[g(s)] = 0.

T1

Similar necessary and sufficient conditions for the existence of a solution could
be derived in all the remaining cases.
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