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ABSTRACT. The paper deals with linear differential equations on the interval [0, 1] with distributional
coefficients and solutions from the space of regulated functions. In particular, it is shown that if the
n X n-matrix valued function A(t) has a bounded variation on [0, 1] and the n-vector valued function
f(t) is regulated on [0,1] and both A(t) and f(t) are regular on [0,1] (cf. (0.7)) then the system

m/ _ Alm — f’,

where the derivatives and equality are understood in the distributional sense, is equivalent with the
system of Volterra-Stieltjes integral equations

t
2(t) — x(0) - /0 [d A(s)]z(s) = £(t) — £(0), te0,1].

As a consequence the basic existence and uniqueness theorems for the given system are proved and
the variation-of-constants formula for its solutions is obtained. Furthermore, analogous results for the
second order distributional differential equations of the form

u ' (Ou = (1)

are given, as well.

0. INTRODUCTION

Provided an nxn-matrix valued function P(t) and an n-vector valued function g(t) are Lebesgue

integrable on [0, 1] and the functions A(t) and f(t) are given by

A(t) = /Ot P(s)ds and f(t) = /Otg(s)ds, te0,1],
an n-vector valued function x(¢) is called a solution to the system
(0.1) z' — P(t)x = g(t)
on [0,1] in the Carathéodory sense if it is a solution to the integral equation
t
(0.2) a(t) — x(0) —/0 [dA(s)]=(s) = £(t) — £(0), te[0,1],
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i.e. if it is absolutely continuous on [0, 1] and the equality

holds for a.e. t € [0,1].

Probably the most stimulating motivation for investigation of systems which maintain basic
features of ordinary differential equations and at the same time admit discontinuous solutions
was the desire to explain some phenomena occurring in the study of continuous dependence of
solutions of ordinary differential equations on a parameter (cf. [Ku-Vo] and [Ku2]). Furthermore,
it appeared e.g. that the proper adjoint problem to the boundary value problem (0.1),

| K@)z -0

contains in general case when K (t) is of bounded variation on [0, 1] (and not continuous in general)
an equation of the form (0.2) with the right hand side of bounded variation on [0,1] and not
continuous in general (cf.e.g. [Ha-Mo] or [Ve-Tv]).

There are essentially two ways of generalization of linear ordinary differential equations (0.1)
to equations which admit discontinuous solutions. One of them consists in generalization of the
concept of the derivative and leads to differential equations in the distributional sense. The first
step in this direction is due to J. Kurzweil (cf. [Kul]). Theorems on existence and uniqueness of
solutions to differential systems of the form

(0.3) ' — Atz = f'(b),

where the n x n-matrix valued function A(t) and the n-vector valued function f(¢) are of bounded
variation on [0,1] and derivatives and equality are understood in the distributional sense, were
obtained by J. Ligeza (cf. [Lil]). Related results may be found e.g. in [Li2], [Pa-De], [Per], [Pf]
and [Za-Se]. The other way of generalizing of ordinary differential equations is based on the use
of a more general integral in the integral equation (0.2) and leads to generalized differential (or
differentio-Stieltjes integral) equations defined by their integral form (0.2). The study of generalized
differential equations of the form (0.2), where the n x n-matrix valued function A(t) and the n-
vector valued function f(t) are of bounded variation on [0, 1] and the integral is the Perron-Stieltjes
one, was initiated by J. Kurzweil (cf. e.g. [Ku2]), T. H. Hildebrandt (cf. [Hi2]) and others.
J. Kurzweil introduced a generalized concept of the sum-type Stieltjes integral which is equivalent
to the Perron-Stieltjes integral. (A survey of the basic properties of this integral may be found
in [S-T-V], [Sch1] or [Sch3]. Some additional properties of the Perron-Stieltjes integral concerning
the integration with respect to regulated functions were established in [Tv1].) Furthermore, in
[S-T-V] a basic theory of generalized integral systems of the form

(0.4) (1) — /0 [AK(t, 5)](s) = £(2),
0.5) :c(t)—/o [AK(t, s)]z(s) = £(2)

and of boundary value problems for generalized differential equations of the form (0.2) (with
solutions of bounded variation) was developed. Further results concerning related topics may be
found in [Sch1],[Sch2] and [Sch3]. Similar problems were treated also by Ch. S. Honig, L. Barbanti
and L. Fichmann (cf. e.g. [HO], [Ba], and [Fi]), who made use of the interior Dushnik integral and
were looking for solutions in the space of regulated functions, i.e. of functions possessing at each
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point of the interval [0, 1) a limit from the right and at each point of the interval (0, 1] a limit from
the left. The use of the interior Dushnik integral instead of the Perron-Stieltjes integral causes that
the equations studied by Ch. S. Honig, L. Barbanti and L. Fichmann, though written in the same
form as the equations (0.2), (0.4) and (0.5), are not identical with them. In the space of regulated
functions the generalized differential equations of the form (0.2) (with the Perron-Stieltjes integral)
were investigated in the paper [Tv2].

From many points of view the ”integral” approach appears to be more convenient then the
”distributional” one. The integral equation (0.2) which should be satisfied at any point ¢ of
the interval [0,1] seems to be more concrete than the rather symbolic equation (0.3). Due to
the difficulties with the explicit definition of the distributional product of functions of bounded
variation with derivatives of such functions the results for distributional differential systems (0.3)
are not so explicit as those available for generalized differential systems (0.2). In particular,
the variation-of-constants formula for distributional differential systems of the form (0.3) has not
been established until now. However, there is one substantial advantage of the ”distributional”
approach: generalizations of higher order differential equations are formulated via distributional
differential systems in a more natural way. As the known conditions ensuring the existence and
uniqueness of a solution to the systems (0.2) and (0.3) are very similar, it is a general feeling that
these two systems should be equivalent. Nevertheless, it seems that there are no results concerning
the relationship between the systems (0.2) and (0.3) available. The first attempt in this direction
was done by M. Pelant (cf.[Pel]).

The aim of this contribution is to show the equivalence (under certain assumptions) of the
systems (0.2) and (0.3) and of the second order distributional differential equation

(0.6) u” +q'(Hu = ()

and a certain Volterra-Stieltjes integral equation of the form (0.4). This enables us e.g. to get the
variation-of-constants formulas for distributional differential equations (0.3) and (0.6), as well.

Throughout the paper R” denotes the space of real column n-vectors, R! = R and N stands
for the set of positive integers. Given a k x n-matrix M, its elements are denoted by m; j, M !
denotes its inverse, M* is its transposition and ||M| = maz;=1, 2?21 |m; ;|. The symbols I
and 0 stand respectively for the identity and the zero matrix of the proper type.

Any function f: [0,1] — R which possesses finite limits

flt+) = Tim f(r) and f(s=) = lm f(7)

T—s—

for all t € [0,1) and s € (0,1] is said to be regulated on [0, 1]. Any k x n-matrix valued function F
defined on [0, 1] and such that all its elements f; ;(t), ¢ = 1,2,...,k;j = 1,2,...,n are regulated
functions on [0, 1] or functions of bounded variation on [0, 1] is said to be a matrix valued function
regulated on [0, 1] or of bounded variation on [0, 1], respectively. BV*"™ denotes the Banach space
of k x n-matrix valued functions of bounded variation on [0, 1] equipped with the norm

F ¢ BV¥" s ||F|lgv = |F(0)| + var} F.

The space of column n-vector valued functions regulated on [0, 1] is denoted by G™ and G% stands
for the set of all functions f € G™ such that

(0.7) F0+) = £(0), f(1-) = £(1)

and
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fi=) + F(t+)

ft) = 5 for t € (0,1).
Functions fulfilling (0.7) are usually called regular on [0,1]. The set of all regular on [0, 1] k& x n-

matrix valued functions of bounded variation on [0, 1] is denoted by BVﬁ;g. For x € G™ we put

lz|l = sup |z(t)].
tef0,1]

It is well known that G™ is a Banach space with respect to this norm (cf. [HO, Theorem 3.6]).
Obviously, Gy, is a closed subspace of G" and hence it is also a Banach space with respect to the
same norm. For more details concerning regulated functions or functions of bounded variation see
[HO] or [Hi2], respectively.

As usual L} stands for the Banach space of measurable and Lebesgue integrable column n-
vector valued functions on [0, 1]. Instead of G!, G%eg, BV! and Li, we write G, Gyey, BV and Ly,
respectively.The integrals occurring in the sequel are the Perron-Stieltjes ones.

1. DISTRIBUTIONS

In what follows 2 stands for the topological vector space of functions ¢ : R — R possessing
for any j € NU {0} a derivative (/) which is continuous on R and such that ¢ (t) = 0 for any
t € R\ [0,1]. The space 2 is endowed with the topology in which the sequence ¢ € 2 tends to
wo € 2 in 2 if and only if limy, ||cp,(€]) - cp(()]) || =0 for all j € NU{0}. Linear continuous functionals
on Zare called distributions on [0, 1]. The space of distributions on [0, 1] is denoted by 2*. Given
a distribution f € 2* and ¢ € 9, < f,p > denotes the value of the functional f on ¢. Any
function f € L; is identified with the distribution

1
Y H<f,<,a>=/0 ety

In particular, the zero element 0 of 2*is identified with the function vanishing a.e. on [0, 1].
Obviously, if f € G, then f = 0 if and only if f(t+) = f(s—) = 0 holds for any ¢ € [0,1) and
s € (0,1].

Given an arbitrary f € 2*, the distributional derivative of f is denoted by f', i.e.

flioed w<fllo>=—<f¢o>.
Analogously,
flroed < flo>=<f " >.

If f € 9% then f' = 0 if and only if there is a ¢ € R such that f = ¢, i.e. there is a function
g € L! such that f = g and g(t) = c for a.e. t € [0,1]. Analogously f” = 0 if and only if there are
c1, ¢ € R such that f = ¢ + eaot.

All multiplications of distributions which occur in this paper are justified by the following
definitions based on the definition given in [Pa-De]:

If f € Greg and g € BV g, then

(L1) fd0eD o< fp>= / (FOp)[d (0]

and

(1.2) F9: o€ < flgp>= / (g(t)p(®) [d F(1)].
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The relations (1.1) and (1.2) define linear continuous functionals on 2 which are compatible with
the known definitions also in the case that the regularity of functions f and g is not supposed.
However, the usual relation

(1.3) (f9) =fg+fd,

which is by (1.1) and (1.2) equivalent to the relation

/ 1 10~ | A g(s) - / () [dg(a)] |0t =0 for il e 7,

then need not be true in general. The validity of (1.3) in the case that both f and g are regular
on [0, 1] follows by the integration-by-parts theorem (cf. [Tv1, Theorem 2.15]).

The space of column n-vector valued functions ¢(t) = (¢;(t))=1,...» such that ¢; € 2 for any
j=1,2,...,n will be denoted by 2" while its dual space (which is the n-th cartesian power of
2*) will be denoted by 2™*. The elements of 2™* will be called n-vector distributions. Given
F=1, 0oy fn) € 2™ and @ = (p1,92,...,0n)* € 2™, the value of the functional f on ¢ is
given by

< f:QO >=< fl;‘ﬂl >+ < f2)(102 >+--+< fn;‘pn > .

As in the scalar case, if f € L}, then f will be identified with the n-vector distribution

1
F:oe2" =»<f,p >=/0 e (t)f(t)dt.

Similarly, if g € G", then the distributional derivative g’ of g is given by

1
g:peId" »<g,p >=/0 @*(t)[dg(t)].

An n-vector distribution f is said to be the n-vector zero distribution (f = 0) if all its entries
are zero distributions. A k x m-matrix A whose entries a;;,4 = 1,2,...,k;j = 1,2,...,n are
distributions is said to be a k x n-matriz distribution. Given a k X n-matrix distribution A =
(@ij)i=1,. k>=1,. n, the matrix A" = (agﬁj)i:L___,kD:L___,n is said to be the derivative of A.

If a k x n-matrix distribution A = (a;;)i=1,... k5=1,..,n and an n-vector distribution = =
(xj)j=1,...,n are such that all products a; jz;, ¢ = 1,2,...,k;j = 1,2,...,n are defined, then the
product Ax is defined as the k-vector distribution y with the elements y; = 2?21 a; jTj, i =
1,2,... k.

2. LINEAR DISTRIBUTIONAL DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

In this section we shall consider the system
(2.1) ' — Az =f
and the corresponding homogeneous system
(2.2) ' — Az =0,

where the derivatives, products and equality are understood in the sense of distributions.
2.1. Assumptions. A € BV2" and f € GI

reg reg-
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2.2. Definition. An n-vector valued function x(t) is called a solution to the equation (2.1) on
the interval [0,1] if z € Gy, and

reg

a.:l _ AI.'I: _ fl
is the zero n-vector distribution.

It follows from the definition (1.1) that under the assumptions 2.1 the product A'x is defined
and the relation

(2.3) Az = (/0 [d A(s)]2(s))’

holds for an arbitrary x € G2 . In fact, for any ¢ € 2™ we have by (1.1) and by the substitution

reg’

theorem (cf.[Tvl, Theorem 2.19])

<Az, p>= zk: <Zn:/01 [dai,j(t)]mj(t)soi(t)>

=3[ e >/ [dass ()9 i) = [ o [ag0)
where the function £(t) given by
£(t):/ [dA(s)]e(s) for te0,1]
0

is regulated on [0,1] by Theorem 1.3.4 of [Ku2]. Furthermore, given an arbitrary division {0 =
to <t <-- <ty= 1} of [0,1], we have

/ " [dA®s)]as)

tj—1

m
t
<> (var_, A)llz]| < |Allv llz]| < o

i—

and hence

varg € < [|Allsv ||z < co.
Moreover, since £(t+) = &£(t) + AT A(t)z(t) and £(t—) = £(t) — A~ A(t)x(t), it follows immediately
that £ € BV,
Consequently, the equation (2.1) may be rewritten as the relation

!

(a- [ t 44wz =0

which holds if and only if there is ¢ € R™ such that

t
2.4) o(t) - [ [AA@]als) - £ - c=0

0
holds for a.e. ¢ € [0,1]. Since the left-hand side of (2.4) belongs to Gy, for any x € Gy, , this
means that € Gy, is a solution to the equation (2.1) on [0,1] if and only if there is a ¢ € R"

such that (2.4) is satisfied for all ¢ € [0, 1]. This completes the proof of the following assertion.
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2.3. Proposition. Let the assumptions 2.1 be satisfied. An n-vector valued function x € Gy, is
a solution to the equation (2.1) on [0, 1] if and only if it satisfies on [0, 1] the integral equation

(2.5) (t) —z(0) - /0 [d A(s)]=(s) = £(t) — £(0).

By Proposition 2.3 any solution € Gy, of the homogeneous equation (2.2) on [0,1] is of

bounded variation on [0, 1]. This enables us to transfer directly all results known for the homoge-
neous equation corresponding to (2.5) to the equation (2.2).

2.4. Proposition. Let the assumptions 2.1 be satisfied. Let to € [0,1] be given. Then the
equation (2.2) possesses for any ¢ € R" a unique solution x € Gy, such that x(to) = c if and only
if the relation

(2.6) det (I— A~ A(t)) det (I+ AT A(s)) #0 for all ¢ € (to,1) and s € (0,1o)

holds.
If the conditions (2.6) are satisfied, then there exists a unique n x n-matrix valued function
U (t,s) defined on
A={(t,s);0<t<s<ty or tH<s<t<l1}

and such that
(2.7) U(t,s)=1 +/ [d A(T)]U(T,S)

holds for all (t,s) € A.
Given an arbitrary ¢ € R", the corresponding solution of the initial value problem (2.2), x(ty) =
c is given by
z(t) = U(t, to)e, te][0,1].

Proof follows from Theorem III.1.4 and Theorem I11.2.2 in [S-T-V]. O

2.5.Theorem. Let the assumptions 2.1 and (2.6) be satisfied. Then for any ty € [0,1] and any
c € R" the equation (2.1) possesses a unique solution x € Gy, on [0,1] such that x(ty) = c. This
solution is given by

(2.8) x(t) = U(t,to)c + f(s) — £(0) —/t [dsU(t,s)] (£(s) — £(0)), tel0,1],

where U (t, s) is given by Proposition 2.5.

Proof. Let x(t) be defined by (2.8) and let to € [0,1] and ¢ € [to, 1] be given. Let us put V (¢,s) =

Ul(t,s) fortg < s<t<1, V(ts)=Iforty <t <s <1 By [S-T-V, Theorem II1.2.10] we have
v(V) + vary, V(to,.) + vary, V (., to) < o0,

where v(V) stands for the Vitali two-dimensional variation of V' over [to, 1] X [to, 1] (cf. [Hi2]).
Furthermore,

[ [@0G.nla0) = [ [0Vl

to to
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holds for all s € [t,t] and any g € G™. Hence we have

[ 10ae)] [ (0060 (50 - £0)

:/t [dA(s)]/t [,V (s,7)] (F(r) = £(0))

whence by interchanging the integration order (cf. [Tv1l, Theorem 2.20]) and making use of the
substitution theorem (cf. [Tv2, Theorem 2.19]) and of (2.7) we obtain the following relations:

[ waw)] [ [0 (50) - 1)

0 :/f [ds/t: [dA(r)]V(T,S)} (£(s) — £(0))
_ / a. [ wamwen]| e - so)

+/t: {ds/: [dA(r)]U(r,S)] (f(s) = £(0))

= [ [AAE)(F6) - £0) + [ U] (F6) - F0).

tg tO
Now it is easy to verify that (2.8) satisfies (2.5) for any ¢ > to. Similarly we could show that (2.8)
satisfies (2.5) also for ¢ < to. O

3. LINEAR DISTRIBUTIONAL DIFFERENTIAL EQUATIONS OF THE SECOND ORDER

Let us consider the equation

(3-1) ull +qlu — fll
where
(3.2) qE€BV,y and f € Gy

and solutions are defined by Definition 3.1.

3.1. Definition. A function u : [0,1] —» R is called to be a solution to the equation (3.1) if
U € Greg and u" +¢'u — f" is the zero distribution.

Let ¢ and f fulfill (3.2). Then by the definition of the distributional derivative we have for
any u € Greg

1 1
u':peP — / u(s)¢’(s)ds and f":9p€ P — / f(s)¢" (s)ds.
0 0
Furthermore, by (1.1) we obtain

fuipes [ [ u(s)p(s) = - / 1 af t [da)]u(s)| (o)

_ /01 </Ot (/0 [dq(r)]u(r))ds)g@”(t)dt.

Since according to the integration by parts theorem (cf. [Tvl, Theorem 2.15]) and the substi-
tution theorem (cf. [Tvl, Theorem 2.19])

/Ot </0 [dq(r)]U(r)>ds:/0t [d /Os(t—r)[dq(r)]]u(s)

for any ¢ € [0, 1], it is easy to complete the proof of the following assertion.
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3.2. Theorem. Under the assumptions (3.2) the function u € Gy, is a solution to the equation
(3.1) on [0, 1] if and only if there are constants ug,u; € R such that it holds

(3.3) u(t) + /0 [dsk(t,s)]u(s) = f(t) — f(O) +uo +urt, te]0,1],
where
(3.4) k(t,s) = /s(t —r)[dg(r)] for 0<s<t<1.

Let us put k(t,s) = k(t,t) for 0 <t < s < 1. Then it is easy to verify that
v(k) + varg k(0,.) + varg k(.,0) < 2varg g,
where v(k) stands for the Vitali variation of k(t, s) over [0,1] x [0, 1]. Furthermore,
k(t,s) —k(t,s—) = (t —s)(q(s) —q(s—)) for 0<s<t<1
and
k(t,s) — k(t,s—) =0 for 0<t<s<1.

In particular, k(t,t) — k(t,t—) = 0 for all ¢ € (0, 1]. Hence by [S-T-V, Theorem I1.3.10] there exists
a unique function ['(t,s) such that v(I') + var{ ['(0,.) + varg I'(.,0) < oo,

Tt 5) = k(t, s) — k(t,0) + /t [d,k(t,7)]D(rs) if 0<s<t<l

and
I'(t,s) =T(t,1) if 0<t<s<L
Denoting
(3.5) O(t,s) =1+T(tt)—T(t,s) for ¢,s€]0,1],
we obtain
®(t,.) € BV,e, forany tel0,1], @(¢,t)— ®(t,t—)=0 forany te€ (0,1]
and
t
(3.6) B(t,s) =1 +/ [d,k(t,7)] ®(r,s) for 0<s<t<l

o(t,s) =1 for 0<t<s<1.
A similar argument as that used in the proof of Theorem 2.5 implies that for any g € G the function
t
(3.7) o) =gt) - [ [d.6 )9, te 1)
0

is the unique solution of the Volterra-Stieltjes integral equation

x(t) +/0 [dsk(t,s)]m(s) = g(t)

on [0,1]. Since the function v(t) given by

v(t):/o [dsk(t,s)]x(s):/o [da(s)](t - 8)2(s)

is continuous on [0,1] for any x € G, any solution v € G of (3.3) on [0,1] has to be regular on
[0, 1]. Inserting g(t) = f(t) — f(0) + up + w1t into (3.7) and integrating by parts we complete the
proof of the following assertion.
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3.3. Theorem. Let (3.2) hold and let the function k(t,s) be given by (3.4). Then for any uy € R
and any u; € R there exists a unique solution u € Gy, of the equation (3.3) on [0,1] such that
u(0) = ug. This solution is given by

(3.8)

u(t) = ®(t,0)ug + (/Ot'b(t,s)ds>u1 +/Ot<1>(t,s) [df(s)], telo,1],

®(t, s) is defined by (3.5).

3.4. Remark. Making use of similar arguments to those of the previous section we could obtain
that the given equation (3.1) is equivalent to the equation

(u' +/0 [d q(s)]u(s) — f')l =0.

Hence, if f' € Gy¢q, then (3.1) may be rewritten as

(3.9)

w(t) — u'(0) + / [dg(s)]u(s) = F'(t) - F/0), te0,1].

In particular, v’ € Gy for any solution w of (3.1) on [0,1]. Making use of Theorem 3.3 it can
be shown easily that if we assume f’ € Gy, in addition to the assumptions of Theorem 3.3, then
for any ug and u; € R there is a unique solution wu(¢) of (3.1) on [0,1] such that u(0) = ug and
u'(0) = uy and this solution is given by (3.8).

3.5. Remark. Equations of the form (3.9) with f' € BV were treated in [Mi].

[An-Li]
[Bal

[Fi
[Ha-Mo]

[Hi1]

REFERENCES

ANTOSIK P., LIGEZA J., Products of measures and functions of bounded variation, Proceedings of the
conf.on generalized functions and operational calculus, Varna 1975 (1979), 20-26.

BARBANTI L., Linear Volterra-Stieltjes integral equations and control, Lecture Notes in Mathematics,
1017, Springer Verlag (1983), 67-72.

FICHMANN L., Volterra-Stieltjes Integral Equations and Equations of the Neutral Type (in Portuguese),
Thesis. University of Sao Paulo (1984).

HALANAY A., MORO A., A boundary value problem and its adjoint, Annali Mat. Pura Appl. 79 (1968),
399-412.

HILDEBRANDT T. H., On systems of linear differentio-Stieltjes integral equations, Illinois J. Math. 3
(1959), 352-373.

HILDEBRANDT T. H., Introduction to the Theory of Integration, Academic Press, New York-London,
1963.

HONIG CH. S., Volterra-Stieltjes Integral Equations, Mathematics Studies 16, North-Holland, Amster-
dam, 1975.

KUrzwEIL J., Linear differential equations with distributions as coefficients, Bull. Acad. Polon. Sci.
Ser. math. astr. et phys. 7 (1959), 557-560.

KUrzwEIL J., Generalized ordinary differential equations and continuous dependence on a parameter,
Czechoslovak Math. J. 7(82) (1957), 418-449.

KURrzwEIL J., VOREL Z., Continuous dependence of solutions of differential equations on a parameter,
Czechoslovak Math. J. 7(82) (1957), 568-583.

LI1GEZA J., On distributional solutions of some systems of linear differential equations, Casopis pést.
mat. 102 (1977), 37-41.

LIGEZA J., Weak Solutions of Ordinary Differential Equations, Uniwersytet Slaski, Katowice, 1986.
MINGARELLI A. B., Volterra-Stieltjes Integral Equations and Generalized Ordinary Differential Ex-
pressions, Lecture Notes in Mathematics, 989, Springer-Verlag, Berlin-Heidelberg-New York, 1983.
PanDIT S. G., DEO S. G., Differential Fquations Involving Impulses, Lecture Notes in Mathematics,
954, Springer-Verlag, Berlin-Heidelberg-New York, 1982.



[Pel]
[Per]
[P
[Schi]
[Sch2]

[Sch3]
[S-T-V]

[Tv1]
[Tv2]
[Ve-Tv]

[Za-Se]

Differential and Integral Equations with Regulated Solutions 11

PELANT M., Second order generalized ordinary differential equations with solutions of bounded varia-
tion (in Czech), Dissertation, Charles University Prague (1991).

PERSSON J., Linear Distribution Differential Equations, Comment. Math. Univ. St. Pauli 33 (1984),
119-126.

PFAFF R., Generalized systems of linear differential equations, Proc. Roy. Soc. Edinburgh 89A
(1981), 1-14.

SCHWABIK S., Generalized Differential Equations (Fundamental Results), Rozpravy CSAV, Rada MPV,
95 (6), Academia, Praha, 1985.

SCHWABIK S., Generalized Differential Equations (Special Results), Rozpravy CSAV, Rada MPV, 99
(3), Academia, Praha, 1989.

SCHWABIK S., Generalized Ordinary Differential Equations, World Scientific, Singapore, 1992.
SCHWABIK S., TVRDY M. AND VEJvoDpA O., Differential and Integral Equations: Boundary Value
Problems and Adjoints, Academia and D.Reidel, Praha and Dordrecht, 1979.

TVRDY M., Regulated functions and the Perron-Stieltjes integral, Casopis pést. mat. 114 (1989), 187-
209.

TVRDY M., Generalized differential equations in the space of regulated functions (Boundary value
problems and controllability), Mathematica Bohemica 116 (1991), 225-244.

VEIJvOoDA O., TVRDY M., Ezistence of solutions to linear integro-boundary-differential equation with
additional conditions, Annali Mat. Pura Appl. 89 (1971), 169-216.

ZAVALISHCHIN S. G., SESEKIN A. N., Impulse Processes, Models and Applications (in Russian), Nauka,
Moscow, 1991.

Author’s address: MILAN TVRDY, MATEMATICKY USTAV AV CR, ZITNA 25, 115 67 PRAHA 1, CZECH REPUBLIC
E-mail address: tvrdy@math.cas.cz



