European Cooperation in the field of Scientific and Technical Research

Thermal Profile in Solder Paste Reflow Process

Paul Svasta, Ioan Plotog

"Politehnica" University of Bucharest, Rumania Center for Technological Electronics and Interconnection Techniques Spl. Independentei 313, 060042-Bucharest, Romania, paul.svasta@cetti.ro; ioan.plotog@cetti.ro

COST ACTION MP0602: Joint Working Group Meeting, Genoa, February 2008¹

- 1. Assembling technology 2. Solder paste parameters 3. Thermal profile analyzes 4. Results 5. EOI – support project proposal
- 6. Conclusions

Elements of the joint

Component

Solder paste

Joint

Pad NiAu, OSP, Ag-im, HAL, Sn-im

SMD solder joints

Surface Mount Technology (SMT):

A: Print, B: Pick in place, C: IR/Conv. Oven, D: VPS Oven.

Vapour Phase Soldering technology

VPS advantages versus IR/Covection Lead-Free soldering process:

- ➤ maximum temperature of 230°C;
- > simultaneous solder in an oxygen free environment;
- > without influence of the form, dimension or color of the electronics components and devices;
- > without influence of the thermal mass.

VPS PARAMETERS:

- > The level above boiling liquid surface;
- > Duration on each programed level;
- > Energy introduced in system.

(to boiling liquid)

2. SOLDER PASTE PARAMETERS

Solder paste: - suspension of solder particles in a fluxcontaining printing vehicle in which the shape and size of the particles and the flow properties ('rheology') of the flux vehicle are matched to the method of paste application (printing process) in order to obtain the optimum deposit on pads corresponding whit components terminals, that are put on there (pick & place)

Solder particles size and distributions: - standardized according with ANSI/J-STD-005 standard and IPC specification IPC-SF-819

Solder particle powder size designation in ANSI/J- STD-005							
Туре	<0.005% larger than	<1% larger than	>90% between	>10% smaller than			
1	180µm	150µm	150-75μm	20µm			
2	90µm	75µm	75-45µm	20µm			
3	53µm	45µm	45-25μm	20µm			
4	45µm	<mark>38µm</mark>	<mark>38-20μ</mark> m	20µm			
5	32µm	25µm	25-15µm	15µm			
6	25µm	15µm	15-5µm	5µm			

Solder paste characteristics: > Flow; Thixotropy; Rheology : to assure print process

Slump: tends to slump and spread after printing or dispensing.

Solder paste misalignment & printing defects

> Tackiness: to enable the paste deposit to stick to components pressed into it.

> Metal content: solder alloy particle content, shape, dimensions, oxygen content.

3. THERMAL PROFILE

Lead free thermal profile limits

Lead-Free Reflow Profile Recommendation (IPC/JEDEC J-STD-020C)

Reflow Parameter	Lead-Free Assembly		
Minimum preheat temperature (Ts _{MIN})	150°C		
Maximum preheat temperature (Ts _{MAX})	200°C		
Preheat Time	60-180 seconds		
Ts _{MAX} to T _L ramp-up rate	3°C/second maximum		
Time above temperature T _L (t _L)	217°C 60-120 seconds		
Peak Temperature (T _P)			
Time 25°C to T _P	6 minute maximum		
Time within 5° of Peak T _P	10-20 seconds		
Ramp-down rate	4°C/second maximum		

Lead-Free Process - Peak Reflow Temperatures (TP)						
Package Thickness	Volume mm3 < 350	Volume mm3 350-2000	Volume mm3 > 2000			
< 1.6 mm	260°C	260°C	260°C			
1.6mm-2.55mm	260°C	250°C	245°C			
>2.5mm	250°C	245°C	245°C			

3. Experiment

The goals of experiments:

IR/C Bandwidth and Shape of Profile;
VPS thermal profile optimizations;

The experiment resources:

Solder paste: OM338T, no-clean, type 3, (25-45µm per IPC J-STD-005) SMT line: printer/DEK 265 Infinity, pick-&-place/HSP 4796 GSM2-FlexJet VPS machine: SLC504, IBL Components: Chip cases 0402, 0603, 0805, 1206

Bandwidth and Shape of Profile

VPS thermal profile optimizations

Results

Bandwidth: - IR/C: 10°C

- VPS: 3°C

Shape:

- IR/C: clasic, IPC /JEDEC- J-STD-020 - VPS: specific shape

Process	Parameters		
Dhago	Level	Power	Period
rnase		%	S
Step 1	10	50	25
	8	50	40
Step 2	4	50	2
	10	50	2
	1	40	5
Solder	2	90	1
Step	3	100	1
	4	80	5
Evaporate	Over	0	20
Cooling	Over	0	60

Partners:

 Departement of Material Science and Physical Metallurgy - Associated. Prof. Mihai Branzei solder pastes and solder joints microstructures analyse;

 Research Center for Applied Mechanic – Prof. **Dan Constantinescu - mechanical properties of** solder joint determination;

- Research Center for Energy and Environment Protection, Prof Corneliu Balan - Rheology, Thermodynamically properties;

-OEM/EMS companies in assembling of electronic equipments field INTRAROM – COO **Carmen Turcu - reflow process applications;** -Fela Romania technology SCS – CEO Alexandru Batuca – PCB's manufacturing

Conclusions

> VPS opportunity for Zn based solider alloy

> The optimum VPS thermal profile by measuring temperatures directly on pcb surface: - preheating with 1.4 °C/sec until 185-190°C and go to range of melting point with 0.66 °C/sec until maximum temperature 230 °C.

THANK YOU !