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The concept of NMR crystallography – a combination of advanced techniques of solid-state NMR, x-ray 

powder diffraction and molecular computation – is applied to describe structure and molecular 

dynamics of the recently discovered low-temperature crystal modifications of simvastatin.

While atorvastatin (the world’s best selling drug) exhibits extensive 

polymorphism including more than 65 solid forms, simvastatin is still 

described only in one anhydrous crystalline form. But according to the 

McCrone’s famous statement other crystal forms of simvastatin must exist. 

While thermodynamics of any crystal-phase transition is described by 

DSC, solid-state NMR spectroscopy provides site-specific information 

about these events at atomic resolution without requirements on long-

range order. 
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In the case of simvastatin the NMR signals of ester tail exhibit very strong 

temperature dependence, broadening and bellow the second transition steep 

narrowing. While the crystal Form II is rather motionally disordered, Form III 

consists of two symmetry independent molecules in well defined conformations.  

X-ray diffraction on single crystals provides the “golden standard” of molecular 

structure analysis. In absence of suitable single crystals the diffraction on 

powdered samples (XRPD) is applied. Structure determination, however; is not 

straightforward even from synchrotron data. Distance restraints and structural 

fragments obtained by ss-NMR then can provide initial models for the structure 

refinement. 
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Molecular dynamics substantially affects physical properties of many organic solids. T1 and T1ρρρρ
NMR relaxation measurements provide valuable information about motional frequencies of 

molecular segments in wide range .

Variable-temperature NMR experiments clearly identify molecular fragments that 

are most affected by the crystal-phase transition.
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As indicated by very short T1 relaxation times the ester tail carries out fast (high-frequency) motion that 

is substantially restricted by the first transition. The mid-kilohertz motional mode of the ester tail is 

strongly affected by both transitions and activation energy of theses motions dramatically change. 

E*=4 kJ.mol-1

E*=30 kJ.mol-1
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DSC plots show two endothermic events occurring at 232.6 and 272.0 K. Low 

enthalpy of both events (∆∆∆∆H = 1.1 and 2.7 J/g) indicates that both crystal phase 

transitions do not dramatically change potential energy of the system (weak 

interactions and segmental dynamics are affected). 
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T e m p e r a t u r e    °CAmplitudes of segmental motions can be probed by 

measurements of one-bond 1H-13C dipolar couplings. The 

determined order parameter can be converted to motional 

amplitudes. High-amplitude motions of the ester tail (C22) 

are dramatically reduced: Form I → Form III.

ppm

283032343638404244 ppm

-10

10

0

ppm

283032343638404244 ppm

-10

10

0

Form I

(305 K)

Form III

(230 K)

1H-13C dipolar spectra

0
0,1

0,2

0,3

0,4
0,5

0,6
0,7

0,8
0,9

1

2,5 3 3,5 4 4,5 5
1000/T [K -1]

S

C22 (CH
2
)

Order parameter vs. temperature

Form IIIForm IIForm I

-15000 -10000 -5000 0 5000 10000 15000

1H-13C dipolar profiles of CH2 (C22)

Form I

(320 K)

Form III

(225 K)

Combination of two-site 

jumps

(C20-C21 and C21-C22)

High-amplitude 

rotational diffusion

Low-amplitude 

wobbling

Form I

(290 K)

Form III

(235 K)

Form II

(265 K)

Form II

(255 K)

F
o

rm
 I

F
o

rm
 I

I
F

o
rm

 I
II

Acquisition

Decoupling 

(TPPM)

t
3

1H:

13C:

FSLG90±±±±y

t
1

x

O2=   0           ±lg 0           ±lg +lg -lg +lg -lg +lg 0 kHz

35±±±±y

+x -x +x -x

LGCP

t
2

+x -x +x -x +x -x +x -x

180±±±±y

180±±±±x 180±±±±x

rotor period:        0                         tr 2tr

t
f

t
f

FSLG FSLG

Yao X.L., et al. J. Magn. Reson. 149, 139 (2001)

11HH--1313C (C (11HH--11H) contactsH) contacts

FSLG HHCP HETCORFSLG HHCP HETCOR
LongLong--range range 11HH--1313C contactsC contacts

REDORREDOR--dephaseddephased HETCORHETCOR

ppm

10152025303540

6

4

2

13 long-range  contacts1H:

standard HETCOR

Suppression of one-bond correlation signals increases number of 

structurally more important long-range contacts. 

Form I: 25 → 40; Form II: 27 → 43; Form III: 31 → 49.
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A bit different correlation pattern is provided by HETCOR 

experiments in which 1H-1H spin exchange is suppressed by 

Lee-Goldburg cross-polarization. 

There are only slight differences between all three phases, but the differences still 

significantly affect the powder diffraction pattern. From the terminology point of view it 

would be interesting to discuss, if such slight conformation changes accompanying the 

phase transformation I to II are enough to consider the change as a true phase 

transformation or a change of disorder with the identical phase. The energy changes 

occurring during this process seem to indicated true crystal-phase transition……
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Proton-carbon spin pairs are detected by 2D HETCOR 

experiments. Sufficient resolution allows to identify more than 

80 heteronuclear contacts. 
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