Study of system 96 Her by Fourier disentangling

Mgr. Jan Elner, MFF UK Praha

Supervisor: RNDr. Pavel Koubský, AsÚ AV ČR

Outline

- 1. Method of Fourier disentangling
- 2. Program KOREL
- 3. 96 Her
- 4. Results
- 5. Summary

Methods of the analysis of the composite spectra

- Measurement of the radial velocity and solution of RV curve
- Cross-corellation
- Method of the broadening function
- Methods of spectra decomposition
 - Direct decomposition
 - Tomographic separation
- Method of simple disentangling
- Fourier disentangling

Disadvantages of the classical methods

- Often is necessary to know RV in advance
- Some methods need knowledge of a template spectrum
- Due to using recurrent procedures random noise cumulates (e.g. direct subtraction)

Simple disentangling

 Simultaneous decomposition of spectra and determination of their RV, or direct solution of orbital parameters (Simon & Sturm, 1994)

$$\begin{pmatrix} M_{\mathbf{A}\mathbf{1}} & M_{\mathbf{B}\mathbf{1}} \\ \dots & \dots \\ M_{\mathbf{A}\mathbf{N}} & M_{\mathbf{B}\mathbf{N}} \end{pmatrix} \begin{pmatrix} I_A \\ I_B \end{pmatrix} = \begin{pmatrix} I(t_1) \\ \dots \\ I(t_N) \end{pmatrix}$$

- Set of *M* × *N* linear equations, *M* number of pixels in a typical exposition, *N* – number of expositions
- M are matrices with units shifted off-diagonal for RV in pixels

Fourier disentangling

- Hadrava (1995)
- Calculates with Fourier images of the observed spectra
 - numerically easier
 - allows further generalization

Principle of the Fourier disentangling

Assuming multiple system of *n* stars and spectrum of every component I_j(x)|ⁿ_{j=1} is constant in time with Doppler shift in radial velocity v_i(t) – star j in time t

• Composite spectrum observed in time *t* is thus $I(x,t) = \sum_{j=1}^{n} I_j(x) * \delta(x - v_j(t)).$ and its FT is $\tilde{I}(y,t) = \sum_{j=1}^{n} \tilde{I}_j(y) \exp(iyv_j(t)).$

Principle of the Fourier disentangling

 Huge set of linear equations in FT splits into many simple sets with a dimension of number of stars in the system

• Generalization
$$I(x,t) = \sum_{j=1}^{n} I_j(x) * \Delta_j(x,t,p)$$

where Δ_j are general broadening functions = Doppler shift + line-profile broadening, *p* are parameters characterizing orbital motion or physical conditions of formation of the spectra

Principle of the Fourier disentangling

 Principle of disentangling lies in minimalization of the sum of integrated squares of deviations between observed and modelled spectra

$$0 = \delta \sum_{l=1}^{N} \int |I(x,t_l) - \sum_{j=1}^{n} I_j(x) * \Delta_j(x,t_l,p)|^2 dx$$

Line strength variability

- Admitting line-strength variability of some components – original motivation – better results for phases with partially or completely eclipsed component
- To the equations we put time-dependent factors of line-strength s_{jl} = s_j(t_l) for every component, then

$$\Delta_j(x,t_l,p) = s_{jl}\delta(x-v_j(t_l,p))$$

and FT is $\tilde{\Delta}_{j}(y, t_{l}, p) = s_{jl}e_{jl}$

KOREL

- Developed by dr. Hadrava (1995, 1997)
- Fourier disentangling
- Decomposition of time series of multiple systems' spectra (max. 5 components)
- From k spectra of n stars (k>n) finds individual spectra and corresponding RV by the method of least squares
- It is possible to determine orbital elements of the system – using simplex minimalization method

KOREL

Hierarchic structure of a stellar system

- Input data program PREKOR we choose a region of spectra for the solution
- For first iteration is necessary to know an approximate estimation of orbital parameters

96 Her

Courtesy: Aladin database

96 Her

- All components visible in the spectrum are B2-3V
- Variation of RV discovered in 1911 (Mitchell)
- Presence of another component (besides the binary) confirmed by several observations
- Suspicion for apsidal motion, precession of the orbit of the close binary A+B, orbitally bound changes in brightness

96 Her

- Processed spectra Ondřejov (RETICON: 1993-95, CCD: 2004-2008), Pic du Midi (Musicos: 2003-2004)
- Solution mainly for lines... 1: He I 6678
 2: Si II 6347
 3: Si II 6371
- Convergence of orbital parameters and in several cases also line-strengths

96 Her – 3 components?

96 Her – orbital parameters

Close binary

• Third component

- *P*=*12.460326 d*
- $T_0 = 49084.777 JD$
- *e=0.53*
- Ω=317.15°
- $K_1 = 55.68 \text{ km/s}$
- $q = M_2 / M_1 = 0.9582$

- *P*=7680.04 *d*
- $T_0 = 46228.573 JD$
- *e=0.176*
- Ω=34.49°
- $K_1 = 6.23 \text{ km/s}$
- q=1.048

RETICON – 3 components

RETICON – 2 stellar components + 1 telluric

CCD – 3 components

CCD – 2 stellar components + 1 telluric

MUSICOS – 3 components

MUSICOS – 2 stellar components + 1 telluric

All spectra – 3 components

All spectra – 2 stellar components + 1 telluric

Degrading of MUSICOS data

All spectra – resampled data – 3 components

MUSICOS – resampled data – 3 components

MUSICOS – original data – 3 components

Line-strength vs. phase -RETICON

Line-strength vs. phase -CCD

Line-strength vs. phase -MUSICOS

96 Her – summary

- Cca 70 spectra processed and used for calculations with KOREL
- Third component was separated from the composite spectra – its nature is not definetely distinguished – small sensitivity to longer periods
- Orbital parameters in individual datasets differ

96 Her – problems

- Data from different instruments doesn't work together smoothly
- Telluric lines found by KOREL do not seem to correspond to known lines of Earth's atmosphere
- Resampling of Musicos data to the resolution of Ondřejov spectra does not help

Thank you for your attention