Genetic algorithms

Martin Netolický

November 6, 2008

The outline

- Introduction: The interferometric observations of $v \mathrm{Sgr}$
- The description of the genetic algoriths
- The results
- Conclusion

Introduction

v Sgr

- single-line spectroscopic binary
- peculiar spectrum with emission lines
- infrared excess, 2 BBs approximation of the SED
- \rightarrow presence of the dust shell
- VLTI/MIDI interferometric observations
- summer 2007 + May 2008
- 12 visibility measurements (UTs 2, ATs 10)

MC3D

The code

- continuum RT, based on the Monte-Carlo method
- emitting, scattering, absorbing and reemitting photons from the central source on the spherical dust grains
- input: geometry, parameters of the model, dust catalogue
- output: model, SED, spatial \& spectral brightness (polarization maps)

MC3D

The geometry

$$
\begin{gathered}
\varrho(r, z)=\varrho_{100}\left(\frac{100}{r}\right)^{\alpha} \exp \left[-\frac{1}{2}\left(\frac{z}{h(r)}\right)^{2}\right] \\
h(r)=h_{100}\left(\frac{r}{100}\right)^{\beta}
\end{gathered}
$$

Input parameters

- the source: $\underline{d}, \underline{T}, \underline{L}$ (assuming BB approximation)
- the geometry of the disk: $R_{\text {in }}, \underline{R_{\text {out }}}, i, \alpha, \beta, h_{100}$
- the dust properties: chemical compostion, size distribution, total mass of the dust

Parameter space

parameter	min	max	step	n(step)
α	1.80	2.50	0.10	8
β	0.70	1.50	0.10	9
h	2.0	7.5	0.5	12
$R_{\text {in }}$	2.0	7.5	0.5	12
i	30	75	5	10
$\log M_{\boldsymbol{d}}$	-7.0	-3.5	0.5	8
silicate $/$ am. C.				6

The parameter space of the MC3D models:

- $5 \cdot 10^{6}$ possible combinations of parameters
- ~ 800 years of computation on 3 GHz 1CPU PC.

The scheme of the GA

The first generation of the models

First generation of the models

- each generation has n models
- random selection of the $n \cdot k$ parameters that we want to find
- $\rightarrow n$ models of 1st generation

$$
M_{1, j}=\left(p_{1, j, 1}, \ldots, p_{1, j, k}\right), j \in(1, n)
$$

Evaluation

- weight: the ability to survive (fitness function)

$$
w_{1, j}=\left(\chi_{1, j}^{2}\right)^{-1}
$$

Crossover

We have models and the corresponding weights now.

$$
M_{i, j} \quad w_{i, j} \quad j \in(1, n)
$$

($i \ldots$. the number of the generation)
Selection of the n pairs of the models for the crossover

$$
\begin{gathered}
M_{i, a}, M_{i, b} \quad a, b \in(1, n) \\
P\left(M_{i,(a, b)}=M_{i, j}\right)=\frac{w_{i, j}}{\sum_{j} w_{i, j}}
\end{gathered}
$$

Crossover probability $p_{c} \sim 0.95-0.99$

$$
x_{i, j} \in(0,1) \quad j \in(1, n), P\left(x_{i, j}=1\right)=p_{c}
$$

$x_{i, j}=1: j$-th pair of the models undergo the crossover
$x_{i, j}=0$: one of the models of the j-th pair pass directly to the mutation

Crossover

In the case of the crossover ...

$M_{i, a}$	$p_{i, a, 1}$	$p_{i, a, 2}$	$p_{i, a, 3}$	$p_{i, a, 4}$	\cdots	$p_{i, a, k}$
$M_{i, b}$	$p_{i, b, 1}$	$p_{i, b, 2}$	$p_{i, b, 3}$	$p_{i, b, 4}$	\cdots	$p_{i, b, k}$
$c_{i, j}$	1	1	2	1	\cdots	2
$M_{i+1, j}$	$p_{i, a, 1}$	$p_{i, a, 2}$	$p_{i, b, 3}$	$p_{i, a, 4}$	\cdots	$p_{i, b, k}$

$M_{i, a}, M_{i, b}$ - the "parents", 2 models selected from the i-th generation
$C=c_{i, j}$ - crossover matrix for the i-th generation, j-th pair of "parents"
$M_{i+1, j}$ - the "child"; will become the member of $i+1$-th generation after mutation

Mutation

From the previous steps we have:

- n models $M_{i+1, j}$ with k parameters $p_{i+1, j, l}$

Mutation

- probability of the mutation $p_{m} \sim 0.01-0.05$

$$
m_{i+1, j, l} \in(0,1) \quad j \in(1, n), l \in(1, k), P\left(m_{i+1, j, l}=1\right)=p_{m}
$$

If. . .

- $m_{i+1, j, l}=1$
\rightarrow the parameter $p_{i+1, j, /}$ is replaced with new, random value
- $m_{i+1, j, l}=0$
\rightarrow nothing happens
We have the new generation models now! $i+1 \rightarrow i$

New generation

- computation of the new models
- evaluation of the new models ($w_{i, j}$)
- A) do the models fit our criteria?
- B) do the models still evolve? (aren't the models degenerated?)
- $A) \& B)=\mathrm{NO} \rightarrow$ proceed to the next loop of the scheme

The results

The evolution of the mean and minimal χ^{2}.
$n=96, p_{c}=0.975, p_{m}=0.05$

The result

The comparison of the results

parameter	new	old
$d[\mathrm{pc}]$	595	513
$R_{\text {in }}[\mathrm{AU}]$	$6.0_{-1.5}^{+0.5}$	$4.0_{-1.0}^{+2.0}$
i	$50^{\circ}+20^{\circ}$	$40^{\circ} \pm-15^{\circ}$
α	$2.0_{-0.3}^{+0.5}$	$2.4_{-0.4}^{+0.1}$
β	$0.7^{+0.3}$	$0.95_{-0.3}^{+0.05}$
$h_{100}[\mathrm{AU}]$	$3.5_{-1.5}^{+2.0}$	3.0 ± 2.0
$\log \left(M_{\mathrm{d}} / M_{\odot}\right)$	$-3.5_{-3.0}$	-6.0
$M_{\text {am. }} / M_{\mathrm{d}}$	$0.6_{-0.4}^{+0.2}$	0.6
χ^{2}	1.51	2.92

Conclusion

GA works! But ...

- ... they are efficient just for searching in huge parameter space
- ... they have problems with searching the precise solution
- ... they need large number of evaluated models

However...

- ... they do not require much knowledge about the system
- ... you will find at least some solution
-it's unlikely to find just local minima
- ... their results are quite good for huge parameter spaces
- ... they can be adopted for large number of problems

It can be shown that the number of models that are ...

- ... better than average increases exponentially with time
- ... worse than average decreases exponentially with time

Reference

- Šíma J., Neruda R.: Theoretical Issues of Neural Networks, 1996
http://www2.cs.cas.cz/~sima/kniha.html (in Czech)

