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Introduction

υ Sgr

I single-line spectroscopic binary

I peculiar spectrum with emission lines

I infrared excess, 2 BBs approximation of the SED

I → presence of the dust shell
I VLTI/MIDI interferometric observations

I summer 2007 + May 2008
I 12 visibility measurements (UTs 2, ATs 10)



MC3D

The code

I continuum RT, based on the Monte-Carlo method

I emitting, scattering, absorbing and reemitting photons from
the central source on the spherical dust grains

I input: geometry, parameters of the model, dust catalogue

I output: model, SED, spatial & spectral brightness
(polarization maps)



MC3D

The geometry
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Input parameters

I the source: d , T , L (assuming BB approximation)

I the geometry of the disk: Rin, Rout, i , α, β, h100

I the dust properties: chemical compostion, size distribution,
total mass of the dust



Parameter space

parameter min max step n(step)

α 1.80 2.50 0.10 8
β 0.70 1.50 0.10 9
h 2.0 7.5 0.5 12

Rin 2.0 7.5 0.5 12
i 30 75 5 10

log Md −7.0 −3.5 0.5 8
silicate / am. C. 6

The parameter space of the MC3D models:

I 5 · 106 possible combinations of parameters

I ∼ 800 years of computation on 3GHz 1CPU PC.



The scheme of the GA
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The first generation of the models

First generation of the models

I each generation has n models

I random selection of the n · k parameters that we want to find

I → n models of 1st generation

M1,j = (p1,j ,1, . . . , p1,j ,k), j ∈ (1, n)

Evaluation

I weight: the ability to survive (fitness function)

w1,j = (χ2
1,j)

−1



Crossover
We have models and the corresponding weights now.

Mi ,j wi ,j j ∈ (1, n)

(i . . . the number of the generation)
Selection of the n pairs of the models for the crossover

Mi ,a,Mi ,b a, b ∈ (1, n)

P(Mi ,(a,b) = Mi ,j) =
wi ,j∑
j

wi ,j

Crossover probability pc ∼ 0.95− 0.99

xi ,j ∈ (0, 1) j ∈ (1, n),P(xi ,j = 1) = pc

xi ,j = 1: j-th pair of the models undergo the crossover
xi ,j = 0: one of the models of the j-th pair pass directly to the
mutation



Crossover

In the case of the crossover . . .

Mi ,a pi ,a,1 pi ,a,2 pi ,a,3 pi ,a,4 · · · pi ,a,k

Mi ,b pi ,b,1 pi ,b,2 pi ,b,3 pi ,b,4 · · · pi ,b,k

ci ,j 1 1 2 1 · · · 2

Mi+1,j pi ,a,1 pi ,a,2 pi ,b,3 pi ,a,4 · · · pi ,b,k

Mi ,a, Mi ,b – the ”parents”, 2 models selected from the i-th
generation
C = ci ,j – crossover matrix for the i-th generation, j-th pair of
”parents”
Mi+1,j – the ”child”; will become the member of i + 1-th
generation after mutation



Mutation

From the previous steps we have:

I n models Mi+1,j with k parameters pi+1,j ,l

Mutation

I probability of the mutation pm ∼ 0.01− 0.05

mi+1,j ,l ∈ (0, 1) j ∈ (1, n), l ∈ (1, k),P(mi+1,j ,l = 1) = pm

If. . .

I mi+1,j ,l = 1
→ the parameter pi+1,j ,l is replaced with new, random value

I mi+1,j ,l = 0
→ nothing happens

We have the new generation models now! i + 1→ i



New generation

I computation of the new models

I evaluation of the new models (wi ,j)

I A) do the models fit our criteria?

I B) do the models still evolve? (aren’t the models
degenerated?)

I A) & B) = NO → proceed to the next loop of the scheme



The results
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The evolution of the mean and minimal χ2.
n = 96, pc = 0.975, pm = 0.05



The result



The comparison of the results

parameter new old

d [pc] 595 513

Rin [AU] 6.0+0.5
−1.5 4.0+2.0

−1.0

i 50◦+10◦

−20◦ 40◦ ±−15◦

α 2.0+0.5
−0.3 2.4+0.1

−0.4

β 0.7+0.3 0.95+0.05
−0.3

h100 [AU] 3.5+2.0
−1.5 3.0± 2.0

log(Md/M�) −3.5−3.0 −6.0

Mam.C/Md 0.6+0.2
−0.4 0.6

χ2 1.51 2.92



Conclusion

GA works! But . . .

I . . . they are efficient just for searching in huge parameter space

I . . . they have problems with searching the precise solution

I . . . they need large number of evaluated models

However . . .

I . . . they do not require much knowledge about the system

I . . . you will find at least some solution

I . . . it’s unlikely to find just local minima

I . . . their results are quite good for huge parameter spaces

I . . . they can be adopted for large number of problems

It can be shown that the number of models that are . . .

I . . . better than average increases exponentially with time

I . . . worse than average decreases exponentially with time
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