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Physics of diatomic molecules

center of mass

vibration

rotation



Simple rotational approach: Rigid rotator

Discrete energy values:

EJ ∼ J (J +1)

Selection rules:

∆J = ±1
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Simple vibrational approach: Harmonic oscillator

Discrete energy values:

Ev = hν
(

v+ 1
2

)

Energy levels are equidistant

∆v = ±1
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First improvement: Anharmonic oscillator
From quantum mechanics we find for the energy values:

Ev ∼
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Second improvement: Non-rigid rotator
Energy values:

EJ ∼ J (J +1)− xJ2 (J +1)2 + yJ3 (J +1)3 + .....
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Final model: Vibrating rotator

Ev,J =∑
k,l

Yk,l

(

v+
1
2

)k

(J2+J)l .

Yk,l = Dunham coefficients
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Coupled transitions : Vibration-rotation bands
Valid selection rules: ∆J = ±1 and ∆v = 0,1,2, . . .
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Emission spectrum of CO-bands
Line intensity in each individual vib-rot line is given by
Iν0 =

R

Nv,Jhνv,J;v′J′Av,J;v′J′dΦ(ν)dν
Nv,J : Level population
Av,J;v′J′ : Einstein coefficients of spontaneous emission
Φ(ν) : Profile function

Vibrational quantum number v Rotational quantum number J
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Appearance of CO bands with temperature



Tracing the kinematics of the CSM

• CO bands represent the regions of hot (2500 K ≤ T ≤

5000 K) and dense gas.

• Due to their high temperatures, CO band emission must
arise from regions closer to the star than any circumstellar
dust (Tevap(dust) = 1500 K).

• In the case of YSO, CO is located in the accretion disk
(Keplerian rotation).

• In the case of evolved supergiants, CO might form in a
dense (disk-forming?) equatorial wind (rotation versus
outflow).
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. individual vib−rot lines
purely thermally broadened

have to be folded with
the profile function of
a Keplerian rotating disk

to result in a rather broad
band−head structure

that fits the observed one
for the YSO WL 16.
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The typical characteristics of Keplerian rotation

on the broadened band−head structure :



Supergiants: equatorial wind versus Keplerian disk

Both scenarios deliver identical line profiles !!

How to distinguish both scenarios ?

v    = 30 km/srotv    = 30 km/s
out



. Supergiants:
wind versus disk ?

Non−sphericity of
their CSM due to
rapid rotation !

Rotating stars:
Slow−wind solution
(Cure ’04; ’05)

red curves for stars
with 65%, 70%, 80%,
90%, and 99% 
critical rotation

blue curve:
Keplerian rotation
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for the wind solution and the Keplerian disk solution
Resulting CO band spectra (first two band−heads)



CO bands as age indicators



Classification problems: stars with dense CSM

• Often unknown or uncertain distance (i.e. luminosity)
• Characteristics of more than one groups, e.g., of Herbig

Ae/B[e] as well as of B[e] supergiants

B[e] supergiants Herbig Ae/B[e]

unclassified B[e]

? ?

Many common properties !!



Herbig Ae/B[e] versus B[e] supergiants
– Common properties –

• They share similar location in the HRD



Overlap of pre- and post-main sequence evolutionary tracks
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• They share similar location in the HRD
• Circumstellar dusty disks (strong IR excess emission)
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Herbig Ae/B[e] versus B[e] supergiants
– Common properties –

• They share similar location in the HRD
• Circumstellar dusty disks (strong IR excess emission)
• CO band emission

– BUT : –

Disks around Herbig stars are pre-natal (solar abundance) while
B[e] supergiant’s disks form from their winds in a post-main
sequence phase, i.e., from processed material

Composition of disk material as tracer of the
evolutionary phase !!
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Change in surface composition during stellar evolution
(based on evolutionary models of Schaller et al. 1992)



Change in 12C/13C ratio during stellar evolution

consequently : N13CO =
N13CO
N12CO

N12CO =
n13CO
n12CO

N12CO =
N12CO

n12C/n13C



Vib-rot bands of the CO isotopes

• Vibrational frequency depends only on reduced mass, µ

• Ratio of vibrational frequencies is νi

ν =
√

µ
µi

• Heavier isotope (i) has lower frequency, (reduced energy
levels)
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Vib-rot bands of the CO isotopes

• Larger mass −→ larger moment of inertia
• Rotational energy levels are also reduced !

4

6

7

5

J

 

3
2
1
0  

2
1
0

3
 4

5

6

7

JE E i



Reduction of energy = increase in wavelength !!

CO

13CO

C18O

C17O



Appearance of the 13CO bands (Kraus 2009)



Ranges of low 12C/13C over the HRD

C/  C < 1512 1320 >   C/  C > 1512 13



Positions of the B[e] supergiant candidates

C/  C < 1512 1320 >   C/  C > 1512 13



Spectrum of the B[e] star GG Car

Tentative conclusions: 12C/13C < 10, TCO = 3000−4000 K
(Domiciano de Souza et al. in prep.)



GG Car in the HRD

C/  C < 1512 1320 >   C/  C > 1512 13



Conclusions & Outlook
• CO bands arise in the CSM of objects in different

evolutionary phases (YSO, supergiants, SN).

• Especially the first band-head of the first-overtone CO
bands is an ideal tracer of the kinematics (Keplerian
rotation, outflow, etc.)

• High-resolution observation will allow us to discriminate
whether the CSM of the supergiants is Keplerian rotating
or outflowing.

• 13CO bands are ideal tracers for processed circumstellar
material.

• High-quality data at medium resolution are needed to
detect 13CO as the the first and unambigous distinction
characteristics between pre- and post-main sequence stars.
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