CO band emission from circumstellar material: Tracer for Keplerian rotating disks, molecular outflows, and evolutionary

Michaela Kraus

states

Astronomical Institute AV ČR, Ondřejov

CO-band emission from circumstellar material : Tracer for rotation, outflow, and stellar evolution Michaela Kraus

Astronomical Institute, Ondrejov

Outline

- CO-band detection from various objects
- Physics of CO-bands
- Tracing the kinematics of the circumstellar material
 - Keplerian rotation in circumstellar disks
 - * Outflow from disk-forming winds
- CO-bands as age indicators
- Conclusions & Outlook

CO-bands from

young stellar

objects (YSO)

Chandler et al. (1993)

CO-bands from

young stellar

objects (YSO)

Chandler et al. (1993)

CO-bands from a peculiar O and two yellow supergiants in the Magellanic Clouds

McGregor et al. (1988)

CO-bands from B[e] supergiants in the

Magellanic Clouds

McGregor et al. (1988)

CO-bands from expanding and cooling remnants of Supernova explosions SN 1987 A Spyromilio & Leibundgut (1996)

2.35 Wavelength (µm)

2.4

2.45

2.5

2.35

2.35

2.4

2.45

2.5

2.4

2.45

Physics of diatomic molecules

Simple rotational approach: Rigid rotator

Discrete energy values:

 $E_J \sim J (J+1)$

Selection rules:

 $\Delta J = \pm 1$

Simple vibrational approach: Harmonic oscillator

Discrete energy values:

 $E_v = h v \left(v + \frac{1}{2} \right)$

Energy levels are equidistant

 $\Delta v = \pm 1$

First improvement: Anharmonic oscillator From quantum mechanics we find for the energy values:

$$E_v \sim \left(v + \frac{1}{2}\right) - a \left(v + \frac{1}{2}\right)^2 + b \left(v + \frac{1}{2}\right)^3 + \dots$$

Second improvement: Non-rigid rotator Energy values: $E_J \sim J (J+1) - xJ^2 (J+1)^2 + yJ^3 (J+1)^3 + \dots$

Final model: Vibrating rotator

$$E_{v,J} = \sum_{k,l} Y_{k,l} \left(v + \frac{1}{2} \right)^k (J^2 + J)^l$$

$Y_{k,l}$ = Dunham coefficients

Coupled transitions : Vibration-rotation bands Valid selection rules: $\Delta J = \pm 1$ and $\Delta v = 0, 1, 2, ...$

Emission spectrum of CO-bands Line intensity in each individual vib-rot line is given by $I_{v_0} = \int N_{v,J}hv_{v,J;v'J'}A_{v,J;v'J'}d\Phi(v) dv$ $N_{v,J}$: Level population $A_{v,J;v'J'}$: Einstein coefficients of spontaneous emission $\Phi(v)$: Profile function

Appearance of CO bands with temperature

I $_{
m \prime }$ [arbitrary units]

• CO bands represent the regions of hot (2500 K $\leq T \leq$ 5000 K) and dense gas.

- CO bands represent the regions of hot (2500 K $\leq T \leq$ 5000 K) and dense gas.
- Due to their high temperatures, CO band emission must arise from regions closer to the star than any circumstellar dust $(T_{evap}(dust) = 1500 \text{ K}).$

- CO bands represent the regions of hot (2500 K $\leq T \leq$ 5000 K) and dense gas.
- Due to their high temperatures, CO band emission must arise from regions closer to the star than any circumstellar dust $(T_{evap}(dust) = 1500 \text{ K}).$
- In the case of YSO, CO is located in the accretion disk (Keplerian rotation).

- CO bands represent the regions of hot (2500 K $\leq T \leq$ 5000 K) and dense gas.
- Due to their high temperatures, CO band emission must arise from regions closer to the star than any circumstellar dust $(T_{evap}(dust) = 1500 \text{ K}).$
- In the case of YSO, CO is located in the accretion disk (Keplerian rotation).
- In the case of evolved supergiants, CO might form in a dense (disk-forming?) equatorial wind (rotation versus outflow).

individual vib—rot lines purely thermally broadened

have to be folded with the profile function of a Keplerian rotating disk

to result in a rather broad band-head structure

that fits the observed one for the YSO WL 16.

The typical characteristics of Keplerian rotation on the broadened band-head structure :

Supergiants: equatorial wind versus Keplerian disk

Both scenarios deliver **identical** line profiles !! How to distinguish both scenarios ?

Supergiants: wind versus disk ?

Non-sphericity of their CSM due to rapid rotation !

Rotating stars: Slow–wind solution (Cure '04; '05)

red curves for stars with 65%, 70%, 80%, 90%, and 99% critical rotation

blue curve: Keplerian rotation Resulting CO band spectra (first two band–heads) for the wind solution and the Keplerian disk solution

normalized flux

normalized flux

CO bands as age indicators

Classification problems: stars with dense CSM

- Often unknown or uncertain distance (i.e. luminosity)
- Characteristics of more than one groups, e.g., of Herbig Ae/B[e] as well as of B[e] supergiants

• They share similar location in the HRD

Overlap of pre- and post-main sequence evolutionary tracks

- They share similar location in the HRD
- Circumstellar dusty disks (strong IR excess emission)

- They share similar location in the HRD
- Circumstellar dusty disks (strong IR excess emission)
- CO band emission

- They share similar location in the HRD
- Circumstellar dusty disks (strong IR excess emission)
- CO band emission

– BUT : –

- They share similar location in the HRD
- Circumstellar dusty disks (strong IR excess emission)
- CO band emission

– BUT : –

Disks around Herbig stars are pre-natal (solar abundance) while B[e] supergiant's disks form from their winds in a post-main sequence phase, i.e., from processed material

- They share similar location in the HRD
- Circumstellar dusty disks (strong IR excess emission)
- CO band emission

– BUT : –

Disks around Herbig stars are pre-natal (solar abundance) while B[e] supergiant's disks form from their winds in a post-main sequence phase, i.e., from processed material

Composition of disk material as tracer of the evolutionary phase !!

Change in surface composition during stellar evolution (based on evolutionary models of Schaller et al. 1992)

Change in ${}^{12}C/{}^{13}C$ ratio during stellar evolution

consequently: $N_{13}_{CO} = \frac{N_{13}_{CO}}{N_{12}_{CO}} N_{12}_{CO} = \frac{n_{13}_{CO}}{n_{12}_{CO}} N_{12}_{CO} = \frac{N_{12}_{CO}}{n_{12}_{C}/n_{13}_{CO}}$

Vib-rot bands of the CO isotopes

- Vibrational frequency depends only on reduced mass, μ
- Ratio of vibrational frequencies is $\frac{v^i}{v} = \sqrt{\frac{\mu}{\mu^i}}$
- Heavier isotope (*i*) has lower frequency, (reduced energy levels)

Vib-rot bands of the CO isotopes

- Larger mass \longrightarrow larger moment of inertia
- Rotational energy levels are also reduced !

Reduction of energy = increase in wavelength !!

Appearance of the ¹³CO bands (Kraus 2009)

Ranges of low ¹²C/¹³C over the HRD

log L/L₀

Positions of the B[e] supergiant candidates

log L/L₀

Spectrum of the B[e] star GG Car

Tentative conclusions: ${}^{12}C/{}^{13}C < 10$, $T_{CO} = 3000 - 4000$ K (Domiciano de Souza et al. in prep.)

GG Car in the HRD

log L∕L₀

• CO bands arise in the CSM of objects in different evolutionary phases (YSO, supergiants, SN).

- CO bands arise in the CSM of objects in different evolutionary phases (YSO, supergiants, SN).
- Especially the first band-head of the first-overtone CO bands is an ideal tracer of the kinematics (Keplerian rotation, outflow, etc.)

- CO bands arise in the CSM of objects in different evolutionary phases (YSO, supergiants, SN).
- Especially the first band-head of the first-overtone CO bands is an ideal tracer of the kinematics (Keplerian rotation, outflow, etc.)
- High-resolution observation will allow us to discriminate whether the CSM of the supergiants is Keplerian rotating or outflowing.

- CO bands arise in the CSM of objects in different evolutionary phases (YSO, supergiants, SN).
- Especially the first band-head of the first-overtone CO bands is an ideal tracer of the kinematics (Keplerian rotation, outflow, etc.)
- High-resolution observation will allow us to discriminate whether the CSM of the supergiants is Keplerian rotating or outflowing.
- ¹³CO bands are ideal tracers for processed circumstellar material.

- CO bands arise in the CSM of objects in different evolutionary phases (YSO, supergiants, SN).
- Especially the first band-head of the first-overtone CO bands is an ideal tracer of the kinematics (Keplerian rotation, outflow, etc.)
- High-resolution observation will allow us to discriminate whether the CSM of the supergiants is Keplerian rotating or outflowing.
- ¹³CO bands are ideal tracers for processed circumstellar material.
- High-quality data at medium resolution are needed to detect ¹³CO as the *the first and unambigous* distinction characteristics between pre- and post-main sequence stars.