The Most Massive Stars

1 Myr open cluster + GHR NGC 3603

Olivier Schnurr, P. Crowther (U of Sheffield)

A.F.J. Moffat, N. St-Louis, A.Villar-Sbaffi, J. Casoli (U de Montréal)

A.-N. Chené (Herzberg IfA)

Massive Stars: What are they?

- **Definition:** reaches Fe/Ni core ($M_{init} > 8 M_{\odot}$), but here: Concentrate on **O-type stars with** $M_{init} > 25 M_{\odot}$
- Populate the upper-left part of HRD
 - Hot: Teff > 30 kK on ZAMS
 - Luminous: logL/Lsol > 5.0
- High Eddington factors (L/M ratios), close to radiative instability. If Eddington limit exceeded: LBV (e.g. η Car)
- Mass-loss through radiatively-driven stellar winds; affects stellar evolution (but depends on metallicity)

Massive Stars: Why bother? (1)

- very rare, yet they dominate the light of their host galaxies (cf. FUV/UV at high redshifts!)
- lifetimes < 5 Myr make for quick turn-over (1000's of generations of massive stars since Big Bang!)
- important for galactic ecology (early Universe!):
 - chemical enrichment: winds, SN explosion
 - mechanical feedback: winds, SN explosion; galaxy-wide superwinds can trigger star formation
 - ionization radiation: star formation, cosmology...
- kinematics of star clusters: gas expulsion via stellar winds and SN explosion; interaction with massive binaries

Massive stars: Why bother? (2)

- end their lives as core-collapse SNe (Type Ib,c)
- Type Ic SNe possible progenitors of GRBs
- form neutron stars and black holes...
- the most massive stars today are the best link to the supposedly ultra-massive Pop III stars

"Todays upper limit was yesterday's lower limit!"

• one big question in massive-star formation research:

How massive can a star get? Is there an upper cutoff of the initial-mass function?

How massive are the most massive stars known?

- statistically, most massive star < 200 M_{\odot} (Oey & Clarke 2005), but study used somewhat questionable approach
- from Arches cluster: IMF cut-off at ~150 M_{\odot} (Figer 2005), but only used ill-known mass-luminosity relation to figure out stellar masses
 - for solar-type stars: $L \sim M^{4.7}$
 - for $10 < M < 25 M_{\odot}$ $L \sim M^{2.5}$
 - for $M > 25 M_{\odot}$ $L \sim M^{1.75}$
- utter lack of stars with directly confirmed $M > 40 M_{\odot}$ Direct observations are required to calibrate the models!

Arches cluster IMF (Figer 2005, Nature)

Mass-luminosity relation (log-log) for massive stars: Is it really flattening out toward very high masses?

How to "weigh" a star

- Use atmosphere models (spectroscopy) to obtain stellar parameters L, M, R, Teff, g, etc.
- Very challenging if stellar wind optically thick: non-LTE...
- Models are NOT self-consistent!
- Evolutionary (internal structure) masses and spectroscopic masses don't match!: **"mass discrepancy"** (Herrero+ 1992)
- Model quality paramount: input physics!
 - "mass disperepency" somewhat remedied by latest models (inclusion of iron in opacity data)
- Good calibrations required: observations!
 - ... and at the high end of the IMF...?

The "mass discrepancy" (old atmosphere models for O stars)

OK, how to really weigh a star...

- Keplerian orbits in binaries yield the least model-dependent stellar masses! BUT: need orbital inclination (model!)
- surprising result: O-type stars peter out at $\sim 60 M_{\odot}$
- Why? More massive stars are luminous enough to drive optically thick wind, therefore:
 - display emission-line spectrum!
 - look like Wolf-Rayet stars!
- invariably from luminous subtype of WN stars: WN5-7h/ha

(Yeah, but I've learned that WR stars are evolved objects...?!)

What are Wolf-Rayet Stars?

- Spectrum of WR star is dominated by strong, broad emission lines of highly-ionized elements
- Stellar wind: fast (100-6000 km/s), massive (few $10^{-5} M_{\odot}/yr$), dense and optically thick!
- Continuum from wind: hydrostatic surface is veiled!
- Emission from recombination (square-density dependent!)
- Little indication of physics in underlying star, but:
 classical WR stars are He-burning cores of evolved O stars!
- However, just like SNe: **definiton is purely morphological!**
- WR stars come in two flavors: WN, WC

The Wolf-Rayet Zoo: WN stars

- WN stars: enriched with CNO elements (He,N), all Pop I
 - very late-type (WN10/11): shell-H burning objects with link to quiescent LBVs (S Dor variables)...
 - classical WN: core-He burning objects, with or without H, CNO in equilibrium
 - Type Ib (no H) SN progenitors?
 - luminous WN5-7h: core-H burning, most extreme O stars ("super-Of stars"); enriched, but not in CNO-equilibrium
 - H content between 30 and 75% by mass.

The Wolf-Rayet Zoo: WC stars

- WC stars: enriched with 3α elements (C,O)
 - classical WC/WO: advanced CHeB (evolved WN stars?)
 - Type Ic (no He) SN progenitors: GRBs!
 - Have fastest steady winds known: 6000 km/s
 - CSPNe: [WC], links to AGB and wD (Pop II);
 - [WN] elusive so far, can't exist?

Spectral appearance of WN stars vs. evolutionary state

Core-hydrogen burning (CHB) stars with different wind densities

Recombination rate depend on densities of both electron and ion: squared-density effect!

Mass-loss rates as function of Eddington factor and Z

Graefener & Hamann (2008)

Inventory: The most massive stars known (O/WN)

Name	SpecType	Msin³ <i>i</i>	i(°)	M(M _☉)	Reference
R136-38	<mark>03V</mark> +O6V		90	56+23	Massey+ (2002)
WR22	WN7ha+O	55+27	90?	55+27	Schweickhardt+ (1999)
WR25	WN6ha+O	75+27	37?	344+124	Gamen+ (2006)
WR20a	WN6h+WN	6h	90	83+82	Rauw+ (2004,2005)
					Bonanos+ (2004)
WR21a	Of/WN+O	87+53	?	n/a	Niemela+ (2008)

Are there stars more massive than that? If yes: where can we find them?

Where are the most massive stars?

- In clusters, there's a relation between the total mass of the cluster and the mass of the most massive cluster member (Weidner & Kroupa 2006): The most massive stars are likely to be found in the most massive clusters!
- Mass segregation (most massive stars in the cluster core)
 - either primordial or
 - happens dynamically in less than ~1 Myr
- Thus, expect to find the most massive stars smack in the core of the most massive, young, unevolved clusters!
- Goldilock problem: Not too young (molecular cloud), not too old (stellar evolution)

Best candiates in the Local Group

- LMC: **R136a**, the central cluster of the 30 Dor GHIIR
- Galaxy: NGC3603, a perfect clone of R136a's core; Arches cluster at the GC

Cluster	R136a	NGC 3603	Arches	
location	LMC	MW (Carina)	MW (GC)	
d (kpc)	50	8	8	
M (Msol)	2 x 10 ⁴	7 x 10 ³	1 x 10⁴	
ρ_{core} (Msol/pc ³)	6 x 10 ⁴	6 x 10 ⁴	3 x 10 ⁵	
age (Myr)	23	12	2–3	

First stop: NGC 3603

- Only starburst cluster in Milky Way outside the GC region
- Only visible Giant HII region in the Milky Way
- core is HD 97950
 - resembles closely the core of R136a ("perfect clone" of inner 1 pc)
 - but 7 times closer: spatial resolution!
 - extremely dense core: most massive stars are there!

HD 97950 and its WNh content

Three WN6h stars A1, B, C in its core:

- A1 is intrinsically one(!) magnitude brighter than WR20a, which has a confirmed Keplerian mass of $\sim 80 \text{ M}_{\odot}$!
- A1 is a 3.8-day binary and double-eclipsing (Moffat et al. 2004), i.e. with known orbital inclination angle!
- C is one of the brightest X-ray sources known among all WR stars: colliding-wind binary?

In order to obtain absolute masses for A1, just obtain radial velocities of <u>both</u> components!

A HST-WFPC2 view of NGC 3603

Figure 1. HST-WFPC2 I-band (F814W) image of NGC 3603. The image is $25'' \times 25''$ (0.8 pc × 0.8 pc). The insert shows the three WR stars.

To resolve individual stars in NGC3603 use:

HST-WFPC/STIS

or

VLT/SINFONI + AO

NGC3603: CMD (I vs. R-I) and HST-FOS optical spectra of the three central WN6h stars (Drissen 1999).

Obtain AO-assisted, spatially resolved, repeated spectroscopy with VLT/SINFONI in K-band

(Schnurr+, 2008a)

Wavelength (angstroms)

HST/NICMOS photometry in J-band of NGC3603-A1

Orbital inclination angle: $i = 71^{\circ} \pm 6^{\circ}$ (Moffat et al. 2004)

NGC3603-A1 consists of two emission-line stars!

WN6h+WN6:h:

(confirmation in optical required)

Trace both components over the orbital cycle...

... and obtain their absolute masses:

 M_1 = 116 ± 31, M_2 = 89 ± 16 M_{\odot} Most massive stars known to date!

Star C is a single-lined binary!

P = 8.89 days

For both A1 and C, follow-up observations have been obtained (Schnurr et al., in prep)

Second stop: 30 Doradus

- Giant HII region in the LMC
- Closest starburst cluster in Local Group
- Central cluster of 30 Dor is R136 (usually the WFPC2 field)
 - Contains 100's of O stars, including the hottest known O3V stars (Massey & Hunter 1998)
- Core of R136 is R136a (central arcsecond):
 - was thought to be a single star with 1000's of Msol
 - HST resolved it into individual stars
 - extremely dense core: most massive stars are there!
 - One suspected 4.377-day binary!

From unresolved, ground-based, optical spectroscopy (Moffat & Seggewiss 1983; Moffat+ 1985)

SINFONI K-band spectroscopy of central WNh stars...

... but found no short binary (P < 45 days) in SINFONI data!

Yet another binary candidate? BAT99-112 (R136c) with P = 8.2 days

Where are the binaries in R136a?

- BAT99-112 only candidate
- Excess of hard X-rays is indication for wind-wind collisions
- However, no signs of binarity with P < 45 days in other program stars!
- Maybe longer-period system(s), but very difficult to observe (sampling, inclination?)
- Long-term monitoring will be proposed for P84 with ESO
- Makes for interesting cluster dynamics: mass-segregated cores should contain all hard, massive binaries...?

How about the Arches cluster?

- Most massive starburst cluster in the Milky Way
- Extremely dense core-region (2 x 10⁵ Msol/pc³) should make for very massive population; in particular:

Is the reported IMF cut-off real?

- Martins+ (2008) analyzed the WNh stars:
 - most luminous members: $logL \sim 6.0-6.3$
 - masses around 100 M_{\odot} , but more evolved than the stars in NGC3603
- So far no study for binarity, but planned for P85 at ESO

Are the other very massive binaries outside cluster cores?

- WR20a is a hard(!), very massive binary (83 + 82 Msol)
- located **outside** of Westerlund 2 (not even <u>in</u> cluster)!
- ... and Westerlund 2 is seemingly not such an extreme OB cluster by size, mass, or density.
- Assumption about most massive stars in cluster cores could be wrong!

So, what about other luminous, H-rich WN stars?

Massive binaries in the LMC

- Schnurr+ (2008b) surveyed all known WNL stars in the LMC to find binaries with P < 200d
- found a total of 9 WNL binaries
- 8 binaries most likely contain unevolved CHB objects
- for 6 of them, follow-up data have been obtained (in prep.)
- Are likely to fill the gap between 60 and 100 Msol...
- for one of them, **R145**, the second brightest WNh in the LMC, we have additional polarimetry to derive the inclination angle (light of O star scattered by WN wind)

R145 (WN6h), v=12.15 mag

known binary, but period?

R144 (WN6h), v=11.15 mag

old models: logL = 6.34 new models: logL ~ 6.5+ est.

R144 is the most luminous WR star known in the Local Group!

unfortunately single(?), monitoring in progress

Linear polarimetry: Stokes Q,U parameters

Combining POL and SPEC data:

P = 158.8 days *i* = 39° K_{wR} = 93 ± 10 km/s

With the shift & add method (poor man's tomography), we find O stars has

 K_{o} = 219 ± 20 km/s

This yields

 $M_{_{\rm WR}}sin^3i$ = 116 ± 33 $M_{_{\odot}}$

 $M_{o}sin^{3}i = 48 \pm 20 M_{o}$

but with i = 39°, *sin³i* ~ 4, which gives way too high masses!

Schnurr+ (2009)

Summary and Conclusions

- The most massive main-sequence stars known so far span a mass range from 60 to ~120 Msol
- They **all** are luminous and hydrogen-rich WN5-7h stars
- Current record holder is NGC3603-A1 with Keplerian mass of 116 \pm 31 M_{\odot}
- Equally or slightly more massive WN5-7h binaries at the horizon: NGC3603-C, R145, WR21a, WR25... Arches?
- There exist more luminous, but single(?) WNh stars: NGC3603-B, R144, ...

Thus so far, the upper mass cut-off of 150 M_{\odot} remains untested...

... but we're getting there!

