The Most Massive Stars

Olivier Schnurr,
P. Crowther (U_ of Sheffield)
A.F.J. Moffat, N. St-Louis, A.Villar-Sbaffi, J. Casoli (U de Montréal)
A.-N. Chené (Herzberg IfA)

Massive Stars: What are they?

- Definition: reaches $\mathrm{Fe} / \mathrm{Ni}$ core $\left(\mathrm{M}_{\text {init }}>8 \mathrm{M}_{\odot}\right)$, but here: Concentrate on O-type stars with $M_{\text {init }}>\mathbf{2 5} \mathrm{M}_{\odot}$
- Populate the upper-left part of HRD
- Hot: \quad Teff > 30 kK on ZAMS
- Luminous: $\operatorname{logL} / L s o l>5.0$
- High Eddington factors (L/M ratios), close to radiative instability. If Eddington limit exceeded: LBV (e.g. η Car)
- Mass-loss through radiatively-driven stellar winds; affects stellar evolution (but depends on metallicity)

From Moffat+ 1989)

Massive Stars: Why bother? (1)

- very rare, yet they dominate the light of their host galaxies (cf. FUV/UV at high redshifts!)
- lifetimes <5 Myr make for quick turn-over (1000's of generations of massive stars since Big Bang!)
- important for galactic ecology (early Universe!):
- chemical enrichment: winds, SN explosion
- mechanical feedback: winds, SN explosion; galaxy-wide superwinds can trigger star formation
- ionization radiation: star formation, cosmology...
- kinematics of star clusters: gas expulsion via stellar winds and SN explosion; interaction with massive binaries

Massive stars: Why bother? (2)

- end their lives as core-collapse SNe (Type Ib, c)
- Type Ic SNe possible progenitors of GRBs
- form neutron stars and black holes...
- the most massive stars today are the best link to the supposedly ultra-massive Pop III stars
"Todays upper limit was yesterday's lower limit!"
- one big question in massive-star formation research:

How massive can a star get? Is there an upper cutoff of the initial-mass function?

How massive are the most massive stars known?

- statistically, most massive star $<\mathbf{2 0 0} \mathbf{M}_{\odot}$ (Oey \& Clarke 2005), but study used somewhat questionable approach
- from Arches cluster: IMF cut-off at $\sim \mathbf{1 5 0} \mathbf{M}_{\odot}$ (Figer 2005), but only used ill-known mass-luminosity relation to figure out stellar masses
- for solar-type stars:
$\mathrm{L} \sim \mathrm{M}^{4.7}$
- for $10<\mathrm{M}<25 \mathrm{M}_{\odot}$
$\mathrm{L} \sim \mathrm{M}^{2.5}$
- for $\mathrm{M}>25 \mathrm{M}_{\odot}$
$\mathrm{L} \sim \mathrm{M}^{1.75}$
- utter lack of stars with directly confirmed $\mathrm{M}>40 \mathrm{M}_{\odot}$

Direct observations are required to calibrate the models!

Arches cluster IMF (Figer 2005, Nature)

Mass-luminosity relation (log-log) for massive stars: Is it really flattening out toward very high masses?

How to "weigh" a star

- Use atmosphere models (spectroscopy) to obtain stellar parameters L, M, R, Teff, g, etc.
- Very challenging if stellar wind optically thick: non-LTE...
- Models are NOT self-consistent!
- Evolutionary (internal structure) masses and spectroscopic masses don't match!: "mass discrepancy" (Herrero+ 1992)
- Model quality paramount: input physics!
- "mass dispcrepency" somewhat remedied by latest models (inclusion of iron in opacity data)
- Good calibrations required: observations!
- ... and at the high end of the IMF...?

The "mass discrepancy" (old atmosphere models for O stars)

OK, how to really weigh a star...

- Keplerian orbits in binaries yield the least model-dependent stellar masses! BUT: need orbital inclination (model!)
- surprising result: O-type stars peter out at $\sim 60 \mathrm{M}_{\odot}$
- Why? More massive stars are luminous enough to drive optically thick wind, therefore:
- display emission-line spectrum!
- look like Wolf-Rayet stars!
- invariably from luminous subtype of WN stars: WN5-7h/ha
(Yeah, but I've learned that WR stars are evolved objects...?!)

What are Wolf-Rayet Stars?

- Spectrum of WR star is dominated by strong, broad emission lines of highly-ionized elements
- Stellar wind: fast ($100-6000 \mathrm{~km} / \mathrm{s}$), massive (few $10^{-5} \mathrm{M}_{\odot} / \mathrm{yr}$), dense and optically thick!
- Continuum from wind: hydrostatic surface is veiled!
- Emission from recombination (square-density dependent!)
- Little indication of physics in underlying star, but:
classical WR stars are He-burning cores of evolved O stars!
- However, just like SNe: definiton is purely morphological!
- WR stars come in two flavors: WN, WC

The Wolf-Rayet Zoo: WN stars

- WN stars: enriched with CNO elements (He,N), all Pop I
- very late-type (WN10/11): shell-H burning objects with link to quiescent LBVs (S Dor variables)...
- classical WN: core-He burning objects, with or without H, CNO in equilibrium
- Type Ib (no H) SN progenitors?
- luminous WN5-7h: core-H burning, most extreme O stars ("super-Of stars"); enriched, but not in CNO-equilibrium
- H content between 30 and 75% by mass.

The Wolf-Rayet Zoo: WC stars

- WC stars: enriched with 3α elements (C,O)
- classical WC/WO: advanced CHeB (evolved WN stars?)
- Type Ic (no He) SN progenitors: GRBs!
- Have fastest steady winds known: 6000 km/s
- CSPNe: [WC], links to AGB and wD (Pop II);
- [WN] elusive so far, can't exist?

Spectral appearance of WN stars vs. evolutionary state

Core-hydrogen burning (CHB) stars with different wind densities

Recombination rate depend on densities of both electron and ion: squared-density effect!

Mass-loss rates as function of Eddington factor and Z

Graefener \&
Hamann (2008)

Inventory: The most massive stars known (O/WN)

Name	SpecType	$M^{2} \sin ^{3} i$	$i\left({ }^{\circ}\right)$	$M\left(M_{\odot}\right)$	Reference
R136-38	O3V+O6V		90	$56+23$	Massey+ (2002)
WR22	WN7ha+O	$55+27$	$90 ?$	$55+27$	Schweickhardt+ (1999)
WR25	WN6ha+O	$75+27$	$37 ?$	$344+124$	Gamen+ (2006)
WR20a	WN6h+WN6h	90	$83+82$	Rauw+ (2004,2005)	
					Bonanos+ (2004)
WR21a	Of/WN+O	$87+53$	$?$	n/a	Niemela+ (2008)

Are there stars more massive than that? If yes: where can we find them?

Where are the most massive stars?

- In clusters, there's a relation between the total mass of the cluster and the mass of the most massive cluster member (Weidner \& Kroupa 2006): The most massive stars are likely to be found in the most massive clusters!
- Mass segregation (most massive stars in the cluster core)
- either primordial or
- happens dynamically in less than ~ 1 Myr
- Thus, expect to find the most massive stars smack in the core of the most massive, young, unevolved clusters!
- Goldilock problem: Not too young (molecular cloud), not too old (stellar evolution)

Best candiates in the Local Group

- LMC: R136a, the central cluster of the 30 Dor GHirR
- Galaxy: NGC3603, a perfect clone of R136a's core;

Arches cluster at the GC

Cluster	R136a	NGC 3603	Arches
location	LMC	MW (Carina)	MW (GC)
d (kpc)	50	8	8
$M(\mathrm{Msol})$	2×10^{4}	7×10^{3}	1×10^{4}
$\rho_{\text {core }}\left(\mathrm{Msol} / \mathrm{pc}^{3}\right)$	6×10^{4}	6×10^{4}	3×10^{5}
age (Myr)	$2--3$	$1--2$	$2-3$

First stop: NGC 3603

- Only starburst cluster in Milky Way outside the GC region
- Only visible Giant HII region in the Milky Way
- core is HD 97950
- resembles closely the core of R136a ("perfect clone" of inner 1 pc)
- but 7 times closer: spatial resolution!
- extremely dense core: most massive stars are there!

HD 97950 and its WNh content

Three WN6h stars A1, B, C in its core:

- A1 is intrinsically one(!) magnitude brighter than WR20a, which has a confirmed Keplerian mass of $\sim 80 \mathrm{M}_{\odot}$!
- A1 is a 3.8-day binary and double-eclipsing (Moffat et al. 2004), i.e. with known orbital inclination angle!
- C is one of the brightest X-ray sources known among all WR stars: colliding-wind binary?

In order to obtain absolute masses for A1, just obtain radial velocities of both components!

A HST-WFPC2 view of NGC 3603

To resolve individual stars in NGC3603 use:

HST-WFPC/STIS

or

VLT/SINFONI + AO

Figure 1. HST-wFPc2 I-band (F814W) image of NGC 3603. The image is $25^{\prime \prime} \times 25^{\prime \prime}(0.8 \mathrm{pc} \times 0.8 \mathrm{pc})$. The insert shows the three WR stars.

Obtain AO-assisted, spatially resolved, repeated spectroscopy with VLT/SINFONI in K-band

(Schnurr+, 2008a)

HST/NICMOS photometry in J-band of NGC3603-A1

Orbital inclination angle: $i=71^{\circ} \pm 6^{\circ} \quad$ (Moffat et al. 2004)

NGC3603-A1 consists of two emission-line stars!

Trace both components over the orbital cycle...

... and obtain their absolute masses:
$M_{1}=116 \pm 31, M_{2}=89 \pm 16 M_{\odot}$
Most massive stars known to date!

Star C is a single-lined binary!
 $P=8.89$ days

For both A1 and C, follow-up observations have been obtained (Schnurr et al., in prep)

Second stop: 30 Doradus

- Giant HII region in the LMC
- Closest starburst cluster in Local Group
- Central cluster of 30 Dor is R136 (usually the WFPC2 field)
- Contains 100's of O stars, including the hottest known O3V stars (Massey \& Hunter 1998)
- Core of R136 is R136a (central arcsecond):
- was thought to be a single star with 1000's of Msol
- HST resolved it into individual stars
- extremely dense core: most massive stars are there!
- One suspected 4.377-day binary!

From unresolved, ground-based, optical spectroscopy (Moffat \& Seggewiss 1983; Moffat+ 1985)

SINFONI K-band spectroscopy of central WNh stars...

... but found no short binary (P < 45 days) in SINFONI data!

Yet another binary candidate? BAT99-112 (R136c) with $\mathrm{P}=8.2$ days

Where are the binaries in R136a?

- BAT99-112 only candidate
- Excess of hard X-rays is indication for wind-wind collisions
- However, no signs of binarity with $\mathrm{P}<45$ days in other program stars!
- Maybe longer-period system(s), but very difficult to observe (sampling, inclination?)
- Long-term monitoring will be proposed for P84 with ESO
- Makes for interesting cluster dynamics: mass-segregated cores should contain all hard, massive binaries...?

How about the Arches cluster?

- Most massive starburst cluster in the Milky Way
- Extremely dense core-region ($2 \times 10^{5} \mathrm{Msol} / \mathrm{pc}^{3}$) should make for very massive population; in particular:

Is the reported IMF cut-off real?

- Martins+ (2008) analyzed the WNh stars:
- most luminous members: $\operatorname{logL} \sim 6.0-6.3$
- masses around $100 \mathrm{M}_{\odot}$, but more evolved than the stars in NGC3603
- So far no study for binarity, but planned for P85 at ESO

Are the other very massive binaries outside cluster cores?

- WR20a is a hard(!), very massive binary ($83+82$ Msol)
- located outside of Westerlund 2 (not even in cluster)!
- ... and Westerlund 2 is seemingly not such an extreme OB cluster by size, mass, or density.
- Assumption about most massive stars in cluster cores could be wrong!

So, what about other luminous, H-rich WN stars?

Massive binaries in the LMC

- Schnurr+ (2008b) surveyed all known WNL stars in the LMC to find binaries with $\mathrm{P}<200 \mathrm{~d}$
- found a total of 9 WNL binaries
- 8 binaries most likely contain unevolved CHB objects
- for 6 of them, follow-up data have been obtained (in prep.)
- Are likely to fill the gap between 60 and $100 \mathrm{Msol} .$. .
- for one of them, R145, the second brightest WNh in the LMC, we have additional polarimetry to derive the inclination angle (light of O star scattered by WN wind)

R145 (WN6h), v=12.15 mag
known binary, but period?

R144 (WN6h), v=11.15 mag
old models: \quad logL $=6.34$ new models: logL ~ 6.5+ est.

R144 is the most luminous WR star known in the Local Group!
unfortunately single(?), monitoring in progress

Linear polarimetry: Stokes Q,U parameters
Combining POL and SPEC data:

$P=158.8$ days
 $i=39^{\circ}$
 $K_{W R}=93 \pm 10 \mathrm{~km} / \mathrm{s}$

With the shift \& add method (poor man's tomography), we find O stars has

$$
\mathrm{K}_{\mathrm{o}}=219 \pm 20 \mathrm{~km} / \mathrm{s}
$$

This yields
$M_{W R} \sin ^{3 i}=116 \pm 33 M_{\odot}$
$M_{o} \sin ^{3} i=48 \pm 20 M_{\odot}$ but with $\mathrm{i}=39^{\circ}, \boldsymbol{s i n}^{\mathbf{3}} \boldsymbol{i} \sim 4$, which gives way too high masses!

Schnurr+ (2009)

Summary and Conclusions

- The most massive main-sequence stars known so far span a mass range from 60 to $\sim 120 \mathrm{Msol}$
- They all are luminous and hydrogen-rich WN5-7h stars
- Current record holder is NGC3603-A1 with Keplerian mass of $116 \pm 31 \mathrm{M}_{\odot}$
- Equally or slightly more massive WN5-7h binaries at the horizon: NGC3603-C, R145, WR21a, WR25... Arches?
- There exist more luminous, but single(?) WNh stars: NGC3603-B, R144, ...
Thus so far, the upper mass cut-off of $150 \mathrm{M}_{\odot}$ remains untested...

... but we're getting there!

