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Figure 9.27 Intrinsic terminators include palindromic
regions that form hairpins varying in length from 7 to
20 bp. The stem-loop structure includes a G-C-rich
region and is followed by a run of U residues.
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ds forms
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Form coiling bp/turn
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rotation/bp diameter
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Figure 18.7 Histone-depleted chromosomes consist
of a protein scaffold to which loops of DNA are
anchored. Photograph kindly provided by Ulrich K.
Laemmli.

11
supercoiling

- positive - double helix
overwound, tightens the
structure

* negative - loosens the
structure, reduces
rotation per bp, local
disruption of base-pairing
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Figure 18.9 The sister chromatids of a mitotic pair
each consist of a fiber (~30 nm in diameter)

compactly folded into the chromosome. Photograph

C h r O ma'r i n kindly provided by E. J. DuPraw.
proteins
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1st level of chromatin -

nhucleosomes

2 hm

histons

Figure 19.21 In a symmetrical model for the
nucleosome, the H3,-H4, tetramer provides a kernel
for the shape. One H2A-H2B dimer can be seen in the
top view; the other is underneath.
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1st level of
chromatin -
nucleosomes

Figure 19.4 The nucleosome may be a cylinder with
DNA organized into two turns around the surface.

Figure 19.3 The nucleosome consists of
approximately equal masses of DNA and histones
(including H1). The predicted mass of the nucleosome
is 262 kD.
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Figure 19.18 The 10 nm fiber is a continuous strin
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1st level of
chromatin -
nucleosomes

10 nm - ,beads on string”

packing ratio ~ 6
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Figure 19.3 The nucleosome consists of
approximately equal masses of DNA and histones
(including H1). The predicted mass of the nucleosome
is 262 kD.
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Figure 18.B Matnx-associated regions may be
identified by characterizing the DNA retained by the
matrix isolated in vivo or by identifying the fragments
that can bind to the matrix from which all DNA has
been removed i vivo,
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searching for MAR-binding
pro’reins 26

GFP randomcDNA terNOS NPTII
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- MARs

(matrix attachment regions)

also SARs (scaffold
attachment regions)

- anchor coding (functional)
regions to proteinaceous
scaffold of chromosomes
or to nuclear matrix of
interphazic nuclei

- AT rich, recognized by
topoisomerase II

- every 3 kb to 100 kb

- MAR sequences placed
near transgene increase
the transgene expression
and decrease the
variability of expression
among idependent
transformants

27
genome is a

collection of
loops)

- LBARs

(loop basement attachment
regions)

- more permanent in nature,
give an ,address" to each
gene

- organize genomes to big
loops (distance 20 kb to
100 kb)
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MARs’ influence on
ransgenes

Transgene

Cloned MAR Cloned MAR

Indepenc;len’r
Inactive Euiniln
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organization of chromatin into active and inactive loop domains and the formation of

Figure 1. Madels depicting the
d bar) to form

independent transgenic loop domains. A, MAR sequences (open boxes) interact with nuclear matrix fiber (fille
two loop domains. The active domain is depicted as an 11-nm nucleosome fiber and the inactive domain as a 30-nm fiber

formed by supercoiling of the 11-nm fiber. B, An independent domain formed by the integration of MAR-flanked transgene

into the inactive domain.




LBARs and MARs model
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Chromatin modification and 30
remodelling

- activly transcribing chromatin contains
hyperacetylated histones and is DNasel sensitive

- in active chromatin, the distances between
hucleosomes are shorter

- chromatin has a repressive effect on gene expression

- DNA methylation coincides with transcriptional
inactivation
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1. Covalent posttranslational
modification of chromatin

dynamic chromatin changes

32

* linker histone
(H1) basic amino and carboxy-termini
interacts with both histones and DNA

phosphorylation of H1 at the start of mitosis,
later reversed

related to chromatin remodelling (? affinity to
chromatin/DNA?)
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1. Covalent posttranslational
modification of chromatin

Figure 19.24 The globular bodies of the histones
are localized in the histone octamer of the core
particle, but the locations of the N-terminal tails, which

carry the sites for modification, are not known, and
could be more flexible.

- nucleosomal histones




Figure 19.25 Acetylation of lysine or
phosphorylation of serine reduces the overall positive
charge of a protein.
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1. Covalent posttranslational ..
modification of chromatin

- nhucleosomal histones

Acetylation

opens chromatin structure of whole domains, affects numerous
hucleosomes, prevents higher order chromatin structure

ADP ribosylation
molecul similar to ssSDNA can locally disrupt chromatin structure

Ubiquitinylation
peptide (76 aa) marks protein for degradation
? nucleosome loss in actively transcribed genes

Methylation
Il of histones, no structural changes known
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Covalent posttranslational modification
of chromatin during cell cycle

Histone modification and transcriptional competence

H1 hyperphosphorylation
H3 phosphorylation

- - O'h od.fr t_
MitOSIS (M) er medifications lost
H4  hyperacetylation
H2A ubiquitination /.——\‘
H2B ADP ribosylation

GAP (G2)
GAP (G1)

DNA Synthesis
(S) Phase

H4 diacetylated, phosphorylated
H3 diacetylated

H2A phospherylated

H1 phosphorylated

A cartoon of the cell cycle showing the major changes in histone modification
associated with each stage.




3/

Covalent posttranslational modification
of chromatin and differentiation

Changes in histone acetylation are important for maintaining
stable activity or inactivity of a gene during development
(mainly early stages - embryogenesis) and for epigenetic
imprinting

Nucleosomal structure must be re-established by equally
modified proteins which form nucleosomal structure on
both daughter chromatids
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2. Nucleosome positioning

Figure 19.31 Translational positioning describes the
linear position of DNA relative to the histone octamer.
Displacement of the DNA by 10 bp changes the
sequences that are in the more exposed linker regions,
but does not alter which face of DNA is protected by
the histone surface and which is exposed to the
exterior. DNA is really coiled around the nucleosomes,
and is shown in linear form only for convenience.

"Turns 3—4 in linker region
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Figure 19.37 RNA polymerase displaces DNA from
the histone octamer as it advances. The DNA loops
back and attaches (to polymerase or to the octamer)
to form a closed loop. As the polymerase proceeds, it
generates positive supercoiling ahead. This displaces
the octamer, which keeps contact with DNA and/or
polymerase, and is inserted behind the RNA
polymerase.

RNA polymerase advances

DNA is displaced from octamer and forms closed loop

Torsion ahead of RNA polymerase displaces
octamer, which reinserts behind polymerase

Nucleosomes in
transcribed genes

Figure 19.35 RNA polymerase is comparable in size
to the nucleosome and might encounter difficulties in
following the DNA around the histone octamer.

Nucleosome RNA polymerase

300 kD 500 kD
6 X 11 nm 14 X 13 nm
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3. DNA methylation
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complexes involved in

chromatin modification -

ATP-dependent (chromatin remodelling)
complexes
- ATP hydrolysis, local disruptions or changes

histon acetyltransferases and deacetylases
(chromatin modifying complexes)

- the level of histone acetylation regulates transcriptional
activity of genes
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Functional chromatin

, 46
domains

Structural domains Functional domains

loops formed by MARs mutually independent
domaind of gene
expression

not identical to functional
domains, but often define
regions of transcription

structural changes of
chromatin occur upon
induction of gene
expression in the
domain
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Positional effect 47

Relocation of an active gene within genome can
lead to the inactivation of its expression
(incorrect interaction of regulation proteins
with promoter, incorrect chromatin
structure...)

And the other way round

Lucie Perry Institute of Experimental Botany, Academy of Sciences of the Czech republic



Boundary chromatin
elements

protect transgene from the positional effect

254 The Plant Cell
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Figure 4. Comparison of the Orthologous adh Domains in Maize
and Sorghum.




MARSs

adh loci of two genomes

Cinful-1

Maize YAC __,’,
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Figure 9. Comparison of Putative Chromatin Domain Structures of the Orthologous adh Regicns in Maize and Sorghum.

The maize YAC represents 225 kb of the maize adh1-F region, with 22 identified long terminal repeat retroelements and eight genes. The
sorghum BAC bar represents 78 kb of the sorghum adh region and 14 candidate genes. The black arrows in the boxes designate the puta-
tive direction of both gene and retroelement transcription. The genes in sorghum are designated with letters, whereas the homolegous
maize genes are denoted by the same letters with the prime signs. Nonhomologous genes are designated with open arrows. Dashed lines
connecting the bars indicate the nonconserved (deleted) regions between maize and sorghum. The anchors in the boxes indicate durable
domain-defining MARS.
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Boundary chromatin 5,
elements

LCRs

(locus control regions), abundant in genome
DnaseI-sensitive site and TF-binding motif

enhancer activity - remodelling/opening of chromatin structure
in a region of 10-100 kb

insulating function
many genes close to LCRs
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