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4
DNA
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RNA

• ss RNA forms 
secondary structures 
with ds hairpins 

5
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6ds forms 
of nucleic 
acids

Form coiling bp/turn rotation/bp diameter
ds
A R 11 34,7° 2,3 nm
B R 10 43,0° 1,9 nm
Z L 12 30° 1,8 nm
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7

ds forms of 
nucleic acids

Form coiling bp/turn rotation/bp
diameter ds
A R 11 34,7° 2,3 nm
B R 10 43,0° 1,9 nm
Z L 12 30° 1,8 nm
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8B form
• prevailing dsDNA form 

in vitro
• in vivo transitions to 

other forms
• major groove – point 

of interaction with 
sequence-specific 
DNA-binding proteins



Lucie Perry Institute of Experimental Botany,  Academy of Sciences of the Czech republic

9

A form



Lucie Perry Institute of Experimental Botany,  Academy of Sciences of the Czech republic

10Z form 
(Zigzag)
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supercoiling

• positive – double helix 
overwound, tightens the 
structure

• negative – loosens the 
structure, reduces 
rotation per bp, local 
disruption of base-pairing
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12
chromatin 
proteins

• neutralize the 
negative charge of 
DNA molecule

• help condensation 
(packaging) of 
chromatin

• form structures 
which enable 
formation of other 
loops and domains

• affect gene 
expression
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hierarchy of 
chromatin 
organization
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141st level of chromatin -
nucleosomes 

2 nm DNA coils around 
histone octamer („beads“) 
formed by small basic 
proteins
histons H2A, H2B, H3, 
H4
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1st level of 
chromatin -
nucleosomes
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161st level of 
chromatin -
nucleosomes a protein could 

contact 
sequences on 
DNA that lie at 
different ends 
of nucleosome
sites 80 bp apart on 
linear DNA are 
close together on 
nucleosome
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171st level of 
chromatin -
nucleosomes
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18
1st level of 
chromatin -
nucleosomes

10 nm fiber – „beads on 
string“

cca 200 bp/nucleosome
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191st level of 
chromatin -
nucleosomes

10 nm – „beads on string“

packing ratio ~ 6



Lucie Perry Institute of Experimental Botany,  Academy of Sciences of the Czech republic

20
1st level of chromatin -
nucleosomes
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212nd level 
of 
chromatin 
- solenoid 

30 nm fiber

6 nucleosomes 
per one turn of 
helical structure
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222nd level 
of 
chromatin 
- solenoid
requires histone H1 and 
other (non-histone) 
proteins

packing ratio ~ 40
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232nd level 
of 
chromatin 
- solenoid
histone H1 –
„linker“ histone



Lucie Perry Institute of Experimental Botany,  Academy of Sciences of the Czech republic

24
higher order chromatin  

due to accessory proteins
difference in packing ratio:

euchromatin ≥ 1000
mitotic chromosomes ≤ 10 000
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25
nuclear 
matrix 
associated 
regions
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searching for MAR-binding
proteins

pBIN
5505 bp

random cDNAGFP

proNOSpro35S

BL BRterNOS NPTII

GFP fluorescence co-
localizes with cDNA 
product

Fujimoto et al., 2004
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27
genome is a 
collection of 
loops)  

• LBARs
(loop basement attachment 

regions)

– more permanent in nature, 
give an „address“ to each 
gene 

– organize genomes to big 
loops (distance 20 kb to 
100 kb)

• MARs
(matrix attachment regions)
also SARs (scaffold 

attachment regions)
– anchor coding (functional) 

regions to proteinaceous 
scaffold of chromosomes 
or to nuclear matrix of 
interphazic nuclei

– AT rich, recognized by 
topoisomerase II

– every 3 kb to 100 kb
– MAR sequences placed 

near transgene increase 
the transgene expression 
and decrease the 
variability of expression 
among idependent 
transformants
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28MARs´influence on 
transgenes  
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29LBARs and MARs model
metaphase scaffold remnants

nuclear matrix

Paul A.-L., Ferl R.J., 1999
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– activly transcribing chromatin contains
hyperacetylated histones and is DNaseI sensitive

– in active chromatin, the distances between 
nucleosomes are shorter

– chromatin has a repressive effect on gene expression

– DNA methylation coincides with transcriptional 
inactivation

30Chromatin modification and 
remodelling
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Chromatin 
decondensation 
during 
transcription  

Wegel et al., 2004
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321. Covalent posttranslational 
modification of chromatin
dynamic chromatin changes

• linker histone
(H1) basic amino and carboxy-termini
interacts with both histones and DNA
phosphorylation of H1 at the start of mitosis, 
later reversed
related to chromatin remodelling (? affinity to 
chromatin/DNA?)
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1. Covalent posttranslational 
modification of chromatin

• nucleosomal histones
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1. Covalent 
posttranslational 
modification of 
chromatin
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Acetylation
opens chromatin structure of whole domains, affects numerous 
nucleosomes, prevents higher order chromatin structure

ADP ribosylation
molecul similar to ssDNA can locally disrupt chromatin structure

Ubiquitinylation
peptide (76 aa) marks protein for degradation
? nucleosome loss in actively transcribed genes 

Methylation
!! of histones, no structural changes known

351. Covalent posttranslational 
modification of chromatin
• nucleosomal histones
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Covalent posttranslational modification 
of chromatin during cell cycle
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Covalent posttranslational modification 
of chromatin and differentiation

Changes in histone acetylation are important for maintaining 
stable activity or inactivity of a gene during development 
(mainly early stages – embryogenesis) and for epigenetic 
imprinting

Nucleosomal structure must be re-established by equally 
modified proteins which form nucleosomal structure on 
both daughter chromatids
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382. Nucleosome positioning
• Nucleosome positioning 

along DNA sequence is not 
random

• Enables transcriptional 
modulation

• Nucleosome mediates 
contact of physically 
distant sites

• Nucleosome positioning is 
affected by DNA sequence



Lucie Perry Institute of Experimental Botany,  Academy of Sciences of the Czech republic

39Nucleosome mobility
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40
Nucleosome reproduction during DNA 
replication
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Nucleosome 
reproduction during 
DNA replication
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42Nucleosomes in 
transcribed genes
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Nucleosomes in 
transcribed genes
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443. DNA methylation 

• Methylation of cytosins in 
C5 position of CpG 
dinucleotides

Masclaux et al., 2005
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complexes involved in 
chromatin modification

• ATP-dependent (chromatin remodelling) 
complexes
– ATP hydrolysis, local disruptions or changes

• histon acetyltransferases and deacetylases 
(chromatin modifying complexes)
– the level of histone acetylation regulates transcriptional 

activity of genes 
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46Functional chromatin 
domains

Structural domains
loops formed by MARs

not identical to functional 
domains, but often define 
regions of transcription

Functional domains
mutually independent 

domaind of gene 
expression

structural changes of 
chromatin occur upon 
induction of gene 
expression in the 
domain
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47Positional effect
Relocation of an active gene within genome can 

lead to the inactivation of its expression 
(incorrect interaction of regulation proteins 
with promoter, incorrect chromatin 
structure...)

And the other way round
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Boundary chromatin 

elements
protect transgene from the positional effect

MARs

Tikhonov et al., 2000
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49MARs 
adh loci of two genomes 

Tikhonov et al., 2000
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Boundary 
chromatin 
elements

Insulator
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51Boundary chromatin 
elements

LCRs
(locus control regions), abundant in genome
DnaseI-sensitive site and TF-binding motif
enhancer activity – remodelling/opening of chromatin structure 

in a region of 10-100 kb
insulating function
many genes close to LCRs  
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