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Plastid and mitochondrial 
genomes

• the origin of plastids and 
mitochondria and their functions

• structure, replication and expression 
of organellar genomes

• introns in plant genome
• relationship between nucleus and

organelles
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Types of plastids

1. Proplastids - precursors of other plastids, in young 
meristems

2. Amyloplasts – contain starch granules, unpigmented
3. Leukoplasts – colorless, synthesis of monoterpens
3. Etioplasts – develop in absence of light, found in white 

or pale yellow etiolated leaves, in roots
4. Chloroplasts – in green tissues, contain chlorophyll,

photosynthesis
5. Chromoplasts – contain carotens and xantophylls, in 

flowers, ripe parts of fruit and vegetable
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Plastid developmental cycle 4
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New
England

October 
2003
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6Plastid functions
photosynthesis
starch synthesis
fatty acids synthesis
amino acid synthesis
pigment synthesis
nucleotide synthesis
nucleic acid and protein synthesis
sulphate and nitrate assimilation
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Plastid reproduction by division
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Lopez-Juez E., 2007



Mitochondrieinner membrane –
cristae (surface 
enlargement),
contain complexes 
of respiratory 
chain and enzymes 
of ATP synthesis

accumulation of 
energy into 
energy-rich 
phosphate bonds
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Mitochondria reproduction 
by division
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Organellar features

• defined by double-layer membranes
• highly autonomous – reproduction by 

division, contain their own DNA and
ribosomes

• protein synthesis
• movement of genes to nucleus, gradual 

extinction in organellar genomes
• plastid stromules (tubular extensions) can 

mediate the fuse with other plastids 
(exchange of genetic material)
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Endosymbiont 
hypothesis of 
organellar origin
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Chloroplast genetics
1. inherited mostly uniparentally (typically maternally)

2 mechanisms:
• Chlamydomonas, paternal cpDNA destroyed
• some higher plants – paternal plastids excluded 

or destroyed during reproduction process

2. Plastid DNA identical in the whole organism
3. genome uniform throughout differentiation

examples of exclusions to 2. a 3.
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life cycle of Chlamydomonas 13
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Acetabularia 14
green alga, unicellular, known fossils, 
stele 5-10 cm, 1 nucleus, 106 chloroplasts, 
can regenerate from rhizoid

in vegetative stage up to 30% 
chloroplasts do not contain DNA

nucleus
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Chloroplast DNA (cpDNA)
General features:
1. dsDNA, circular
2. G-C content lower than in nucleus
3. many copies (~30-100) per plastid
4. 20-40 organelles/genome
5. no histones, bound proteins (Hu), 

organized to nucleoids
6. forms 10-20% of total DNA in leaves
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Chloroplast DNA (cpDNA) 16

Relaxed 
cpDNA 
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Chloroplast DNA 
– not in 

textbooks
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Chloroplast DNA 
– not in 

textbooks
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chloroplast
genome size
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70 - 200kb
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Typical cp
genome

20

circular DNA molecule 
„long“ and  „short“ copy 
regions (LSC and SSC) -
unique copies, divided by 
IR
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rRNA (rrn) genes 
(organized in clusters 
similarly to v E. coli)
recombination between 
repeats (dividing LSC a 
SSC) leads to inversion of 
SSC



cpDNA genes 21

code for cca 100 proteins
cp genes code for:
1. genetic aparatus (replication, 

transcription,translation)
2. photosynthesis
3. complexes of thylakoid membranes
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Endosymbiont hypothesis
and gene movement
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• plastid genome highly conserved
• most genes of endosymbiont extinct or became 

part of nuclear genome
• Rubisco
• 2 types of introns - chloroplasts evolved before  

prokaryonts lost introns
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More membranes... 23

some chloroplasts 
engulfed 
secondarily: 
Chromophyta, 
Dinoflagellata and
Euglenoida – 3 or 4 
membranes 
defining 
chloroplast (outer, 
inner, cp)

? endosymbiosis of  
(pre) eukaryont
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Sea slug Elysia chlorotica 24

Elysia with active 
chloroplasts of 
alga Vaucheria
Chloroplasts 
remain active for 
8 months
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Sea slug Elysia chlorotica 25
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Elysia chlorotica and Vaucheria litorea. A) 
Dorsal view of E. chlorotica. Animals are 
typically found in nature as small as 1 or 2 cm 
to as large as 6 cm, as shown here. B) 
Ventral view of E. chlorotica. C) Two 
camouflaged E. chlorotica specimens feeding 
on V. litorea. D) Several specimens of E. 
chlorotica showing the variation in size and 
body forms. E) V. litorea filaments (about 1 
to 2 mm diameter). F) Sea slugs are easily 
cultured in aquaria containing full-strength 
artificial sea water and overhead lighting 
at10°C. Non-pigmented eggs are produced in 
a mucus mass on the aquaria walls (see 
arrow). The eggs serve as a source of pure 
animal DNA since no plastids are found in the 
eggs. 

Rumpho M. et al., 2000



Caulerpa taxifolia 26
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mitochondrial DNA (mt DNA)
27

• mostly circular
• no histones
• low copy number per organelle
• inherited mostly uniparentally

– conifers: biparentally
– Angiosperms : maternally (as cpDNA)
– Chlamydomonas: from minus (-) (cpDNA from 

parent +)
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mt genome size
28

• S. cerevisiae 84 kb
• mammals 16 kb
• similar products
• economization during evolution
• higher plants x algae
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mt genome organization
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mt genome 30
maize (Zea mays):
7 circular molecules:

„master“ molecule
570 kb and derived 
subgenomic circular 
molecules

subgenomic 
molecules produced 
by recombination at 
direct repeats
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cp genome expression
31

cotranscription, organization to „operons“

plastids of higher plants cca 30 transcriptional units (defined by 
promoter and terminator)

subgenomic circular molecules derived from „master“ by 
recombination at inverted repeats 

promotors – similar to bacterial (–10 and –35 motifs, mutual 
distance crucial)

mRNA not capped, not polyadenylated
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mt genome expression
32

mRNA not capped, not polyadenylated
transcripts „edited“

•RNA Editing
–discovered in Trypanozoma mitochondria
–frequent in plant mitochondria, also in some 
chloroplast genes of higher plants
–Definition: any process (except splicing), leading to a 
change in RNA sequence which does not correspond 
to complementary DNA
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RNA editing
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1. most transcripts edited
2. mainly transition C to U
3. preferential editing of coding regions
4. some transcripts edited incompletely

transition C to U

cytosin deaminase or 
nucleotide base 
exchange 
(elimination)



Introns (splicing)
34

•in different organisms the same introns can be 
found at the same positions within the gene 

•identical or similar intron found in unrelated 
genes and organisms 

•unusual distribution and phylogenetic analyses 
confirm that the introns  have been gained and 
lost throughout the evolution
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Introns I
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Introns II
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Trans - splicing
37

some cp RNAs generated by trans-splicing:
- splicing of different RNA molecules
- intron-exon arrangement maintained
- introns II
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cp transcriptional regulation
38

1. total
– i.e., lowered/enhanced expression of all genes 

at the same moment (transcription enhances 
at „greening“, lowers when chloroplast turns 
into chromoplast)

2. gene specific
– psbD/psbC promotor reacts to light
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nuclear control of cp gene expression

39

genetic studies confirmed a potential for 
nuclear control of cp genes

Mendelian (nuclear) mutants defective in 
development or function of plastids do not 
express specific cp - encoded genes
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Retrograde signaling pathways 
40

signals from plastid to nuclear „target“ promoter 
elements participating in the response to light

necessary for the plant response to changing  and often 
stressful environmental (nuclear genes for photosynthesis 
proteins expressed poorly when plastids demaged or underdeveloped)

signal?
- chlorophyll biosynthesis precursors
- functional plastid gene expression (heterotrophy    

to autotrophy transition)
- components of electron transport in 

photosynthesis
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Plastid transformation
41

Comparison of the nuclear and plastid genomes of 
angiosperms 
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Plastid transformation
42

Introducing genes into nuclear and plastid genomes 
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Prions and mad cows
43

Lucie Perry Institute of Experimental Botany,  Academy of Sciences of the Czech republic



Scrapie and BSE
44
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Conversion of normal cellular protein PrPC to PrPSc (isoform causing 
„scrapie“ disease) 

reduced portion of α-helices, increased β-sheets
infection agents („wrong“ prions) do not induce production of 
antibody against prion protein - the likely reason is the same 
composition of the „wrong“ and the „good“ prion proteins  
change in solubility (PrPC soluble in non-denaturing detergents 
x PrPSc)
change in degradability by proteazes (PrPC degraded, PrPSc

only partially)



Prions and 
spongiform 

encephalopathy

45
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Prion: „proteinaceous 
infectious particle“

Prusiner S., 1997
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