
INTRODUCTION TO RIEMANNIAN GEOMETRY

HÔNG VÂN LÊ

In this course we shall discuss the following notions: smooth manifolds, tangent spaces,
fiber bundles, one parameter groups of transformations, topics on curvature and geodes-
ics.

Recommended books:
- Sigmundur Gudmunsson, Riemannian Geometry,
http://www.matematik.lu.se/matematiklu/personal/sigma/index.html ,
- Juergen Jost, Riemannian Geometry and Geometric Analysis, Springer 2002.
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Contents

1. Manifolds, differentiable maps, Lie groups 2
1.1. Topological manifolds and smooth manifolds 2
1.2. Differentiable maps 4
1.3. Lie groups 4
2. Tangent bundle and tangent map 5
2.1. Tangent space and tangent map 5
2.2. Tangent bundle and cotangent bundle 7
2.3. Vector fields 7
3. Submanifolds and fiber bundles 10
3.1. Submanifolds and a regular value of a smooth map 10
3.2. Fiber bundles 13
4. Tensors and Riemannian metrics 15
4.1. Tensors and Riemannian metrics 15
4.2. The existence of a Riemannian metric 17
5. Levi-Civita connection 17
5.1. Linear connections and metric connection 18
5.2. The existence and uniqueness of the Levi-Civita connection 18
5.3. Parallel transport and geodesics 20
5.4. Geodesic and variation of the length of curves 23
5.5. The second fundamental form and totally geodesic submanifolds 24
5.6. The Riemannian curvature tensor 24

1. Manifolds, differentiable maps, Lie groups

In this section we introduce the notion of differentiable manifolds, which are gener-
alization of domains in Euclidean spaces with good enough properties to apply tools
of differential calculus. Morphisms between differentiable manifolds are differentiable
maps. Most important examples of differentiable manifolds are Lie groups.

1.1. Topological manifolds and smooth manifolds. I suppose that you know what
are curves and surfaces. Curves and surfaces are subjects of differential geometry at the
very beginning of its development. In analytic geometry you already learn geometry of
some curves and some surfaces. In differential geometry you shall use extensively the
tool of differential calculus, taking derivatives, taking integrations, solving differential
equations related with geometric objects.

Differential geometry has many applications in physics, economy, computer graphic,
information theory, where we recognize pattern of differentiable manifolds and laws
governed by differentiable mappings.

Let me now introduce you to geometric objects in differential geometry.
In classical analysis we are concerned with calculus on domains Ω of Euclidean spaces

Rm: we can differentiate a smooth function f(x1, · · · , xn) of n-variables on Ω, take
integration of f etc. So any domain in Rn is an elementary geometric object in differential
geometry. To enlarge the class of differential geometric objects we glue together domains
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of the same dimension. The obtained geometric objects look locally like open subsets in
spaces Rn.

Definition 1.1.1. Let M be a Hausdorff space 1 with a countable basis for its topology.
We call M an n-dimensional topological manifold, if for each point p ∈ M there
is an open neighborhood U of p in M such that U is homeomorphic to an open set in
Rn by some homeomorphism φ, which is also called coordinate map of U . Such a pair
(U, φ) is called a local coordinates systems or a chart on M , and the number n is
called the dimension of Mn.

Clearly every open set in Rn is a topological n-dimensional space. But there are plenty
of closed subsets of Rn which are topological manifolds.

Example 1.1.2. The sphere Sn = {x ∈ Rn+1, ||x|| = 1} is a n-dimensional manifold.
We write Sn as the union of two open sets {Sn \N} ∪ {Sn \ S} where N and S are the
north pole and the south pole of Sn. Clearly each point of Sn belongs to one of those two
open sets. And these open sets are homeomorphic to Rn by stereographic projections π.
The pair ({Sn \N,πN}, {Sn \ S, πS} is a chart on Sn.

We are now interested in the class of topological manifolds with a good gluing, that is
a good agreement between different homeomorphisms φi and φj on the common domain
Ui ∩ Uj .

Definition 1.1.3. A (smooth) atlas on a topological manifold M is a collection A =
{(Ui, φi)} of charts such that Ui form an open covering of M and for each pair (Ui, φi)
and (Uj , φj) in A the transition map

Φij = φjφ
−1
i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj)

is a smooth map between the open sets in Euclidean space.
Two atlas are equivalent, if their union is also an atlas.
A smooth structure on a topological manifold is an equivalence class of smooth

atlases, and a smooth manifold is a topological manifold with a specified smooth
structure.

Exercise 1.1.4. (i) Prove that the chart on Sn in Example 1.1.2 is a smooth atlas.
(ii) Show that if Mm and Nn are topological manifolds, then the Cartesian product
Mm × Nn is a topological manifolds. If {(Ui, φi)} is a smooth structure on Mm and
{(Vj , ψj)} is a smooth structure on Nn, then {(Ui × Uj , φi × ψj)} is a smooth structure
on Mm ×Nn.

Hint. i) Show that πN (p1, · · · , pn+1) = 1
1−p1

(p2, · · · , pn+1 and πS(p1, · · · , pn+1) =
1

1+p1
(p2, · · · , pn+1.

It is known that there are topological manifolds which have no smooth structure and
there are topological manifolds which have more than one smooth structure.

1an equivalent definition is the existence of unique limit for any sequence, a
nice property of a Hausdorff space is that the compactness implies the closedness,
http://planetmath.org/?op=getobj&from=objects&id=4203
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Simon Donaldson (1983) proved that a positive definite intersection form of a simply
connected smooth manifold of dimension 4 is diagonalisable to the identity matrix.

Michael Freedman (1982) had shown that any positive definite unimodular symmetric
bilinear form is realized as the intersection form of some four-manifold; combining his
and Donaldson’s result, any non-diagonalizable intersection form gives rise to a four-
dimensional topological manifold with no differentiable structure.

An exotic sphere is a differentiable manifold that is homeomorphic to the standard
Euclidean n-sphere, but not diffeomorphic. That means that such a manifold M is a
sphere from a topological point of view, but not from the point of view of its differential
structure. The first exotic spheres were constructed by John Milnor (1956) in dimension
n = 7 as S3-bundles over S4. He showed that the oriented exotic 7-spheres are the non-
trivial elements of a cyclic group of order 28 under the operation of connected sum. In
any dimension Milnor (1959) showed that the diffeomorphism classes of oriented exotic
spheres form the non-trivial elements of an abelian monoid under connected sum, which
is a finite abelian group if the dimension is not 4.

Remark 1.1.5. The concept of a differentiable manifold was implicitly introduced in the
habilitation address of Bernhard Riemmann in Göttingen. The first clear formulation of
this concept was given by Herman Weyl later in 1913.

1.2. Differentiable maps. Let M be a differentiable manifold. To study M we need to
understand all social relations of M with other differentiable manifolds N , i.e. to study
all maps from N to M and all maps from M to N . A mapping from M to N = Rn is
also called a Rn-valued function.

Definition 1.2.1. A continuous map f : M1 →M2 is said to be Ck-differentiable at
a point p ∈ M1, if there is a chart (U, φ) on M1 with p ∈ U and a chart (V, ψ) on M2

with f(p) ∈ V such that the composition ψ ◦ f ◦ φ−1 is Ck-differentiable.
If f is Ck-differentiable at every point p ∈M1, then we say that f is a Ck-map.

Clearly the Ck-differentiability does not depend on the choice of local coordinates,
since the composition of a smooth map (the change of local coordinates) with a map of
class Ck is of class Ck.

We denote by Ck(M1,M2) the set of all Ck-maps between M1 and M2. It follows
immediately from the definition that the composition of two Ck-maps is also a Ck-map.
In particular, for φ ∈ Ck(M1,M2)

(1.2.1) φ∗(Ck(M2)) ⊂ Ck(M1),

where the induced map φ∗ is defined as follows

φ∗(f(x)) := f(φ(x)).

In fact, we can take (1.2.1) for a definition of a Ck-map, i.e. a continuous map φ is
said to be of class Ck, if (1.2.1) holds.

A smooth map f is called diffeomorphism, if it is bijective with a smooth inverse.

1.3. Lie groups. We now introduce main players in the study of differential geometry.
These are Lie groups studied by Sophus Lie, Felix Klein, Wilhelm Killing, Elie Cartan.
The theory of Lie group remains an active domain of research nowadays.
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Definition 1.3.1. A Lie group is a smooth manifold G with a smooth multiplication
and a smooth inversion.

Example 1.3.2. The set GLn(R) = {x ∈ Mn(R)| det(x) 6= 0} is a smooth manifold,
since it is an open set in the space Matn(R) = Rn2

. It is easy to check that the
multiplication µ : GLn(R)×GLn(R) → GLn(R) and the inverse τ : GLn(R) → GLn(R)
is smooth.

Definition 1.3.3. A homomorphism between Lie groups G and H is a smooth map
φ : G→ H which is also a homomorphism in the sense of group theory.

Example 1.3.4. The exceptional mapping exp : (R,+) → (R+,×) is an isomorphism
of Lie groups (i.e. it and its inverse are homomorphisms of Lie groups).

The idea of symmetry in differential geometry is expressed via the notion of an action
of a Lie group on a (topological) differentiable manifold. For example we see that the
round sphere S2 is symmetric because we can rotate it along an axis, say ~x3. Equivalently,
there is an action of S1 on S2, i.e. we have a map

S1 × S2 → S2 : (θ, r3, r2φ) 7→ (r3, r2, φ+ θ)
In general, we say that a group G acts on a manifold M if there exists a differentiable

map χ : G×M →M such that

χ(g1 ◦ g2,m) = χ(g1, χ(g2,m)).

So the action looks like an associative multiplication with value in M .

Exercise 1.3.5. Prove that the product of two rotations in R3 around ~vi with an angle
θi, i = 1, 2 is a rotation around some axis.

Hint. Prove that the product of two rotations leaves some vector unchanged, using
the fact that the characteristic polynomial of a linear transformation on R3 has a real
root.

2. Tangent bundle and tangent map

In this section, using the notion of a derivation of a function, we define the tangent
bundle of a differentiable manifold M as a smooth manifold which is a Taylor expansion
of M up to first order. We define the tangent map as a natural linear transformation of
tangent space under a smooth map.

2.1. Tangent space and tangent map. Denote by C∞(M) the space of all smooth
differentiable functions on a differentiable manifold M .

Definition 2.1.1. A tangent vector δ in a point x0 ∈ M is a R-linear map δ :
C∞(M) → R satisfying the Leibniz rule

δ(f · g) = f(x0)δ(g) + g(x0)δ(f) for all f, g ∈ C∞(M).

Such a map is called a derivation of C∞(M) at x0.

It is easy to see that the space of tangent vectors in x0 is a vector space. We denote
this space by Tx0M .
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Example 2.1.2. i) The partial derivative ∂xi defines a derivation at a point x by
∂xi(f)x = (∂xif)(x).
ii) Let γ : R → M be a smooth map (curve) such that γ(0) = p. Then γ defines a
derivation of C∞(M) at point p by

Dγ̇(f) :=
d

dt
|t=0f(γ(t))

for all f ∈ C∞(M).

Remark 2.1.3 (Existence of the tangent map). If g : (Mm, x) → (Nn, y) is a smooth
map, then g induces a linear map (Dg)x : TxM → TyN defined by

((Dg)xδ)ψ = δ(ψ ◦ g)
for any ψ ∈ C∞(M).

Exercise 2.1.4. i) Show that if g : (M,x) → (N, y) and f : (N, y) → (P, z) are smooth
map, then (D(f ◦ g))x = (Df)y ◦ (Dg)x (Chain rule).
ii) Show that Dγ̇ = Dγ(∂t), where ∂t is the partial derivative on R.

Corollary 2.1.5. If f : M → N is a diffeomorphism in some neighborhood of x ∈ M
then (Df∗)x : TxM → Tf(x)M is an isomorphism.

Corollary 2.1.5 says that the tangent space TxM is determined by a coordinate neigh-
borhood of x. Now we shall look at the tangent space of a point in Rn.

Theorem 2.1.6. If U is an open subset of Rn and D is a derivation at p ∈ U , then

D =
∑

1≤i≤n

D(xi)
∂

∂xi |p
.

Proof. Write

f(x)− f(p) =
∫ 1

0

∂f(p+ t(x− p))
∂t

dt =
∑

1≤i≤n

(xi − pi)
∫ 1

0

∂f

∂xi
(p+ t(x− p)) dt.

Integrating by parts we get ∫ 1

0

∂f

∂xi
(p+ t(x− p)) dt =

= t
∂f

∂xi
(p+ t(x− p))|10 −

∫ 1

0

∑
1≤j≤n

∂2f

∂xi∂xj
(p+ t(x− p))(xj − xp) dt =

=
∂f

∂xi
(x) + ai(x)

where ai are smooth and vanish at p. Now write

f(x) = f(p) +
∑

1≤i≤n

(xi − pi)(
∂f

∂xi
(p) + ai(x)),

and applying D to both sides. We get

Df =
∑

1≤≤n

D(xi − pi)(
∂f

∂xi
(p) + ai(x)) =

∑
1≤i≤n

D(xi)
∂f

∂xi
(p).
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�

Theorem 2.1.6 shows that the tangent space TxM
n is spanned by Di = ∂

∂xi |p
. Hence

dimTxRn = n.

Exercise 2.1.7. Assume that g = (g1, · · · , gn) is a smooth map from Rm → Rn. Prove
that

(Dg)p(Di) =
∑

1≤j≤n

aijDj

where aij = (∂gj/∂xi)(p).

Hint. Use (Dg)( ∂
∂xi

(f(x)) = ∂
∂xi

(f(g(x)) =
∑ ∂f

∂xj

∂gj

∂xi
.

2.2. Tangent bundle and cotangent bundle. We define the tangent bundle T∗M
as the disjoint union ∪x∈MTxM . We shall provide T∗M with a topology and a smooth
structure. Denote by π the projection T∗M → M sending the vector v ∈ Tp(M) to the
point p. Let U be a coordinate neighborhood of M . By Theorem 2.1.6 we have a set
isomorphism T∗U

τ= U × Rn such that π1(τ(v)) = π(v), where π1 is the projection to
the first factor. The isomorphism τ supplies T∗U with the product topology. Finally,
the open sets on T∗M are generated by the open sets on T∗Ui, where {Ui} is an open
covering of M .

Proposition 2.2.1. The space T∗M has a smooth manifold structure.

Proof. By the above T∗Mm has an open covering {T∗Ui = Ui × Rm}, where {Ui} is an
open covering on Mm. We define a coordinate map φ̃ : TUi → Rm × Rm by

φ̃i(y, δ) = (φi(y), (Dφi)y(δ)),

where φi : Ui → U ⊂ Rn is a coordinate map. We have to show that the transition
functions φ̃ij = (φ̃j) ◦ (φ̃−1

i ) = (φj ◦ φ−1
i , Dφj ◦Dφ−1

i ) are smooth. Using the chain rule
in Exercise 2.1.4 we reduce the proof of the smoothness of φ̃ij to the smoothness of the
tangent map D(φj ◦ φ−1

i ), which is obvious by the definition of the smooth atlas. �

We define the cotangent space T ∗xM
m at x ∈Mm by T ∗xM

m := Hom(T∗Mm,R). We
define the cotangent bundle T ∗Mm as the disjoint union ∪x∈MmT ∗xM

m. This space can
be provided with a topology in the same way as we did for the tangent bundle TMm,
since we have T ∗Ui = Ui × Rm.

Exercise 2.2.2. Prove that the cotangent bundle T ∗Mm is a smooth manifold.

2.3. Vector fields. A vector field on a smooth manifold M is a smooth section s of the
tangent bundle T∗M , i.e. a smooth map M → TM such that π ◦ s = Id, where π is the
canonical projection TM →M .

Exercise 2.3.1. A section X of T (M) is smooth, if and only X(f) is smooth for all
f ∈ C∞(M).
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Hint. Write X in local coordinates.

Since any tangent vector in Tx0M
m is a derivation of the algebra C∞(M) at x0, a

vector field X defines a derivation X : C∞(M) → C∞(M), i.e. a R-linear map satisfying

X(fg) = X(f)g + fX(g).

Denote the set of all derivations C∞(M) → C∞(M) by Der(C∞(M)). The bracket
[X,Y ] := XY − Y X turns Der(C∞(M)) into a Lie algebra, i.e. the following Jacobi
identity holds

[[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

Exercise 2.3.2. Every derivation of C∞(M) arises from a smooth vector field.

Hint. Combine the definition of a tangent vector with Exercise 2.3.1.

Now we shall find a local normal form of a vector field.

Theorem 2.3.3 (Linearization of a vector field). Let X is a vector field on a smooth
n-manifold M . Suppose that X(p) 6= 0. Then there is a local coordinate system (U, φ)
around p such that φ(U) = [−ε, ε]× [−ε, ε]× · · · [−ε, ε] and φ∗(X) = ∂/∂x1.

We prove this theorem by using the inverse function theorem, a very important the-
orem in analysis and in differential geometry.

Theorem 2.3.4 (Inverse function theorem). Let f be a Ck-map from an open domain
U ⊂ Rn to Rn. Suppose that the tangent map Dfp : Rn → Rn is invertible. Then there
exists a neighborhood U(p) 3 p in U such that the restriction f to U(p) is bijective on
the image f(U(p), moreover, f−1

|f(U(p) is also a Ck-map.

Proof of Theorem 2.3.3. Since this is a local result we may assume that M is an open set
U ⊂ Rn, p = 0, X never vanishes on U and after a change of coordinate X(0) = ∂/∂x1.
We denote by Rn−1 the vector space spanned on (∂/∂x2(0), · · · , ∂/∂xn(0)). Now let us
consider the ODE system for σ(t, x) : R(t) → Rn with x ∈ Rn−1

(2.3.1)
dσ(t, x)
dt

= X(σ(t, x))

with the initial condition

(2.3.2) σ(0, x) = x.

We know that for any x ∈ Rn−1 there is an ε > 0 such that this system has a unique
smooth solution σ : (−ε, ε) → Rn. Let G : Rn ⊃ U → Rn be a map defined by
G(t, x) := σ(t, x). The map G is smooth because the solution σ(t, x) depends smoothly
on x. We shall show that for a small neighborhood U of 0 the map G−1 is the required
diffeomorphism whose tangent map DG−1 sends X to ∂/∂x1.

We observe that (DG)0|Rn−1 = Id, since G(0, x) = x. Since X(0) = ∂/∂x1, the
tangent map (DG)0 is an invertible map. Hence G is a local diffeomorphism by inverse
function theorem. By (2.3.1) (DG)(t,x)(∂/∂x1) = X(G(t, x)), hence (DG−1)y(X) =
∂/∂x1(G−1(y)). �
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An integral curve for a smooth vector field X on a smooth manifold M is a para-
metrized curve σ : ((−ε, ε), 0) → (M,p) whose tangent at the point σ(t) is the vector
Xσ(t):

Xσ(t) = σ̇(t) = Dσ(
∂

∂t |t
).

Example 2.3.5. Let M = S3. For each S3 3 (z0, z1) we consider the vector field

X(z0, z1) =
d exp

√
−1t · x
dt |t=0

= (
√
−1z0,

√
−1z1).

The integral curves of this vector field X are the fiber of the Hopf fibration.

As we have seen in the proof of Theorem 2.3.3, the local existence and uniqueness of
an integral curve of a smooth vector field X through a point p where X(p) 6= 0 follows
from the existence and uniqueness of the ODE (2.3.1) with the initial condition (2.3.2).

Now we shall examine the global existence of integral curves for a smooth vector field
X.

Assume that σj((aj , bj), cj) → (M,p), j = 1, 2, are two integral curves through p.
After a translation of the parameter for σ2 we may assume that c1 = c2. Then by the
uniqueness of the solution of ODE we conclude that σ1 = σ2 on (a1, b1)∩ (a2, b2). Hence
we can extend σi on (a1, b1) ∪ (a2, b2). Applying Zorn’s lemma we see that a maximal
integral curve through a point p always exists. Up to a translation of parameters there
are only four possible types of maximal integral curves with the following domains

(0, a), (0,∞), (−∞.0), (−∞,∞).

An integral curve is called complete if its domain is of the last type. A vector field
is called complete if all of its integral curves are complete.

Proposition 2.3.6. A vector field with compact support is complete.

Proof. We consider the graph Y = (X, ∂/∂t) of X on M × R. The projection of the
integral curve τ(t) := (σ(t), t) is an integral curve of X on M . Clearly τ(t) is complete
if and only if σ(t) is complete.

If the projection is not complete, then we can assume w.l.g. that it is of type (a, b) with
b <∞. We can assume further that X never vanishes on (a, b). Using the compactness
of sppt(X) we find a point y ∈ M such that limtk→∞ σ(tk) = y. Let us consider point
(y, b) ∈M ×R. Applying Theorem 2.3.3 we find a flow of Y through (y, b) in some time
interval (−ε,+ε). But then the integral curve τ(t) is defined on an interval (a, b+ ε), so
b is not maximal. So we arrive at a contradiction. �

Exercise 2.3.7. Find integral curves of the following vector fields X on R2

a) X = x∂x+ y∂y,
b) X = y∂x− x∂y.

Exercise 2.3.8. . i) Show that [X, fY ] = X(f)Y + f [X,Y ].
ii) Compute [x∂x+ y∂y, y∂x− x∂y].
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3. Submanifolds and fiber bundles

In this section we introduce the notion of submanifolds and fiber bundles. We show
that these objects arise from special classes of smooth mappings between smooth mani-
folds.

3.1. Submanifolds and a regular value of a smooth map. Originally, manifolds
were regarded as subsets of Euclidean space. In many case a nice subset can be situated
very complicated in a smooth manifold. Let us consider the simplest case, how a curve
can be situated in a manifold.

D
o
u
b
l
e
-
c
l
i
c
k 
h
e
r
e 
t
o 
e
d
i
t 
t
e
x
t
.

Let N be a subset in a smooth manifold Mm.

Definition 3.1.1. A subsetNn ofMm is called a smooth n-dimensional submanifold
if for any point p ∈ Nn there exists a chart (U(p) 3 p, φp) on Mm such that φp(U(p) ∩
Nn) = φp(U(p)) ∩ (Rn ⊂ Rm) for some linear subspace Rn ⊂ Rm.

Example 3.1.2. Let f : R(x) → S1(θ1)× S1(θ2) be defined by

f(x) = (xθ1, α · xθ2),

where α is some constant. The image f(x) is a submanifold in S1 × S2, if and only if α
is a rational number.

Remark 3.1.3. Let Mm be a smooth manifold and Nn a submanifold equipped with
the induced topology. The restriction of the a chart (Up, φp) to Nn provides a chart on
Nn. Thus N is a topological manifold and the induced charts (U(p) ∩Nn, φp|(U(p)∩Nn),
p ∈ Nn provide a smooth atlas for N .
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How to describe a submanifold in a manifold? There are two ways to do it. In the first
way we describe a submanifold explicitly (equivalently, parametrically) by giving some
smooth map f : N →M and we verify that the image f(N) is a smooth submanifold. In
the second way we describe a submanifold implicitly, as a solution of a certain system of
equations, more precisely as the preimage of a regular value of a smooth map f between
smooth manifolds Mm and Ll, where m ≤ l.

A point p ∈ Mm is called a regular value of a smooth map f : Mm → Ll, m ≥ l, if
for any point x ∈ f−1(p) the differential (tangent map) Df(x) has rank l.

A smooth map f : Nn → Mm whose tangent map is a linear embedding at every
point p ∈ Nn is said to be an immersion. An immersion is called an embedding, if
it is 1-1 on its image. A map f is called proper, if the preimage f−1(S) of any compact
set is a compact set.

The following theorem gives us a criterion for defining a submanifold parametrically.

Theorem 3.1.4. Let Mm and Nn be smooth manifolds and let f : Nn → Mm be a
proper embedding. Then f(Nn) is a submanifold of Mm.

Proof. We shall use the immersion condition to show that locally f looks like an embed-
ding Rn → Rn × Rm−n. We shall use the properness and the embeddness to show the
existence of a chart on M around a point f(p), p ∈ Nn, satisfying the condition in the
definition of a submanifold.

Choose p ∈ Nn and set q = f(p). We first show that there are coordinate systems
(U, φ) and (V, ψ) around p and f(p) respectively such that the composition ψ ◦ f ◦ φ−1

is a restriction of the coordinate inclusion Rn → Rn × Rm−n, i.e.

(3.1.1) π ◦ (ψ ◦ f ◦ φ−1)|φ(U) = Id,

where π is the projection Rm → Rn. This shall imply that ψ(V ∩ f(U)) = ψ(V ) ∩ Rn.
After translation we may assume that φ(p) = 0 and ψ(f(p)) = 0. By assumption the

derivative (ψ ◦ f ◦ φ−1)(0) is an embedding Rn → Rm, so in suitable coordinates on Rn

and Rm we can write

D(ψ ◦ f ◦ φ−1)0 =
(
Ir
0

)
.

Let D0 := D(ψ ◦ f ◦ φ−1)0. Then D0 is an isomorphism from Rn to D0(Rn) ⊂ Rm.
Hence in the new chart (U,D0 ◦ φ) the composition g = ψ ◦ f ◦ φ−1 ◦D−1

0 is a map from
D0(φ(U)) ⊂ Rn to Rm with g(D0(φ(U))) ⊂ D0(Rn). Denote by π the projection from
Rm to D0(Rn). Then π◦g is a local diffeomorphism of D0(φ0(U)). Hence, by the inverse
function theorem, there exists a local right inverse (ḡ) : D0(φ0(U1)) → D0(φ0(U1)) of
(π ◦ g) for some smaller neighborhood U1 ⊂ U of p, i.e. (π ◦ g) ◦ ḡ = Id. Thus on U1

with the coordinates φ̃ := ḡ−1 ◦D0 ◦ φ we get

π ◦ (ψ ◦ f ◦ (φ̃)−1)|φ̃(U1) = π ◦ (g ◦ ḡ) = Id.

Clearly φ̃ := π ◦ g ◦D0 ◦ φ satisfies (3.1.1).
Now f is proper and an embedding, so we may shrink U1 and V so that f(U1) =

f(Nn)∩ V , which implies that ψ(V ∩ f(Nn)) = ψ ◦ f(U1) = ψ(V )∩Rn, was is required
to prove. �
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Exercise 3.1.5. Let a point M moves with a constant speed on a ray ON which rotates
around the origin O with a constant speed. Write the equation describing the trajectory
of M . On which time interval (t0, t1) ⊂ R this equation defines a proper embedding
from (t0, t1) to R2?

Now we turn to another very important class of submanifolds described implicitly.

Theorem 3.1.6 (Implicit function theorem). Let Mm and Nn be smooth manifold with
m ≥ n, and let q be a regular value of a smooth map f : Mm → Nn. Then the set f−1(q)
is a smooth submanifold of Mm.

Proof. Let p ∈ Mq := f−1(q). We first show that there are coordinate charts (U, φ)
and (V, ψ) around p and q = f(p) such that φ(p) = 0, ψ(q) = 0, and moreover the
composition ψ ◦ f ◦ φ−1 is the restriction of the canonical projection

(3.1.2) π : Rm = Rn × Rm−n → Rn

(3.1.3) (x, y) 7→ x.

First we can assume that ψ(V ) ⊂ Rn ⊂ Rm. Furthermore, by translation, we can
assume the equalities φ(p) = 0 and ψ(q) = 0. Let us denote by D0 the derivative
D(ψ ◦f ◦φ−1)0. Denote by Rm−n the kernel of D0. Clearly Rm = Rm−n⊕Rn. Applying
a linear transformation B on Rn we can assume that D0 is the canonical projection π.

Recall that φ−1(U) is an open set in Rn×Rm with coordinates (x1, · · · , xn, y1, · · · , ym).
Let us define a map g : φ−1(U) → ψ(V )× Rm−n by

g(x, y) := (ψ ◦ f ◦ φ−1(x, y), y).

Then we have Dg(0,0) = Id. So by inverse function theorem there is a local diffeomor-
phism J from ψ(V ) × Rm−n → φ−1(U) such that g ◦ J = Id. It follows that on the
smaller open set φ−1(U1) ⊂ φ−1(U) we have

ψ ◦ f ◦ φ−1 ◦ J = π ◦ g ◦ J = π.

Clearly the map φ̃ := J ◦ φ.
Now let us assume that we have a covering Uα on Mm satisfying (3.1.2) and (3.1.3).

Since ψ ◦ f ◦φ−1(φ(U ∩ f−1(q)) = 0, using (3.1.3) we get φ(U ∩ f−1(q)) ⊂ Rm−n. Hence
φ((U∩f−1(q)) ⊂ φ(U)∩Rm−n. Using (3.1.3) again we get φ(U)∩Rm−n ⊂ φ((U∩f−1(q)).
Hence φ((U ∩ f−1(q)) = φ((U ∩ f−1(q)). �

Example 3.1.7. Let F : Rn → R is given by F (x) = 〈x, x〉. Then F ′x(v) = 〈2x, v〉 is an
immersion, if x 6= 0. Hence the pre-image F−1(1) = Sn is a smooth manifold.

Exercise 3.1.8. Let us define On(R) = {A ∈ Matn(R)|AAt = Id}. This is the group
of orthogonal transformation on Rn. Prove that On(R) is a Lie group.

Hint. Denote by Symn(R) the space of symmetric bilinear forms on R. Show that∑n
i=1(e

i)∗ is a regular value of a map f : Matn(R) → Symn(R), f(A) = A ·At.
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3.2. Fiber bundles. Fiber bundles arise when we have a projection π from a differen-
tiable manifold Em+n onto a differentiable manifold Mm such that π is a differentiable
map and all point q ∈Mm is a regular value of π. The implicit function theorem implies
all the fiber π−1(p) is a smooth submanifold in Em+n. Thus we can think of a fiber
bundle as a family of smooth (sub)manifolds parametrized by the base space. When
we require that the special structures on (sub)manifolds change smoothly we need to
modify our definition of fiber bundles.

Definition 3.2.1. Let E be a topological space and π : E → B a continuous map.
We call the quadruple ξ = (E,F, π,B) a fiber bundle (or fibration), if for each point
b ∈ B, there is an open set U ⊂ B containing p such that π−1(U) is homeomorphic
to U × F by a homeomorphism φ satisfying the following condition of commutativity
diagram

π−1(U)

π
##F

FF
FF

FF
FF

φ // U × F

proj
||yy

yy
yy

yy
y

U

π is called the projection, B is the base of the fibration, F is the fiber over B and E is
the total space.

The pair (U, φ) is called a chart, or a local bundle coordinate system. The map φ is
also called a trivialization of E over U .

Note that π−1(b), the fiber over b, denoted by Fb is homeomorphic to F for all b ∈ B.
If the base, fiber and the total space are smooth manifold, π and φ are smooth maps

then we have a smooth bundle.
If the fiber is a vector space V and the transition bundle map φj ◦φ−1

i : (Ui∩Uj)×V →
(Ui ∩ Uj)× V restricted to each fiber p× V is a linear transformation on V , the bundle
F is called a vector bundle.

Two bundles E1 and E2 over the same base B is called isomorphic, if there is a
homeomorphism (diffeomophism) φ between the total spaces such that the following
diagram commutes

E1

π1   A
AA

AA
AA

A
φ

∼=
// E2

π2~~}}
}}

}}
}}

B

The map φ is called a bundle isomorphism. If E1 = E2 then φ is called a bundle
automorphism. The set of all bundle isomorphisms forms a group. This group is called
the gauge group of E.

Example 3.2.2. - The simplest example of a bundle is the product bundle E = B × F
with π being the projection on the first factor. Any bundle which is isomorphic to a
product bundle is called a trivial bundle.

- Given two bundles (E1, F1, π1, B1) and (E2, F2, π2, B2) we shall define their product
bundle by taking product of fibers and bases: (E1 × E2, F1 × F2, π1 × π2, B1 ×B2).
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-Tangent bundles and cotangent bundles are vector bundles, since the transition bun-
dle map restricted to each fiber p has the form D(φ−1

j ◦ φi) or D(φj ◦ φ−1
i )∗ which are

linear maps.
- Given two vector bundles (E1, V1, π,M) and (E2, V2, π,M) with local trivialization

φ1
i and φ2

i over a manifold M we construct the Whitney sum E1 ⊕E2 - a vector bundle
over M with fiber V1⊕V2 by using the bundle transition functions (φ1

j⊕φ2
j )◦(φ1

i ⊕φ2
i )
−1.

We also construct the Whitney product E1 ⊗ E2 - a vector bundle over M with fiber
V1 ⊗ V2 using the bundle transition functions (φ1

j ⊗ φ2
j ) ◦ (φ1

i ⊗ φ2
i )
−1.

Example 3.2.3 (Möbius band). If we twist a paper thin bank in and glue the ends
together in the following way

then we get a Möbius band. It is a fiber bundle but it is not a trivial bundle, since if
it were, then its boundary would consist of two components.

It is often important to know, if a given bundle is trivial or not. As examples let us
consider the Hopf bundle and the canonical line bundle over a real projective space.

Example 3.2.4 (Hopf bundle). Let us consider a map π : S3 → S2 defined by

π(eiθ1r1, e
iθ2r2) = (r1, ei(θ2−θ1)r2) ∈ R× C.

It is is to see that π is a projection of S3 onto S2and the fibers π−1 are integral curves
in example 2.3.5 which are circle. Clearly the Hopf bundle is not a trivial bundle, since
S3 is simply-connected.

Example 3.2.5. The space RPn of all lines in Rn+1 is a differentiable manifold. Let
[l] be a line in Rn+1 through point (x0, · · · , xn), so we write [l] = [x0 : · · ·xn]. Clearly
RPn can be covered by (n+ 1) open sets Ui defined by the condition xi 6= 0. We define
coordinate map φi : Ui → Rn by

φi([x0 : · · ·xn]) = (
x0

xi
, · · · , xn

xi
).

It is easy to check that {Ui, φi} defines an atlas on RPn.
There is a canonical line bundle l(n) over RPn consists of all pair ([l], x) where x is

a point in [l]. If l(n) is trivial, then its sub-bundle l∗(n) = {([l], x|x 6= 0)} were trivial,
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which implies that l∗(n) has two connected component. On the other hand, it is easy to
see that l∗(n) = R3 \ {0} is connected. Hence l(n) is not a trivial bundle.

Exercise 3.2.6. Denote by CPn the space of all complex lines [z] in Cn+1. Prove that
CPn is a differentiable manifold. The canonical line bundle L(n) over CPn consists of
all pair ([z], y) where y is a point in the complex line [z]. Prove that L(n) is not a trivial
vector bundle.

Hint. Using the argument in Example 3.2.5. Alternatively we can argue that if L(n)
is trivial, then the restriction of L(n) to RPn is trivial which implies that the canonical
line bundle over RPn is trivial.

4. Tensors and Riemannian metrics

In this section we consider natural vector bundles over a differentiable manifolds and
their sections which are called tensors. A Riemannian metric is a special type of tensor,
with which we can measure the length of curves on a manifold. We prove the existence
of a Riemmanian metric on any differentiable manifold.

4.1. Tensors and Riemannian metrics. Recall that a vector field is a section of the
tangent bundle TM . In general, a field on a manifold M is a section s of some vector
bundle π : E → M , i.e. a smooth map M → E such that π ◦ s = Id. Clearly fields are
generalization of the notion of functions.

Definition 4.1.1. A tensor ω of type (r, p) on a differentiable manifold M is a section
of a natural vector bundle TM ⊗r times · · · ⊗ TM ⊗ T ∗M ⊗p times · · · ⊗ T ∗M .

Clearly the space T (r,p)(M) of tensors of type (r, p) on M is a linear space. The ring
C∞(M) acts on T (r,p)(M) by

f(ω)(x) := f(x) · ω(x).

This action provides T (r,p)(M) with a C∞(M)-module structure.
Let us look at a local expression of a tensor T of type (r, p). On a local coordinate

neighborhood Ui ⊂ Rn the space TUi ⊗r times · · · ⊗ TUi ⊗ T ∗Ui ⊗p times · · · ⊗ T ∗Ui is a
direct product Ui × (Rn)⊗r times · · · (Rn)⊗ (Rn)∗ ⊗p times · · · ⊗ (Rn)∗. Thus a tensor T
at a point x has a value

∑
i1,··· ,ir,j1,··· ,jp

fi1···jp∂xi1 ⊗ · · · ⊗ dxjp .

Example 4.1.2. For any function f we define a tensor df of type (0, 1) as follows:
df(X) = ∂X(f).

We note that any tensor type ω type (0, 1) defines a C∞-linear map ω : V ect(M) →
C∞(M) : ω(V )(x) := (ω(x), V (x)).

Exercise 4.1.3. Show that a linear function ω : V ect(M) → C∞(M) is a tensor type
(0, 1) if and only if for all f ∈ C∞(M) and V ∈ V ect(M) we have ω(fV ) = fω(V ).

Definition 4.1.4. A Riemmannian metric g is a tensor of type (1, 1) on M such that at
each point x ∈M the value g(x) is a symmetric positive definite bilinear form on TxM .
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Example 4.1.5. -Let M be a submanifold in Rn. Then the restriction of the Euclidean
metric to each tangent space TxM is a positive definite bilinear form. This restriction
defines a Riemannian metric on M .
- Let f : Nn → Mm be an immersion. If g is a Riemannian metric on Mm then f
induces a Riemannian metric on Nn by

f∗(g)(X,Y )x = g(Df(X), Df(Y )).

Exercise 4.1.6. Let f : R2 → R3 is defined by

f(x, y) = (x, y, z(x, y)).

Find the induced metric f∗(g), where g is the Euclidean metric.

On a coordinate domain U ⊂ Rn a Riemannian metric g can be written as g(x) =
gij(x)dxidxj . On other coordinate domain y(U) with y : Rn → Rn the same metric g(y)
has the following expression

g(y(x)) = g̃ij(y(x))dỹidỹj = g̃ij(y(x))
∂yi

∂xk
dxk ∂yj

∂xl
dxl = gkl(y(x))dxkdxl.

Hence

(g̃ij)(y(x)) = (
∂xk

∂yi
)∗x(gkl(y(x)))(

∂xl

∂yj
).

Exercise 4.1.7. i) Compute the Riemmannian metric dx2 + dy2 in polar coordinates
(r, φ) with x = r cosφ and y = r sinφ.
ii ) Compute the induced Riemmanian metric on the sphere in polar coordinate z =
cos θ, x = sin θ cosφ, y = sin θ sinφ.

Remark 4.1.8. If γ : [0, 1] → (Mm, g) is a curve on a Riemannian manifold, then we
define the length L([γ]) by

L([γ]) :=
∫ 1

0
|γ̇(t)| dt.

Clearly the length of a curve γ does not depend on a parametrization of γ, i.e. if
s : [0, 1] → [0, 1] is a monotone smooth function, then a new curve γ̃(t) := γ(s(t)) has
the same length as γ(t), since∫ 1

0
| ˙̃γ(t)| dt =

∫ 1

0
| d
ds
γ||ṡ| dt =

∫ 1

0
|γ̇| dt.

Exercise 4.1.9. i) Compute the length a a curve γ(t) : [0, 1] → S3 defined by θ(t) =
π
4 , φ(t) = π · t.

Exercise 4.1.10. Let (M, g) be a Riemannian manifold. Show that a linear function
V : V ect(M) → C∞ is a tensor type (1,0) if and only if for all f ∈ C∞(M) and
W ∈ V ect(M) we have g(V, fW ) = fg(V,W ).
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4.2. The existence of a Riemannian metric.

Theorem 4.2.1. On each differentiable manifold Mm there exists a Riemannian metric
g.

To prove this theorem we need the fact that every locally compact Hausdorff space
M with countable basis is paracompact, i.e. any open covering on M possesses a locally
finite refinement, see e.g. Kobayashi-Nomidzu, v.1. (In many textbooks ones requires
that a differentiable manifold is a paracompact Hausdorff topological space). This fact
implies the existence of partition of unity on a differentiable manifold. This fact is a
fundamental Lemma in the theory of differentiable manifolds. Denote by sppt f the
support of a function f on a differentiable manifold M , i.e. sppt f := {x ∈M | f(x) 6= 0}.

Lemma 4.2.2 (Partition of unity). Let M be a differentiable manifold, (Uα)|alpha∈A

an open covering. Then there exists a partition of unity, subordinate to (Uα). This
means that there exists a locally finite refinement (Vβ)β∈B of (Uα) and smooth functions
φβ : M → R with
(i) sppt φβ ⊂ Vβ for all β ∈ B,
(ii) 0 ≤ φβ ≤ 1 for all x ∈M,β ∈ B,
(iii)

∑
β∈B φβ(x) = 1 for all x ∈M .

Using a partition of unity we shall prove Theorem 4.2.1.

Proof. Let {(Uα, φα)} be an atlas on M . W.l.g. we can assume that (Uα) is locally
finite. We define a Riemannian metric g on M by setting its value at a pair of tangent
vectors v, w ∈ TpM as follows

〈v, w〉 =
∑
α∈A

φα(p)vi
αw

i
α,

where (v1
α, · · · , vn

α) and (w1
α · · · , wn

α) are representation of Dφα(v) and Dφα(w) in Rn.
It is easy to check that g is well-defined. �

Remark 4.2.3. Let Nn be a submanifold in a Riemannian manifold (Mm, g). Then the
restriction of g to the tangent bundle TN defines a Riemannian metric on Nn which we
called the induced metric. Thus any smooth submanifold in Rn carries a Riemmanian
metric which is induced from the Euclidean metric on Rn. A celebrated theorem of Nash
asserts that any a Riemannian metric on a manifold Nn is induced from the Eulidean
metric on some space Rm via a smooth embedding f : Nn → Rm. A submanifold
Nn in a Riemannian manifold (Mm, g) provided with the induced metric ḡ is called a
Riemannian submanifold of (Mm, g).

Exercise 4.2.4. Let Nn be a submanifold in a manifold M . Let ω be a tensor on Nn.
Show that ω can be extended to a tensor on Mm.

Hint. Unse partition of unity.

5. Levi-Civita connection

In this section we introduce the notion of Levi-Civita connection on a Riemannian
manifold which is a central notion in Riemannian geometry (a branch of differential
geometry which studies Riemannian manifolds). The Levi-Civita connections give us
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tool to analyze global properties of a Riemmannian manifold M by using local invariants
on M , since we can compare the tangent spaces at different points on M in a canonical
way.

5.1. Linear connections and metric connection. We have observed in exercise
2.1.4(ii) that for a p ∈ M the derivative ∂vf of function f is equal to the speed of
the change of f along a curve γ(t) at t = 0, if γ̇(0) = v.

If M = Rn we can also take derivative ∂vW of any vector field W on Rn by setting

∂vW =
d

dt t=0
W (γ(t)).

This formula is possible, since the tangent space TxRn at any point x ∈ Rn is canonically
identified with Rn.

On a general differentiable manifold there is a no canonical way to identify TxM
m

and TyM
m. Thus we can imagine that there are many ways to define a derivative ∂vW

of a vector field W on a differentiable manifold M for a tangent vector v ∈ TpM . A
linear connection on TM is a method to define such a derivative which we also require
to satisfy some additional properties.

Denote by ∇XV the (covariant) derivative of a vector field V at a tangent vector X
depending on a connection ∇. Then ∇XV must be linear in variable V

(5.1.1) ∇X(V1 + V2) = ∇X(V1) +∇X(V2).

This derivative must also satisfy the Leibniz rule

(5.1.2) ∇X(f · s) = df(X) · s+ f · ∇X(s).

This derivative must be also linear on the variable X i.e.

(5.1.3) ∇X+Y (s) = ∇Xs+∇Y s.

Now let (M, g) be a Riemannian manifold. We say that a connection ∇ is metric, if
for all vector fields V,W and for all X ∈ TM we have

(5.1.4) ∂Xg(V,W ) = g(∇XV,W ) + g(V,∇XW ).

We shall prove that a metric connection on a Riemannian manifold always exists. More-
over, this connection is unique, if we pose a certain condition on ∇.

Remark 5.1.1. The notion of connection ∇ can be defined for any vector bundle E
over a smooth manifold M . We require that all conditions (5.1.1), (5.1.2), (5.1.3) holds
for any tangent vector X ∈ TM and any sections V,W of the vector bundle E.

5.2. The existence and uniqueness of the Levi-Civita connection. For a connec-
tion ∇ on TM we define its torsion T (∇) ∈ C∞(TM ⊗ T ∗M) (a tensor of type (0, 2))
by

T (Vp,Wp) := ∇VW −∇WV − [V,W ],
for any vector fields V on M with V (p) = Vp and W (p) = Wp.

Exercise 5.2.1. Prove that T is well-defined, i.e. its value T (Vp,Wp) does not depend
on the choice of extensions V and W .
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Hint. Compare with Exercise 4.1.3. Show that T (fV, gW ) = fgT (V,W ) for all
f, g ∈ C∞(M). In particular we have that T (V,W )p = 0 if Vp = 0 or Wp = 0.

Theorem 5.2.2. On any Riemannian manifold there exists a unique metric torsion free
connection.

Proof. We set for X,Y, Z ∈ V ect(M)
(5.2.1)

〈∇XY, Z〉 :=
1
2
{X〈Y, Z〉 − Z〈X,Y 〉+ Y 〈Z,X〉 − 〈X, [Y, Z]〉+ 〈Z, [X,Y ]〉+ 〈Y, [Z,X]〉}

First we show the uniqueness of a torsion free metric connection, i.e. we have to show
that any torsion free metric connection ∇ satisfies (5.2.1). Since ∇ is metric it should
satisfy

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉,

Y 〈Z,X〉 = 〈∇Y Z,X〉+ 〈Z,∇YX〉,

Z〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉.
Using the torsion free condition we get

X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉

= 2〈∇XY, Z〉 − 〈[X,Y ], Z〉+ 〈Y, [X,Z]〉+ 〈X, [Y, Z]〉
which yields (5.2.1).

Now we will show that (5.2.1) defines a torsion free metric connection, i.e. ∇ satisfies
(5.1.1), (5.1.2), (5.1.3), 5.1.4) and T (∇) = 0. It will imply the existence of a torsion free
metric connection. Then we shall show that any torsion free metric connection satisfies
(5.2.1).

First we note that for any fixed X,Y ∈ V ect(M) the value of ∇XY defined by RHS
of (5.2.1) is a tensor field of type (1,0) on M . Clearly ∇XY defines a linear map
V ect(M) → R. By Exercise 4.1.10 it suffices to show

(5.2.2) 〈∇XY, (fZ)〉 = f〈∇X , Y 〉.

A straightforward calculation of the RHS of (5.2.1) gives

〈∇XY, (fZ)〉 = f〈∇XY, Z〉+
1
2
[(Xf)〈Y, Z〉+ (Y f)〈X,Z〉

−(Xf)〈Y, Z〉 − (Y f)〈X,Z〉]
which is equal to the RHS of (5.2.2).

Thus ∇X defines a linear map V ect(M) → V ect(M), so the first condition (5.1.1)
holds. In the same manner we verify that properties (5.1.2) and (5.1.3) hold. So ∇
defines a linear connection. To check that ∇ is metric, we add the RHS of (5.2.1)
associated to 〈∇X , Y 〉 and 〈∇XZ, Y 〉. Finally the torsion free condition

〈∇XY, Z〉 − 〈∇YX,Z〉 = 〈[X,Y ], Z〉

follows directly from (5.2.1). �
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A torsion free metric connection on a Riemannian manifold Mm is called the Levi-
Civita connection. Now let us look at the expression of Levi-Civita connection in local
coordinate (xi) with g(x) = gij(x)dxidxj . Using the Leibniz rule, it suffices to compute
∇DiDj for i, j,= 1,m. Now we define function Γk

ij(x) as follows

∇DiDj(x) = Γk
ij(x)Dk.

The functions Γk
ij are called Chritoffel symbol. By definition

〈∇DiDj , Dl〉 = 〈
m∑

k=1

Γk
ijDk, Dl〉 =

∑
Γk

ijgkl.

Using (5.2.1) we get immediately

〈∇DiDj , Dl〉 =
1
2
(Di〈Dj , Dl〉+Dj〈Dl, Di〉 −Dl〈Di, Dj〉)

=
1
2
(
∂gjl

∂xi
+
∂gli

∂xj
− ∂gij

∂xl
).

Thus, letting gkl := (g)−1
kl , we have

(5.2.3) Γk
ij =

1
2
gkl

m∑
l=1

(
∂gjl

∂xi
+
∂gli

∂xj
− ∂gij

∂xl
).

5.3. Parallel transport and geodesics. Let (M, g) be a Riemannian manifold, ∇ its
Levi-Civita connection and γ(t) : (−ε, ε) → M be an embedded curve. Note that the
restriction of TM to γ(t) defines a vector bundle over submanifold γ(t)| t ∈ (−ε, ε).

Lemma 5.3.1. For a section V (t) : γ(t) → TM let Ṽ be a extension of V to M . We
define for any t a linear map ∇γ̇(t) : Γ(TM|γ(t)) → Γ(TM|γ(t)) as follows

∇γ̇(t)V (t) := ∇γ̇(t)Ṽ .

This linear map is well-defined. It is a connected on the vector bundle TM|γ(t).

From Lemma 5.3.1 we get immediately

Corollary 5.3.2. The covariant derivative ∇γ̇(t)V for any vector field V on M depends
only on the restriction of V to γ(t).

Proof of Lemma 5.3.1. It suffices to show that if V (t) is a zero vector field, then∇γ̇(t)Ṽ =
0. Choose a local coordinate at γ(t). W.l.g. we assume that γ̇(t) = ∂x1. Using the
theorem on linearization of a vector field we can assume that γ(t) = (t, 0, · · · , 0) for a
sufficient small t. Let Ṽ = fi(x)Di. Since V|γ(t) = 0 we have fi(t, 0, · · · , 0) = 0. Now we
compute

∇D1V (t)0 = ∇D1(fiDi)0 = fi(∇D1Di)0 +D1(fi)Di = 0.

�
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Exercise 5.3.3. Let (N, ḡ) is a Riemannian submanifold in a Riemannian manifold
(M, g). Then the restriction of the tangent bundle TM toN is a direct sum of the tangent
subbundle TN and the normal subbundle TN⊥ consisting of vectors which is orthogonal
to TN w.r.t. g. For any vector V ∈ TM denote by V T the tangential component of V .
Now we define the following linear map ∇̃ from V ect(N)× V ect(N) → V ect(N)

(5.3.1) ∇XY := (∇X Ỹ )T ,

where Ỹ is any extension of Y from Nn to some vector field Ỹ on M . Prove that (5.3.1)
defines the Levi-Civita connection on (N, ḡ).

Hint. Let Ỹ be extension of Y to M . Using Corollary 5.3.2 show that (5.3.1) does not
depend on the extension Ỹ . From here check that (5.3.1) defines a metric connection.
To show that it is torsion free we use the identity [X̃, Ỹ ](x) = [X,Y ](x) for any x ∈ N ,
where X̃ is an extension of X.

Exercise 5.3.4. Prove that the normal bundle (TS2)⊥ of the sphere S2 in R3 is a trivial
vector bundle.

Definition 5.3.5. A family of vectors vt ∈ Tγ(t)M is said parallel to v0 along path
γ(t) if

∇γ̇(t)vt = 0.

A C2-curve γ →M is called geodesics, if ∇γ̇(t)γ̇(t) = 0 for all t.

Theorem 5.3.6. Let (M, g) be a Riemannian manifold and I = (a, b) be an open interval
on the real line R. Further let γ : I → M be a smooth curve. Then for any t0 ∈ I and
any given X ∈ Tγ(t)M there exists a unique parallel vector field Y along γ(t) such that
Y (t0) = X.

Proof. W.l.g. we can assume that M is an open domain in Rn. Thus

γ̇(t) =
∑

i

γ̇i(t)∂xi.

Now let Y (t) be a vector field along γ(t), Y (t) = yi(t)∂xi. The condition that Y (t) is a
parallel vector field along γ(t) is expressed in the following differential equation

(5.3.2)
∑
i,j

γ̇i(t)∇i(yj(t)∂xj) = 0.

Clearly (5.3.2) is a system of n OEDs. This system has a unique solution for any given
initial value Y (t0) if the coefficients γ̇i(t) is of class C1. �

Example 5.3.7. - On Euclidean space a vector field V is parallel along γ(t), if and only
if V (γ(t)) is a constant vector field. In particular a geodesic is a straight line and any
straight line is a geodesic.
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- Now we shall define a parallel transportation of a vector field V along a curve γ on

the sphere S2 as in this figure. We regard γ as a curve
in R3 as well as a curve in S2 and in the cone Cγ. By Exercise 5.3.3, the connection
in the bundle TCγ is obtained by the projection of the Euclidean connection to TCγ.
Since the tangent bundle TCγ of cone Cγ has the same restriction to γ as the restriction
of TS2|γ, it follows that we can consider the parallel transportation of V along γ as V
belong to the tangent bundle TCγ. Now we pull out this cone isometrically to a planec
R2 by cutting the cone along an edge C of it. The sliced cone does not cover the whole
plane, there is a small angle θ inside the cone formed between the sliced edge C. Since
the parallel transportation does not change under an isometric map, we can perform the
parallel transportation of V on the pulled out cone. It is easy to see that V is moved
to another vector V ′ parallel to it on R2, but if we close the sliced cone, then V ′ differs
from V by the angle β = 2π − θ. When γ is a great circle, then θ = 0, so V ′ = V . If γ
is very small then θ is very close to 0 and V ′ is close to V .

For the important geodesic equation we have the following local existence result.

Theorem 5.3.8. Let (M, g) be a Riemannian manifold. For any p ∈ M and v ∈ TpM
there exists an open interval I = (−ε, ε) and a unique geodesic γ : I → M such that
γ(0) = p and γ̇(0) = v.

Proof. It suffices to prove Theorem 5.3.8 for M being an open domain in Rm. Let us
write the equation for a geodesic γ(t) in local coordinates

∇γ̇(t)(γ̇(t)) =
∑

i

∇γ̇(t)(γ̇
i∂xi)

=
d2

dt2
(γ(t))∂xi + γ̇i(t)γjΓk

ji∂xk.

Thus the equation for a geodesic γ(t) is a system of n second order ODE’s. Hence follows
the theorem. �

Exercise 5.3.9. - (i) Find all geodesics on the sphere Sn.
- (ii) Find all geodesics on the hyperbolic plane H2(x, y), y > 0 with g(X,Y )x,y =
1
y2 〈X,Y 〉.
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Hint. i ) Using rotation, show that all geodesics are great circles.
ii) Using Γ1

12 = 1
y = −Γ2

11 = Γ2
22 show the geodesic equation

ẍ =
2ẋẏ
y
, ÿ =

(ẏ)2 − (ẋ)2

y
.

Now use the trick
dy2

dx2
=

d

dx
(
ẏ

ẋ
) =

ÿẋ− ẍẏ

(ẋ)3

to show that the geodesics on H satisfy (yy′′) + (y′)2 = −1 which are either line ẋ = 0
or circles (x− C)2 + y2 = D2.

Remark 5.3.10. The existence of a geodesic on a Riemannian manifold allows us to
define a map TpM → M sending any vector v to point γ(1) where γ(t) is a geodesic
through p and tangential to γ(t). This map is called the exponential map. Since the
tangent map of the exponential map at zero is identity, the exponential map provides a
local diffeomorphism between an open neighborhood Up of p and an open set in TpM . It is
known that in the chart (Up, exp−1) the Riemannian metric has a nice form: gij(0) = δij ,
Γi

jk(0) = 0 for all i, j, k, (see J.Jost, Theorem 1.4.4.) This coordinate chart is called a
normal coordinate chart on a Riemannian manifold (M, g).

5.4. Geodesic and variation of the length of curves. We will show that a geodesic
γ(t) joining two points p, q on a Riemannian manifold (M, g) has a locally minimal length
among curves γ′(t) joining the same points.

Let γ : [a, b] → M be a smooth curve. A variation of c is a differentiable map
F : [a, b]×(−ε, ε) →M with F (t, 0) = γ(t) for all t ∈ [a, b]. The variation is called proper,
if the endpoints stay fixed, i.e. F (a, s) = γ(a) and F (b, s) = γ(b) for all s ∈ (−ε, ε). We
set

Ḟ (t, s) =
d

dt
F (t, s), F ′(t, s) =

d

ds
F (t, s).

Now we compute the first variation

d

ds
L(F (t, s)) =

d

ds

∫ b

a
〈Ḟ (t, s), Ḟ (t, s)〉1/2 dt

=
∫ b

a

〈∇F ′(t,s)Ḟ (t, s), Ḟ (t, s)〉
〈Ḟ (t, s), Ḟ (t, s)〉1/2

, since
d

ds
φ(F (t, s)) = ∇F ′(t,s)φ(F (t, s)) for any function φ,

=
∫ b

a

〈∇Ḟ (t,s)F
′(t, s), Ḟ (t, s)〉

〈Ḟ (t, s), Ḟ (t, s)〉1/2
, since ∇F ′(t,s)Ḟ (t, s)−∇Ḟ (t,s)F

′(t, s) = [F ′(t, s), Ḟ (t, s)] = 0,

(5.4.1) =
∫ b

a
[

d
dt〈F

′(t, s), Ḟ (t, s)〉
〈Ḟ (t, s), Ḟ (t, s)〉1/2

− 〈
F ′(t, s),∇Ḟ (t,s)Ḟ (t, s)〉

〈Ḟ (t, s), Ḟ (t, s)〉1/2
] dt.

If γ(t) is parametrized proportional to the arc-length, i.e. ||γ̇(t, 0) = 0||, (in this case
γ(t) is called naturally parametrized) then (5.4.1) becomes

(5.4.2)
d

ds s=0
L(F (t, s)) =

1
〈γ̇, γ̇〉1/2

{〈F ′(t, 0), Ḟ (t, 0)|t=b
t=a −

∫ b

a
〈F ′(t, 0),∇γ̇(t)γ̇(t) dt}
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Thus the equation (5.4.2) = 0 becomes ∇γ̇(t)γ̇(t) = 0, i.e. γ(t) is a geodesic. Thus we
have proved the following

Lemma 5.4.1. Any geodesic γ : [a, b] → M is a critical point of the length functional
w.r.t. to its proper variations. Any natural parametrized shortest curve γ(t) joining two
points p, q on M is a geodesic.

Exercise 5.4.2. Let H2 = {(x, y) ∈ R2, y > 0} be the Poincare half plane with the
metric ds2 = 1

y2 (dx2 +dy2). Let P = (−1√
2
, 1√

2
) and Q = ( 1√

2
, 1√

2
). Compute the distance

d(P,Q).

5.5. The second fundamental form and totally geodesic submanifolds.

Definition 5.5.1. The second fundamental form of a Riemnnian submanifold (N, ḡ, ∇̄)
in a Riemannian manifold (M, g,∇) at a point x ∈ N is defined by

B : TxN × TxM → TxN
⊥ : (X,Y ) 7→ (∇XY )⊥

Exercise 5.5.2. Prove that Definition 5.5.1 is well-defined. Prove that the second
fundamental form is symmetric.

A submanifold (N, ḡ) ⊂ (M, g) is called totally geodesics, if the second fundamental
form B is vanishing everywhere.

Proposition 5.5.3. Let (N, ḡ) be a Riemannian submanifold in (M, g). Then the fol-
lowing conditions are equivalent:
(i) N is totally geodesic in M ,
(ii) Any geodesic γ(t) in N is also a geodesic in M .

Proof. The result is a direct consequence of the following decomposition formula for a
geodesic γ in N

∇γ̇ γ̇ = ∇̄γ̇ γ̇ + (∇γ̇ γ̇)⊥ = B(γ̇, γ̇).
�

Exercise 5.5.4. Prove that Sk(1) is a totally geodesic submanifold in Sn(1), if k ≤ n.

Exercise 5.5.5. Compute the second fundamental form of the submanifold T 2 = {|z1| =
1 = |z2|} in the S3 = {|z1|2 + |z2|2 = 1}.

5.6. The Riemannian curvature tensor. Since in a normal coordinate chart on a
Riemmanian manifold (M, g) the metric g and its first derivatives coincide with the
Euclidean metric on Rn, there is no tensor depending on g and its first derivatives which
is an invariant of (M, g). The curvature tensor of a Riemmanian manifold (M, g) is a
tensor depending on the second derivatives of g which measures how far g differs from
the standard Euclidean metric.

Theorem 5.6.1. Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇.
Then the curvature R : V ect(M)× V ect(M)× V ect(M) → V ect(M) defined by

(5.6.1) R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

is a tensor of type (3,1) on M .

Exercise 5.6.2. Prove this theorem.
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Now let us compute the Riemannian curvatures R of a Riemannian manifold (Mm, g)
in local coordinates. Let (U, x) be local coordinates on Mm. For i, j, k, l = 1, ...,m put

Rijkl = g(R(Di, Dj)Dk, Dl.

Then

(5.6.2) Rijkl =
m∑

s=1

gsl(
∂Γs

jk

∂xi
−
∂Γs

ik

∂xj
+

m∑
r=1

(Γr
jkΓ

s
ir − Γr

ikΓ
s
jr)),

where Γk
ij are the Christoffel symbols of the Levi-Civita connection. The formula (5.6.2)

is obtained by applying (5.6.1) to vector fields Di.
It is easy to see that the Riemannian curvature on Rn with the Euclidean metric is

equal to zero. Thus if a Riemmannian manifold (M, g) has non-zero curvature tensor R
it cannot be isometric to an open domain in Rn, i.e. there is no diffeomorphism f → U ,
U is an open domain in Rn such that f induces the Euclidean metric from Rn to Mn.

Proposition 5.6.3. Let (M, g) be a smooth Riemannian manifold. For vector fields
X,Y, Z,W on M the following identities hold
(i) R(X,Y )Z = −R(Y,X)Z,
(ii) R(X,Y )Z +R(Z,X)Y +R(Y, Z)X = 0,
(iii)g(R(X,Y )Z,W ) = −g(R(X,Y )W,Z),
(iv) g(R(X,Y )Z,W ) = g(R(Z,W )X,Y ).

Proof. See J.Jost, proof of Lemma 3.3.1. �

Now we introduce the notion of sectional curvature. For this we need the following
technical result.

Lemma 5.6.4. Let (M, g) be a Riemannian manifold and X,Y, Z,W be tangent vectors
at p such that the two 2-planes X ∧ Y and Z ∧W are identical. Then

g(R(X,Y )Y,X)
|X ∧ Y |2

=
g(R(Z,W )W,Z)

|Z ∧W |2
.

Proof. First we consider the case Z = X and W = Y + λX with λ ∈ R. In this case
the identity is a consequence of R(X,X)Y = 0 for all X,Y (see Proposition (i)). Now
assume that W = aY + bX, a 6= 0. Then by the above R(X,W ) = aR(X,Y ). Since
vol(Z ∧W ) = vol(X ∧ Y ) = a−1vol(X ∧W ) we have vol(Z ∧W ) = a−1vol(X ∧W ).
Consequently Z = a−1X + bW . So R(Z,W ) = a−1R(X,W ) = R(X,Y ). �

Using Lemma we define the sectional curvature K(X ∧ Y ) of plane X ∧ Y ⊂ TpM
as the value defined in the Lemma. In particular, on any two-dimensional Riemannian
surface (M2, g) the sectional curvature Kg is a function M → R.

Exercise 5.6.5. Compute the section curvature of Sn(1) and of the Poincare half plan
(x, y)|, y > 0 with g(X,Y ) = 1

y2 〈X,Y 〉.

The global behaviour of the sectional curvature on (M2, g) gives us information about
topology of M2.
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Theorem 5.6.6 (The Gauss-Bonnet Theorem). Let M2 be an orientable closed surface
and g be a Riemmannian metric on M2. Then∫

M2

KgdA = χ(M2)

where dA is element of area of M2 and χ(M) is the Euler number of M2.

We need to explain how to take the integration of a continuous function Kg over a
surface (M2, g). Using partition of unity, it suffices to take integration over coordinate
domains (Uk, gij) so that ∫

M2

f dA =
∑

k

∫
Uk

αk · f dA,

where the number of covering Uk is finite, and αk is a partition of unity subordinate to
Uk. Furthermore we can assume that U = [−ε, ε] × [−ε, ε] and g = gijdx

idxj . Here we
define ∫

U
fdA :=

∫ ε

−ε

∫ ε

−ε
f · (det(gij))1/2dxdy.

It is easy to see that the above expression does not depend on the choice of coordinates
(x, y) on U .

The Gauss-Bonnet Theorem is obtained from the Gauss-Bonnet formula for a simply
connected domain D on M2. Let D be a bounded domain on M2 such that its boundary
∂D is a piece-wise differentiable curve C consisting of m differentiable curves. Then∫

D
K dA+

∫
C
kg ds+

m∑
i=1

(π − αi) = 2π.

Here kg is the geodesic curvature of C (the value |∇ĊĊ|, if C is naturally parametrized),
and αi are inner angles of C where C s not differentiable.

For a proof of the Gauss-Bonnet formula we refer to the book by Millman, Elements
of Differential Geometry,1977.

Exercise 5.6.7. Let S ⊂ R3 be an embedded surface such that K ≤ 0. Prove that
there are no two geodesics γ1 and γ2 starting from the same point p and meet again in
a point q enclosing a simple region.

Lemma 5.6.8. The value of Riemannian curvature tensor R at any point p of a Rie-
mannian (Mm, g) is defined by the value of its sectional curvature K on all tangent
planes X ∧ Y ⊂ TpM .

Proof. Denoting K(X,Y ) := K(X ∧ Y )|X ∧ Y |2, by Proposition 5.6 we have

〈R(X,Y )Z,W 〉 = K(X +W,Y + Z)−K(X +W,Y )−K(X +W,Z)

−K(X,Y + Z)−K(W,Y + Z) +K(X,Z) +K(W,Y )

−K(Y +W,X + Z) +K(Y +W,X) +K(Y +W,Z)

+K(Y,X + Z) +K(W,X + Z)−K(Y, Z)−K(W,X).
�
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A Theorem of Shur asserts that if the dimension of M is at least 3 and the sectional
curvature is constant at each point, i.e

K(X ∧ Y ) = f(x) for X,Y ∈ TxM

then f(x) = const. In this case we say that (M, g) is a space form.

Example 5.6.9. The space Sn with its canonical metric is a space form, since for any
point p ∈ Sn and any pair of tangent planes X ∧ Y and Z ∧W in TpS

n there exists a
rotation of Rn which preserves p and sends X ∧ Y to Z ∧W . The projective space RPn

carries a metric of constant positive sectional curvature, since it is the quotient of the
group Z2 acting on the sphere Sn : x 7→ −x. This action preserves the metric on the
sphere, therefore it descends to a metric on RPn. In local coordinates the metrics on Sn

and RPn are identical.

It is known that any simply connected Riemannian manifold of positive constant
curvature is isometric to some sphere Sn(r). Any simply connected Riemannian manifold
of zero constant curvature (also called flat space) is isometric to Euclidean space Rn, g0 =∑
dx2

i . Any simply connected Riemmanian manifold of constant negative sectional
curvature is isometric to a hyperbolic space Hn(−a2) = (R+

1 × Rn−1, g(x1, · · · , xn) =
1

a2x2
1
(
∑n

i=1 dx
2
i ).

If dimension of M is at least 3, we can consider the average of sectional curvature
K(X ∧ Y ). This curvature is called the Ricci curvature. It is defined as follows

Ric(X,Y )p :=
∑

i

R(X, ei)ei, Y

where ei is any orthonormal frame in TpM .
Likewise, if the Ricci curvature is constant at each point, i.e. Ric(X,X) = c(x)g(X,X),

then c(X) is constant. In this case (M, g) is an Einstein manifold.


