
Kähler manifolds and the Hodge conjecture

Hông Vân Lê

Kähler manifolds form a bridge between algebraic geometry and complex dif-
ferential geometry. In this course we shall discuss the following concepts: complex
manifolds, Kähler metrics, sheaf cohomology, Sobolev spaces, pseudo-differential
operators, elliptic differential operators. We shall prove the Hodge decomposition
theorem, the Lefschetz decomposition theorem as well as the Kodaira embedding
theorem. We end the course with the Hodge conjecture.

Recommended literature: - C. Voisin, ”Hodge theory and complex algebraic
geometry” , 1, Cambrige University Press, 2002,

- R. O. Wells, ”Differential analysis on complex manifolds”, Prentice-Hall, 1973.
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1 Complex manifolds and almost complex man-

ifolds

1.1 Manifolds and complex manifolds

I suggest you to look at my lecture on differential geometry
(http://www.math.cas.cz/∼hvle/DG2008.pdf )
I would like to repeat quickly a definition of a differentiable manifold. (There

are many equivalent definitions).

1.1.1. Definition Let M be a Hausdorff space with a countable basis for its
topology. We call M an n-dimensional topological manifold, if for each point
p ∈ M there is an open neighborhood U of p in M such that U is homeomorphic
to an open set in Rn by some homeomorphism φ. Such a pair (U, φ) is called a
local coordinates systems or a chart on M .

1.1.2. Example The sphere Sn = {x ∈ Rn+1, ||x|| = 1} is a n-dimensional
manifold. We write Sn as the union of two open sets {Sn \N} ∪ {Sn \ S} where
N and S are the north pole and the south pole of Sn. Clearly each point of Sn

belongs to one of those two open sets. And these open sets are homeomorphic to
Rn by stereographic projections π. The pair {Sn \ N, π}, ({Sn \ S, π}) is a chart
on Sn.

We are now interested in the class of topological manifolds with a good gluing,
that is a good agreement between different homeomorphisms φi and φj on the
common domain Ui ∩ Uj.

1.1.3. Definition. A (smooth) atlas on a topological manifold M is a collec-
tion A = {(Ui, φi)} of charts such that {Ui} form an open covering of M and for
each pair (U, φi) and (V, φj) in A the transition map

Φij = φjφ
−1
i : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj)

is a smooth map between open sets in Euclidean space.
Two atlas are equivalent, if their union is also an atlas.
A smooth structure on a topological manifold is an equivalence class of

atlases, and a smooth manifold is a topological manifold with a specified smooth
structure.

Transition functions define the structure of a differentiable manifold completely.

1.1.4. Definition Let M2n be a differentiable manifold of dimension 2n. We
say that M2n is equipped with a complex structure if there is an atlas {Ui, φi} on
M2n such that Ui is diffeomorphic to an open set in Cn and the transition function
Φij is holomorphic for all i, j.
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1.1.5. Examples of complex manifolds For n = 2 the sphere S2 is a
complex manifold. We cover S2 by φ−1

0 (C0) ∪ φ−1
1 (C1) where C0 = {z0 ∈ C} is

given by stereographic projection φ0 from the north pole and C1 = {z1 ∈ C} is
given by stereographic projection φ1 from the south pole. We assume that the
diameter of S2 is 1. Now it is easy to check that the transition function

φ0(φ−1
0 (C0) ∩ φ−1

1 (C1)) = (C0 \ {0})→ (C1 \ {0}) = φ1(φ−1
0 (C0) ∩ φ−1

1 (C1))

is given by
φ01(z0) = (z0)−1.

This transition function is holomorphic. Moreover we observe that this transition
function coincides with the transition function on CP 1 = D0∪D1 with Di = {[z0 :
z1], | zi 6= 0} with a coordinate function f0([z0 : z1]) = z1/z0 and f1([z0 : z1]) =
z0/z1.

1.1.6. Exercise Show that the space CP n is a complex manifold.

The notion of differentiable maps (or functions) can be defined easily in the
category of differentiable manifolds using atlas on differentiable manifolds. In the
same way we can define the notion of holomorphic maps (or functions) in the
category of complex manifolds.

1.1.7. Exercise Prove that any holomorphic function F on a compact complex
manifold is a constant.

Hint Use the Cauchy formula for holomorphic function f of one variable

f(z) =
1

2πi

∫
γ

f(ξ)

ξ − z
dξ

to investigate the maximum of F .

1.1.8. Definition A compact subset N in a complex manifold Mn is called a
complex submanifold, if for each point x ∈ N there is a chart (U, φ) around x
in M such that φ(U ∩N) = φ(U) ∩ Ck for some subspace Ck ⊂ Cn ⊃ φ(U).

For example CP k is a complex submanifold in CP n for any 1 ≤ k < n.

1.2 Vector bundles

1.2.1. Definition A real (complex) topological vector bundle of rank m over a
topological space X is a topological space E equipped with a map E → X such
that for an open cover {Ui} of X we have local trivialisation homeomorphism

τi : π−1(Ui) ∼= Ui × Rm(resp.Ui × Cm)
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such that
(i) pr1 ◦ τi = π.
(ii)The transition morphisms

τij := τj ◦ τ−1
i : τi(π

−1(Ui ∩ Uj))→ τJ(π−1(Ui ∩ Uj))

are R-linear (resp. C-linear) on each fiber u× Rm (resp. u× Cm).
The transition functions τij(x) take values in the space of real (resp. complex)

matrices of size m×m.
If all the transition functions τij of a complex vector bundle V over a complex

manifold M are holomorphic, then V is called holomorphic vector bundle.
Clearly in this case V is a complex manifold.

A section of a vector bundle E
π→ X is a map σ : X → E such that π◦σ = IdX .

For any real (resp. complex) manifold Mn we can associate a very important
vector bundle of dimension n over Mn, the tangent bundle of Mn. Let {Ui, φi) be
an atlas on Mn. Then the tangent space TMn is covered by open sets Ui×Rn and
the transition morphisms between (Ui ∩Uj)×Rn ⊂ Ui×Rn and (Ui ∩Uj)×Rn ⊂
Uj × Rn are given by

(x, v) 7→ (u, φ∗ij(v)).

Here φij is the transition function between the open set φi(Ui∩Uj) and φj(Ui∩
Uj) of Rn and φij is its Jacobian matrix at the point x.

A section of the tangent bundle is called a vector field.
The points of the tangent bundle can be identified with equivalence classes of

differentiable maps γ : [−ε, ε]→Mn for the equivalence relation

γ ∼= γ′ =⇒ γ(0) = γ′(0),
d

dt t=0
γ =

d

dt t=0
γ′.

1.2.2. Exercise Let us denote by Ck(Mn) the space of k-differentiable func-
tions on Mn. Show that any tangent vector [γ](x) defines a linear map D[γ] :
Ck(Mn)→ R by D[γ](f) = d

dt t=0
f(γ(t)).

Using 1.2.2 we map the space of vector fields to the space of all derivations
Der(C∞(Mn)). It turns out that this map is an isomorphism. Thus we shall
define the Lie bracket of two vector fields on Mn by putting

[X, Y ](f) := (XY − Y X)f

for all f ∈ C∞(M).

The dual vector bundle T ∗M := Hom(TM,M × R) is called the cotangent
bundle of Mn.
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1.2.3. A differential form ω of degree k is a section of Λk(T ∗Mn). If the
section is holomorphic, then ω is called holomorphic differential form.

We define the differential operator d : Ωp(Mn)→ Ωp−1(Mn) by

dω(X0, X1, · · · , Xr) =
1

r + 1

r∑
i=0

Xi(ω(X0, · · · , X̂i, · · · , , Xr))

+
1

r + 1

∑
0≤i<j≤r

(−1)i+jω([Xi, Xj], X0, · · · , X̂i, · · · X̂j, · · · , Xr)).

1.2.4. Exercise Prove that d2 = 0.

1.2.5. Tangent bundle of a complex manifold Let M2n be a complex
manifold of real dimension 2n and let (Ui, φi) be holomorphic local charts. Then
the tangent bundle T(Ui) can be identified with Ui × Cn. Moreover the transition
function φij is holomorphic by hypothesis. Equivalently the Jacobian φij(x)∗ :
Cn → Cn is a C-linear map for all x ∈ Ui. This tangent bundle is also called the
holomorphic tangent bundle of M2n.

Now we define linear operators

Ji : TUi → TUi

identified with Id ×
√
−1 acting on Ui × Cn. By the remark above these linear

operators define a global endomorphism, written J . Clearly J2 = −Id.

1.3 Almost complex manifolds and ∂-operator

We can characterize complex manifolds among a class of differentiable manifolds
with special structures using 1.2.5.

1.3.1. Definition An almost complex structure on a differentiable manifold
M2n is an endomorphism J of TM2n such that J2 = −Id. Equivalently J defines
a structure of a complex vector bundle. An almost complex structure is called
integrable, if there is a complex structure on M2n which induces I.

Rephrasing in terms of G-structure, we can say that a almost complex structure
is a GL(n,C)-structure. (Having an almost complex structure is having the group
Gl(n,C) acting at every fiber Gl(2n,R) of the principal bundle - frame bundle
F (M)→M , that is having a section of the associated bundle Gl(n, 2R)/Gl(n,C).)

It is a problem of algebraic topology (so it is a soft problem) to define if a
manifold admits an almost complex structure or not. The existence of a complex
structure is more subtle problem. For example we know that S6 admits almost
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complex structure but we do not know if it admits complex structure. But if we
fix an almost complex structure and ask if it comes from a complex structure then
we can answer certainly by the Newlander-Nirenberg theorem.

First we shall need to look more careful at the structure of the tangent bundle
of an almost complex manifold.

Let V be a real vector space with a complex structure J and V ⊗R C the
complexification of V . Putting

J(v × α) = J(v)⊗ α

we extend the R-linear transformation J to a C-linear transformation also denoted
by J of the space V ⊗R C. This extended transformation also satisfies J2 = −Id,
hence J has two eigenvalues ±

√
−1. We denote by V1,0 the eigenspace corre-

sponding to the eigenvalue
√
−1 and by V0,1 the eigenspace corresponding to the

eigenvalue −
√
−1. Then

V ⊗R C = V1,0 ⊕ V0,1.

It is easy to see that our complex space (V, J) is C-linearly isomorphic to V1,0.
If M2n is almost complex manifold then we have the decomposition of its

complexified tangent bundle TM2n
C = (T1,0M

2n)⊕ (T0,1M
2n). Now we note that J

also acts on the cotangent bundle by

(Jv∗, w) := (v, Jw).

According to this induced action we can decompose the complexified cotangent
bundle T ∗MC as (T 1,0M2n)⊕ (T 0,1M2n) and therefore we have

Λk(TM2n
C ) =

∑
p+q=k

Λp(T ∗M2n)1,0 ∧ Λq(T ∗M2n)0,1. (1.3.2)

A section of the bundle (T1,0M
2n) ( resp. (T0,1M

2n)) is called a vector field of
type (1, 0) ( resp. (0, 1)). The Lie bracket on the space of vector fields on M2n

extends R-linearly to the Lie bracket on the space of complex vector fields.

1.3.3. Newlander-Nirenberg Theorem The almost complex structure is
integrable, iff the bracket of two vector fields of type (1, 0) is a vector field of type
(1, 0).

We shall not prove the Newlander-Nirenberg Theorem here. We observe that
this theorem, like the Frobenius theorem, can be stated in dual terms using the
differential forms. For the statement we need to introduce the notions of the
operator ∂ and operator p̄.

Let ω ∈ Ωp,q(M2n) where M2n is an almost complex manifold. We define ∂ω
to be the (p+ 1, p)-component of dω and ω̄ to be the (p, q + 1)-component of dω.
By (1.3.3) we get

dΩp,q ⊂ Ωp+1,q(M2n)⊕ Ωp,q+1(M2n),
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hence d = ∂ + ∂̄.

1.3.4. Exercise. 1. Let α be a differential form on C3 = R6(x1, y1, x2, y2, x3, y3).
Compute ∂α for α = (x2y2)x−1

3 dx1 ∧ dx2.
2. Show that on any complex manifold we have ∂2 = 0 = ∂̄2 and ∂∂̄ + ∂̄∂ = 0.
3. Prove that the Newlander-Nirenberg Theorem is equivalent to the following
statement. For any form ω ∈ Ω1

C(M2n) we have dω = ∂ω + ∂̄ω.
Hint i) Show that ∂f =

∑
i ∂zifdz

i, where ∂zi = (1/2)(∂xi −
√
−1∂yi) and

dzi = dxi +
√
−1dyi. For (ii) use (iii). For (iii) use the formula for dω in 1.2.3.

2 Sheaf cohomology

Sheaves are used to keep track of the relationship between local and global data.

2.1 Sheaves

Given a topological space X, a sheaf F on X associated to each open set U a
group F(U), called the section of F over U and to each pair U ⊂ V an open sets
of map rV,U : F(V )→ F(U) called the restriction map, satisfying

2.1.1. For any triple U ⊂ V ⊂ W of open sets

rW,U = rV,U · rW,V .

By virtue of this relation we may write σ|u for rV,U(σ) without loss of information.
2.1.2. For any pair of open set U, V ⊂ M and sections σ ∈ F(U), τ ∈ F(V )

such that
σU∩V = τU∩V

there exists a section ρ ∈ F(U ∪ V ) with

ρ|U = σ, ρ|V = τ|V = τ.

2.1.3. If σ ∈ F(U ∪ V ) and

σ|U = σ|V = 0

then σ = 0.

2.1.4. Examples a- On any differentiable manifold M the following groups
are sheaves: C∞(U) -the set of smooth functions on U , Ωp(U)- the set of smooth
p-forms on U .
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b- On any complex manifold M the following sets are sheaves: O(U) - the set
of holomorphic functions on U , O∗(U) - the set of nonzero holomorphic functions
on U , Ωp

h- the set of holomorphic p-forms on U .
c- If M ⊂ N is a subspace, F a sheaf on M then we can extend F by zero

to obtain a sheaf F̃ on N , settings

F̃(U) = F(U ∩M).

2.1.5. A map of sheaves F α→ G on M is given by a collection of homo-
morphisms {αU : F(U) → G(U)| U ⊂ M} such that for U ⊂ V ⊂ M , αU and αV
commute with the restriction map. The kernel of the map α : F → G is just a
sheaf Ker(α) given by Ker (α)(U) = Ker(αU : F(U)→ G(U)). It is easy to check
that this assignment defines a sheaf. The cokernel of α is defined as follows. A
section s of the cokernel sheaf Coker (α) over U is given by an open cover {Uα}
of U together with sections sα ∈ G(Uα) such that for all α, β

sα|Uα∩Uβ − sβ |Uα∩Uβ ∈ αUα∩Uβ(F(Uα ∩ Uβ)).

We identify two such collections {(Uα, sα)} and {(U ′α, s′α)} if for all p ∈ U and
Uα, U

′
β, there exists V with p ∈ V ⊂ (Uα ∩U ′β) such that s′α|V − s′β |V ∈ αV (F(V )).

2.1.6. Exercise a. Show that Ker α is a sheaf and im(α) := ∪i(imαUi(F (Ui))
is not always a sheaf. Use the exponential map exp : O → O∗ (see 2.1.7) for the
second statement.

Hint Condition 2.1.2 does not hold for contractible domains U1 and U2 with
U1 ∪ U2 = C∗ and for f1 ∈ O∗(U1) = f2 = (z 7→ z) ∈ im(exp(Ui)(O(Ui))). The
function (z 7→ ln z) is not single-valued in C∗.)

b. Check that the definition Coker (α)(U) = G(U)/αU(F(U)) does not satisfy
the condition of a sheaf.

We say that a sequence of sheaf maps

0→ E α→ F β→ G → 0

is exact if E = ker(β) and G = coker(α). In this case we also say that E is the
subsheaf of F and G is the quotient sheaf of F by E written F/E .

2.1.7. Example On any complex manifold the sequence

0→ Z i→ O exp→ O∗ → 0

is exact, where i is the obvious inclusion and exp the exponential map exp(f) =
exp(2π

√
−1f). This fundamental sequence is called the exponential sequence.
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2.2 Cohomology of sheaves

Let F be a sheaf on M and U = {Uα} a locally finite cover. We define

C0(U,F) = ΠαF(Uα),

Cp(U,F) = Πα0 6=α1 6=···6=αpF(Uα0 ∩ · · · ∩ Uαp),

for all 1 ≤ p <∞. The above notations mean that an element σ ∈ Cp(U,F), if it
has form σ = {σα0···αp ∈ F(Uα0 ∩ · · · ∩ Uαp)} and α0 · · ·αp run all over the set of
α0 6= · · · 6= αp. An element σ ∈ Cp(U,F) is called a p-cochain of F . We define
a coboundary operator

δ : Cp(U,F)→ Cp+1(U,F)

by the formula

(δσ)i0,··· ,ip+1 =

p+1∑
j=0

(−1)jσi0,··· ,îj ,··· ,ip+1 |Ui0∩···∩Uip
.

A p-cochain σ is called a cocycle, if δσ = 0.

2.2.1. Exercise Show that any cocycle σ must satisfy the skew-symmetry
condition σi0,··· ,ip = −σi0,··· ,iq−1,iq+1,iq ,iq+2,···ip .

A p-cochain σ is called coboundary if σ = δτ for some τ ∈ Cp(U,F). It is
easy to see that δ2 = 0 and we set

Zp(U,F) = ker δ ⊂ Cp(U,F),

Hp(U,F) =
Zp(U,F)

δCp−1(U,F)
.

Now given two coverings U = {Uα}α∈I and U ′ = {U ′β}β∈I′ of M we say that U ′

is a refinement of U if for every β ∈ I ′ there exists α ∈ I such that U ′β ⊂ Uα, we
write U ′ < U . For U ′ < U we can choose a map φ : I ′ → I such that Uβ ⊂ Uφβ
for all β. Then we have a natural map

ρφ : Cp(U,F)→ Cp(U ′,F)

given by
(ρφσ)··· = σφ(··· ).

Evidently δ◦ρφ = ρφ◦δ therefore ρφ induces a homomorphism of the corresponding
cohomology groups.
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2.2.2. Exercise Prove that the induced homomorphism on cohomology groups
does not depend on the choice of φ.

Hint Check that the chain maps associated to two inclusion associations φ and
ψ are chain homotopic and thus induces the same map on cohomology.

2.2.3. Definition The pth-Čech cohomology group of F on M to be the direct
limit of Hp(U,F) as U becomes finer and finer:

Hp(M,F) :=
lim→U H

p(U,F).

We recall that the inductive limit of H i(U,F) is the quotient of the union
∪iH i(Ui) by the following equivalent relation R. Two elements g1 ∈ H i(U1) and
g2 ∈ H i(U2) are equivalent, if there exists an element g3 ∈ H i(U3) such that
g3 = ρ(g1) = ρ(g2).

2.2.4. Exercise Show that H0(M,F) = F(M).

Now we shall compute the Čech cohomology for a fine sheaf F that admits
partition of unity. More precisely for any U = ∪Uα we can find a family of homo-
morphisms ηα : F(Uα)→ F(U) with sum 1 such that sppt ηα ⊂ Uα. Examples of
such a sheaf is the sheaf of smooth functions or the sheaf of smooth differential
forms on a smooth manifold.

2.2.5. Lemma Suppose that F is a fine sheaf over M . Then Hp(M,F) = 0
for all p ≥ 1.

Proof Given σ ∈ Zp(U,F) we define τ ∈ Cp−1(U,F) by setting

τα0···αp−1 =
∑
β∈I

ηβσβ,α0···αp−1 .

Now it is easy to check that δτ = σ. 2

2.2.6. Exact cohomology sequence. Let 0→ E α→ F β→ G → 0 be a short
exact sequence of sheaves on M . Then

0→ H0(M, E)→ H0(M,F)→ H0(M,G)

→ H1(M, E)→ H1(M,F)→ H1(M,G)

...
→ Hp(M, E)→ Hp(M,F)→ Hp(M,G)

is a (long) exact sequence.

2.2.7. Remark A sequence 0 → E α→ F β→ G → 0 is exact at F , if Imα =
ker β. Since α is injective, we get Imα = imα. We observe that, the injectivity
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of α is equivalent to the injectivity of αx : Ex → Fx for all x. Furthermore the
exactness at F is equivalent to the exactness at Fx for all x. The exactness at
G means that, Imβ(U) = G(U) for all U . By definition of stack this identity is
equivalent to the exactness at Gx. Thus the exactness of the sequence 0 → E →
F → G → 0 is equivalent to the exactness of the sequences

0→ Ex → Fx → Gx → 0

for all x.

2.2.8. Example of an exact sequence of sheaves The following sequence
is exact

0→ Z 2πi·→ O exp→ O∗ → 0,

0→ O →M→ P → 0,

where P is the quotient sheaf M/O :

P(U) = {pn} ⊂ U and fn ∈Mp/Op.

2.2.9. Definition of homomorphism in the long exact sequence. Since
α und β

Cp(U, E)
α→ Cp(U,F)

β→ Cp(U,G),

commute with δ, we get the induced homomorphisms

Hp(U, E)
α∗→ Hp(U,F)

β∗→ Hp(U,G).

Since Hp(M,F) is the direct limit of Hp(U,F), we obtain

Hp(M, E)→ Hp(M,F)→ Hp(M,G).

Now we define the co-boundary operator δ : Hp(M,G) → Hp+1(M, E) as fol-
lows. Let σ ∈ Hp(M,G). Then there exists an open set U ⊂ M and an element
σr ∈ Cp(U,G) such that

δ∗(σr) = 0, [σr] = σ.

We consider the following commutative diagram

Cp(U, E)
α

−−− → Cp(U,F)
β

−−− → Cp(U,G)

↓ δ ↓ δ ↓ δ

Cp+1(U, E)
α

−−− → Cp+1(U,F)
β

−−− → Cp+1(U,G)
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Since β is surjective, there exists µ ∈ Cp(U,F) such that

β(µ) = i ◦ σ.

Clearly δµ ∈ ker β. Therefore there exists τ ∈ Cp+1(U, E) such that

α(τ) = δβ.

We set : δ∗([σ]) = [τ ].

2.2.10. Exercise Show that this definition does not depend on the choice of
µ and τ .

For most of exact sequences 0 → E → F → 0 we can find a covering U such
that for each open set U = Ui0 ∩ · · · ∩ Uip the sequence

0→ E(U)→ F(U)→ G(U)→ 0

is exact. In this case we see easily that the sequence

Hp(U, E)→ Hp(U,F)→ Hp(U,G)

ist exact.

2.2.11. Exercise Show that in this case the sequence

Hp(U,F)
β∗→ Hp(U,G)

δ∗→ Hp+1(U, E)

ist exact.
Hint. We have to show that imβ∗ = ker δ∗.

3 Complex line bundles and holomorphic line

bundles

3.1 Chern class of a complex line bundle

Let A and A∗ denote the sheaves of C∞-functions and nonzero C∞-functions,
respectively. The transition functions of a complex line bundle L over M satisfy
the condition

gαβ · gβγ · gγα = 1

hence they give a Čech cocycle

{gαβ} ∈ C1(M,A)
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3.1.l. Lemma The complex line bundle L is determined up to C∞-isomorphism
by the cohomology class [{gαβ}] ∈ H1(M,A∗).

Proof We need to show that two cocycles {gαβ} and {g′αβ} define the same

complex line bundle if and only if their difference is a Čech coboundary. Now let
us remember that the cocycles {gαβ} and {g′αβ} are defined by trivializations {φα}
and {φ′α} of L respectively. These trivializations are related by the relation

(3.1.2) φ′α = fα · φα

for some fα ∈ C∞(Uα). From (3.1.2) we get

(3.1.3) g′αβ =
fα
fβ
· gαβ.

Now (3.1.2) implies that the difference of the two cocycles is a coboundary. The
inverse statement can be deduced easily. 2

Now we consider the following exact sequence

0→ Z→ A→ A∗ → 0.

This sequence gives the following exact sequence

H1(M,A)→ H1(M,A∗) δ′→ H2(M,Z).

The image of the cocycle of the transition functions of L via δ′ is called the Chern
class of L. Since A is a fine sheaf we get H1(M,A) = 0 = H2(M,A). Thus δ′ is
an isomorphism. Hence we get

3.1.2. Proposition A complex line bundle is defined up to C∞ isomorphism
by its Chern class.

3.2 Holomorphic line bundles and divisors

Now we shall look carefully at a class of complex line bundles, the class of holo-
morphic line bundles. Using the same argument as in the previous subsection we
obtain the following

3.2.1. Lemma A holomorphic line bundle L over a complex is defined up
to isomorphism by the cohomology class H1(M,O∗) associated with its transition
functions.

The set H1(M,O∗) is called the Picard group of M , denoted Pic(M).
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How to construct holomorphic line bundles? Any complex line bundle can be
obtained from a universal complex line bundle on the classifying space (namely the
complex Grassmannian) but we do not have (till now) classifying space for holo-
morphic line bundles. But there is a way to construct a holomorphic line bundle
from a complex codimension 1 analytical subvariety, called also an analytical hy-
persurface, in a complex manifold M . We say that an analytical hypersurface V is
irreducible, if V cannot written as the union of two analytical varieties different
from V .

3.2.2. A divisor D on M is a locally finite formal linear combination

D =
∑

aiVi

of irreducible hypersurfaces of M .
Locally finite means that for any p ∈ M there exists a neighborhood of p

meeting only a finite number of Vi appearing in D.
Divisors can be described in sheaf theoretic terms as follows. Let M∗ denote

the multiplicative sheaf of meromorphic functions on M .

3.2.3. Lemma A divisor is a global section of the quotient sheaf M∗/O∗.
Proof First we shall introduce the notion of the order of a meromorphic function

along an irreducible analytical hypersuface. For an irreducible analytical hyper-
surface V 3 p and any holomorphic function g defined near p we define the order
ordV,p(g) as the largest number a such that

g = fa · h

in a local neighborhood Up of p and f, h ∈ O(Up).

3.2.4. Exercise Show that ordV,pg is independent of p.
Hint Since V is connected we need to show only the local independence.

Exercise 3.2.4 shows that we can define just ordV (g). Now let f be a mero-
morphic function on M . We define

ordV (f) = ordV (g)− ordV (h),

where f can be written locally as the quotient g/h. Clearly this definition does
not depend on the choice of the local representation of f .

Now we shall prove a first statement of Lemma 3.2.3. A global section {f} of
M∗/O∗ is given by an open cover {Uα} of M and nonzero meromorphic functions
fα in Uα with

(3.2.5)
fα
fβ
∈ O∗(Uα ∩ Uβ).

16



Then we associate to {f} the divisor

D =
∑
V

ordV (fα) · V.

(In this sum V enters only if V ∩ Uα 6= 0.) This association is well-defined, since
ordV (fα) = ordV fβ by (3.2.5). Moreover this map is additive w.r.t. the group
structure on domain and target. Its kernel is clearly zero. Thus to prove that this
map is an isomorphism we need to show that it is epimorphism. Given

D =
∑
Vi

aiVi

we can define an open cover {Uα} of M such that in each Uα every Vi appearing
in D ha a local defining function giα ∈ O(Uα). Now we set

(3.2.6) fα = Πig
αi
iα ∈M∗(Uα).

Then {fα} is a global section of M∗/O∗. This completes the proof of Lemma
3.2.3. 2

Now we shall consider the exact sequence

0→ O∗ i→M∗ j→M∗/O∗

and the related cohomology exact sequence

H0(M,M∗)
j∗→ H0(M,M∗/O∗) δ→ H1(M,O∗).

The map δ is a homomorphism from the group of divisors to the group of holo-
morphic line bundles over M . We denote by [D] the image of a divisor D in the
class of holomorphic line bundle. By the exact sequence the line bundle L = [D]
is trivial if and only if D is a divisor of a meromorphic function.

3.2.7. Exercise i) Let D be a smooth analytic hypersurface in M . Show that
there is a section s ∈ H0(M, [D]) such that s−1(0) = D.
ii) Show that the following sheaf sequence is exact

0→ OM(L⊗ [−D])
⊗s0→ OM(L)

r→ OD(L|D)→ 0

where s0 is any holomorphic section in H0(M,O([D]) such that s−1 = D and r is
the restriction map.

Hint Let D is given by local data fα ∈M(Uα) (see also (3.2.6)). Then fα gives
a holomorphic sectionsf of [D] with s−1(0) = D.
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4 Kähler manifolds

4.1 Hermitian metrics and Kähler metrics

Let Mn be a complex manifold of complex dimension n. Denote by J the complex
structure on TM considered as a real vector bundle. A Hermitian metric g
on Mn is a metric (i.e. a section of the real vector bundle S2

posT
∗M whose fiber

consists of positive definite quadratic forms over TxM) which satisfies the following
invariant condition

g(JX, JY ) = g(X, Y ).

It is easy to check that the bilinear form

ωg(X, Y ) := g(JX, Y ),

is skew-symmetric (and hence a differential 2-form) and non-degenerate. The form
ωg is called the Kähler form of g.

4.1.1. Exercise i) Prove the existence of a Hermitian metric on any complex
manifold.
ii) Show that the form h(X, Y ) = g(X, Y ) +

√
−1ω(X, Y ) is a C-valued Hermitian

bilinear form on TM considered as complex vector bundle (i.e. J =
√
−1).

Hint (i) Use partition of unity to glue Hermitian metrics on each local coordi-
nate neighborhood.

4.1.2. A Kähler metric is a Hermitian metric whose Kähler form is closed.

4.2 Examples of Kähler manifolds

4.2.1 Any Hermitian metric on a Riemannian surface Σg is a Kähler metric.

4.2.2 Let Λ be a lattice in Cn, i.e. Λ is a discrete subgroup of Cn. Then Cn/Λ
is called a complex torus. Clearly any complex torus carries a Kähler metric
which is induced from the constant metric on Cn.

4.2.3. The Fubini-Study-metric on CP n. We define the following 2-form
on CP n

ωF−S =

√
−1

2π
∂∂̄ ln

||z||
||zi||

2

where z = [z0 : z1, · · · zn] ∈ CP n with zi 6= 0.

4.2.4. Exercise 1. Show that this definition does not depend on the choice
of i.

2. Show that ωF−S is a closed and non-degenerate 2-form.
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Hint To show that ωF−S is closed we use 1.3.4.1 to get ω = 1
4π

(∂ + ∂̄)(∂̄ −
∂) ln ||z||||zi||

2
.

To show that ωF−S is non-degenerated we write it explicitly. Let tk = zk/zi.
Then

g = 4
(1 +

∑
k t

k t̄k)(
∑

k dt
kdt̄k)− (

∑
k t̄

k)(
∑

k t
kdt̄k)

(1 +
∑

k t
k t̄k)2

.

4.2.5 A complex submanifold N in a complex manifold M is a submanifold
whose tangent bundle is also complex w.r.t to the complex structure on M . If N is
a complex submanifold of a Kähler manifold M then the restriction of the Kähler
form on M to N is the Kähler form of the restriction of the Kähler metric from
M to N . Hence N is also a Kähler manifold.

4.2.6. Exercise Show that the Kähler form of any complex submanifold Mn

in CPN represents a non-trivial element in H2(M,Z).
Hint It suffices to prove that the Fubini-Study form ωF−S is integral. Since

SinceH∗(CP n,Z) = Z it implies that there exists a number λn such that λn[ωF−S] =
E, where E ∈ H2(CP n) is the generator of the ring H∗(CP n,Z). Prove that λn = 1
by showing that it agrees with the volume form on CP 1.

4.3 The Kähler-Hodge identities

First we note that any complex manifold M2n has a canonical orientation defined
by J , namely frames (v1, Jv1, · · · , vn, Jvn) and (w1, Jw1, · · · , wn, Jwn) have the
same orientation: the determinant of a matrix preserving a complex structure J is
always positive. Thus given a Hermitian metric g we can define the volume form
vol - a 2n-differential form on M2n such that vol(e1, · · · , e2n) = 1 if (e1, · · · , e2n)
is an oriented orthonormal basis.

4.3.1. Hodge star operator. The presence of a Hermitian g metric on a
complex manifold Mn defines a linear algebraic operator, the Hodge star operator

∗ : T p,qx (Mn)→ T n−p,n−qx (Mn)

by requiring

(4.3.1.1) < ψ, φ >g̃=< volx, ψ ∧ ∗φ >g̃ .

Here g̃ is the induced Hermitian metric on the space (∧kT ∗x (Mn))C considered as
a real vector space, i.e. we consider the space (∧kT ∗x (Mn))C ⊗ R obtained by
extending the scalar product on ∧kT ∗x (M) first to a Hermitian bilinear form (, )
on its complexification and then take the real part of this Hermitian form (cf.
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4.1.1.ii). So g̃ is a Hermitian metric on T p,qx (M) with respect to the canonical
complex structure Jv =

√
−1 · v.

4.3.1.2. Exercise i) Show that the definition (4.3.1.1) is equivalent to the
definition

(ψ, φ)volx = ψ ∧ ∗φ.

ii) Show that (∗)2φ = (−1)p+qφ for φ ∈ T p,qx M2n.
Hint To prove i) express the LHS of the equation as < ψ, φ > volx+ < ψ, φ >√
−1volx. To prove ii) show that for η = ηIJ̄φI ∧ φ̄J we have

∗η = 2p+q−nεIJ̄ η̄IJ̄φI0φ̄J0

where I0 = {1, · · · , n} \ I and εIJ̄ is the sign of the permutation

(1, · · ·n, 1′, · · · , n′) 7→ (i1, · · · , ip, j1 · · · jq, i01, · · · , i0n−p, j0
1 , · · · , j0

n−q).

Now we set

(4.3.2) ∂̄∗ = − ∗ ∂̄∗,

∂∗ = − ∗ ∂ ∗ . (4.3.3)

4.3.4. Lemma Suppose that M is compact. For each ψ ∈ Ωp,q−1(Mn) and
φ ∈ Ωp,q(Mn) we have

(4.3.4.1)

∫
M

(∂̄ψ, φ) =

∫
M

(ψ, ∂̄∗φ).

Proof We have

(4.3.5)

∫
M

(∂̄ψ, φ) =

∫
M

∂̄ψ ∧ ∗φ = (−1)p+q
∫
M

ψ ∧ ∂̄ ∗ φ+

∫
M

∂̄(ψ ∧ ∗φ).

Since ∂ = d on the forms of type (n, n− 1) the second term on the RHS of (4.3.5)
is ∫

M

d(ψ ∧ ∗φ) = 0.

Using formula (4.3.1.2) for ∗∂̄∗ = −(∗)2∂̄∗ = (−1)p+q∂̄∗ we deduce Lemma 4.3.4
from (4.3.5) immediately. 2

4.3.6. Exercise Prove an analog of (4.3.4.1) for ∂∗.
Hint Change the complex structure on M .
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4.3.7. The Λ operator is defined on Hermitian manifolds as follows. First
we note that the Kähler form ω is a (1, 1)-form. Let

L : T p,qx (M)→ T p+1,q+1
x (M)

be defined by
L(η) = η ∧ ω.

Then we define Λ to be the adjoint L∗ : T p,qx (M)→ T p−1,q−1
x (M)

(4.3.7.1) < L∗ψ, φ >x=< ψ,Lφ >x

for all z ∈M .
It is easy to see that if L is C-linear then L∗ must be anti-C-linear. Hence

(4.3.7.1) is equivalent to

(4.3.7.2) (Lφ, ψ)x = (φ, L∗ψ)x.

This implies for φ ∈ T p,qx M and ψ ∈ T p+1,q+1
x M

Lφ ∧ ∗ψ = φ ∧ L ∗ ψ = φ ∧ ∗Λψ

Hence (cf. with (4.3.4))

(4.3.7.3) Λ = (−1)p+q ∗ L ∗ .

4.3.8 The Kähler-Hodge identities On any Kähler manifold we have

(4.3.8.1) [Λ, ∂̄] = −
√
−1∂∗,

(4.3.8.2) [Λ, ∂] =
√
−1∂̄∗.

We refer the recommended books for different proofs of these identities. We remark
that recently Verbitsky extend these identities on a large class of almost Hermitian
manifolds with dω ∈ Λ3,0(M)⊕Λ0,3(M) (i.e. ∂ω = 0 = ∂̄ω. (arxiv:math/0510618).

4.3.9. Remark The Hodge star operator ∗ can be defined on an oriented
Riemannian manifold in the same way by requiring (4.3.1.1) holds.

5 The Hodge theory on compact complex man-

ifolds

In this section we demonstrate application of elliptic methods to the study of
topolopgy of comapct complex manifolds and compact Kähler manifolds
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5.1 The Dolbeault cohomology group

In 1.3.4.1 we derived the equality ∂2 = 0 = ∂̄2 for any complex manifold Mn. Thus
the complex (Ωp,q, ∂̄) is a differential complex, whose cohomology group

Hp,q

∂̄
(Mn) =

ker ∂̄ ⊂ Ωp,q(Mn)

∂̄(Ωp,q−1(Mn))

is called the Dolbeault cohomology group.
Thus any element α ∈ Hp,q

∂̄
(Mn) can be represented by a ∂̄-closed (p, q)-form.

Which representative of α is the best? If M is compact and provided with a
Hermitian metric we can define the L2-norm on the space Ωp,q(Mn) by using the
inner product

< ψ, φ >:=

∫
Mn

< ψ, φ > vol.

5.1.1. Lemma A ∂̄-closed form ψ ∈ Zp,q
p̄ (Mn) := ker ∂̄ ⊂ Ωp,q(Mn) is of

minimal L2-norm in the space ψ + ∂̄Ωp,q−1(Mn), iff ∂̄∗ψ = 0.

Proof If ∂̄∗ψ = 0 then for any η ∈ Ωp,q−1

||ψ + ∂̄η||2L2 =< ψ + ∂̄η, ψ + ∂̄η >=

= ||ψ||2L2 + ||∂̄η||2L2 + 2 < ψ, ∂̄η >=

= ||ψ||2L2 + ||∂̄η||2L2 + 2 < ∂̄∗ψ, η >=

= ||ψ||2L2 + ||η̄||2L2 ≥ ||ψ||2L2 .

Conversely if ψ has the smallest norm, then for any η ∈ Ωp,q−1(M) we have

(5.1.2)
d

dt t=0
||ψ + t∂̄η||2 = 0.

Expanding LHS of (5.1.2) we get

(5.1.3)
d

dt t=0
< ψ + t∂̄η, ψ + t∂̄η >=< ψ, ∂̄η >= 0.

Hence ∂̄∗ψ = 0. 2

5.1.4. Exercise Show that the two first oder equations

∂̄ψ = 0, ∂̄∗ψ = 0

can be replaced by th single second oder equation

4∂̄ψ = (∂̄∂̄∗ + ∂̄∗∂̄)ψ = 0

Hint Look at the equation (4∂̄ψ, ψ) = 0.
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5.2 The Hodge theorem

5.1.5 motivates us to look at the space of solution of the Laplacian equation
4∂̄ψ = 0. Differential forms ψ on M satisfying this equation are called harmonic
forms. The space of harmonic (p, q)-forms is denoted by Kp,q(M). The Hodge
theorem allows us to identify the Dolbault cohomology groups as well as the de
Rham coomolgy groups with the space of harmonic forms (Corollary 5.2.5)

5.2.1. The Hodge Theorem on compact complex manifolds
1. dimKp,q(M) <∞.
2. The orthogonal projection K : Ωp,q(M) → Kp,q(M) is well defined, and there
exists a unique operator, the Green’s operator

G : Ωp,q(M)→ Ωp,q(M)

with

(5.2.2) Id = K +4∂̄G

on Ap,q(M).

A proof of Hodge Theorem 5.2.1 shall be given in 8.2.2 based on the general
theory on elliptic differential operators on vector bundles over a compact Rieman-
nian manifolds which we shall explain in next three sections. Examples for elliptic
differential operators is the Laplacian 4∂̄ acting on Ωp,q(M) as well as the usual
Laplacian

4d : Ωp(Mn)→ Ωp(M)

acting on the space Ωp(Mn) of p-forms on a compact Riemannian manifold Mn by

4d := dd∗ + d∗d

with

(5.2.2.a) d∗(ωp) = (−1)p ∗−1 d ∗ .

(See also (4.3.9) for the star operator. In the Riemannian case we can verify that
∗2 = (−1)k(n−k) on T kxM

n.)

5.2.2.b. Remark. If n is even, then ∗2 = (−1)p on Ωp(M). If we extend
operator ∗ C-linearly to operator ∗̃ on the space of complex valued forms (some
peoples use ∗ for ∗̃ and some other peoples denote the Hodge operator defined in
(4.3.1.1) by ∗̄) then we have

(α, β)vol = α ∧ ∗̃β̄.
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That implies

(5.2.2.c) ∗̃β = ∗β.

On the other hand (5.2.2.a) implies for a complex form ωp

(5.2.2.d) d∗Aω
p = −d∗̃d∗̃.

It is easy to see that (5.2.2.c) and (5.2.2.d) imply formula (4.3.2) for adjoint of ∂
and ∂̄. Conversely (4.3.2) also implies (5.2.2.a) for complex manifolds.

5.2.3. Exercise Show that d∗ is a formal adjoint of d in the sense that for all
ψ ∈ Ωp(M) and φ ∈ ωp−1(M) we have

< d∗ψ, φ >L2=< ψ, dφ > .

A p-form ω on Mn is called harmonic, if 4dω = 0.
5.2.4. Example. A Kähler form ω on Mn is harmonic because dω = 0 and

∗ω = ωn−1, hence ∗d ∗ ω = 0. Since d = ∂ + ∂̄, we also have 4∂̄ω = 0.

Denote by Hp the space of p-harmonic forms on Mn. The following theorem is
an analog of theorem 5.2.1.

5.2.5. The Hodge theorem on compact Riemannian manifolds We
have the following direct decomposition (w.r.t. the L2-metric)

Ωp(Mn) = Hp(Mn)⊕4d(Ω
p(Mn)).

5.2.6. Corollary i) If Mn is a compact manifold then the cohomology group
Hk(Mn,R) is isomorphic to the space of harmonic k-forms, and hence it is finite
dimensional.
ii) If Mn is a compact complex manifold then the Dolbeault cohomology group
Hp,q

∂̄
(Mn) is isomorphic to the space of harmonic (p, q)-forms and hence finite

dimensional.

Proof. The first statement follows from the fact the the decomposition of a
p-form ω into

(5.2.6) ω = ωh + ωd + ωd∗

is unique. To prove this we assume that ω = 0 and apply the RHS of (5.2.6) with
d and d∗ seperately Since dd∗z = 0 if and only d∗z = 0, and d∗dz = 0 if and only
if dz = 0, we conclude that ωd = 0 = ωd∗ . Hence ωh = 0.

The second statement follows in the same way. 2
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5.3 The Hodge decomposition theorem on compact Kähler
manifolds

Now let M2n be a compact Kähler manifold of real dimension 2n. Thank to the
Kähler-Hodge identities (4.3.8) we have the following special relation between the
Dolbeault Laplacian 4∂̄ and 4d. Let 4∂ := ∂∂∗ + ∂∗∂, where ∂∗ = − ∗ ∂∗.

5.3.1. Lemma On a Kähler manifold we have

4d = 24∂ = 24∂̄.

Proof We have

(5.3.1.1) 4d = (∂ + ∂̄)(∂∗ + ∂̄∗) + (∂∗ + ∂̄∗)(∂ + ∂̄).

Using the Kähler-Hodge identities we expand the RHS of (5.3.2)

(∂ + ∂̄)(∂∗ −
√
−1[Λ, ∂]) + (∂∗ −

√
−1[Λ, ∂])(∂ + ∂̄) =

= ∂∂∗ + ∂̄∂∗ +
√
−1∂̄∂Λ−

√
−1∂̄Λ∂ + ∂∗∂ + ∂∗∂̄ −

√
−1Λ∂∂̄ +

√
−1∂Λ∂̄.

Writing ∂∗ =
√
−1[Λ, ∂̄] we obtain

∂∗∂̄ = −
√
−1∂̄Λ∂̄ = −∂̄∂∗.

Thus
4d = 4∂ +

√
−1[Λ, ∂̄]∂ +

√
−1∂[Λ, ∂̄] = 24∂̄.

The other equality is obtained by changing the complex structure J to −J . 2

5.3.2. Theorem We have the following decomposition as a direct sum

(5.3.2.1) Hk(M) = ⊕p+q=kKp,q(M).

Proof First we have the inclusion

Kp,q(M) ⊂ Hp+q(M)

since any 4∂̄-harmonic form is also a 4d-harmonic form by Lemma 5.3.1. Thus it
suffices to show the other inclusion. In its turns the inclusion of LHS of (5.3.2.1)
in the RHS of (5.3.2.1) is a consequence of the following fact F which we shall
prove. If α is a 4d-harmonic form then its (p, q)-component is also 4d harmonic,
and therefore belongs to Kp,q(M) by Lemma 5.3.1. To prove the fact F its suffices
to show that

(5.3.3). 4d(Ω
p,q(M)) ⊂ Ωp,q(M).
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But 4d = 24∂̄ and 4∂̄Ω
p,q(M) ⊂ Ωp,q(M) which implies (5.3.3). 2

Now let us recall that the De Rham cohomology group of a differentiable man-
ifold M is defined as follows

Hq
DR(M,R) =

ker(d : Ωq(M)→ Ωq+1(M))

Im (d : Ωq−1(M)→ Ωq(M))
.

We can also consider the group Hq
DR(M,C) by replacing the complex Ωq(M)

by its complexification Ωq
C(M).

5.3.3. Corollary We have the induced decomposition.

Hk
DR(M,C) = ⊕p+q=kHp,q(M).

Moreover this decomposition does not depend on the choice of Kähler metric.

Proof The first statement follows from Theorem 5.3.2. To see that this de-
composition does not depend on the choice of Kähler metric we recall that the
Dolbeault cohomology groups does not depend on the choice of Kähler metric. 2

It is known (exercise ???) that H∗sing(M,R) = H∗DR(M,R).
Elements of H2p(M,R) ⊂ H2p(M,C) which lies in the group Hp,p(M,C) is

called a (p, p)-class.

5.3.4. Examples of (p, p)-classes i) The class [ωp] ∈ H2p(M,R) is a (p, p)-
class on a Kähler manifold (M2n, J, ω).
ii) If Nn−p is a complex submanifold of complex codimension p in a compact Kähler
manifold Mn, then its Poincare dual class PD[Nn−p] considered as an element of
H2p(Mn,R) is a (p, p)-class. Indeed it suffices to show that for all k 6= p we have

(5.3.4.1)

∫
Mn

PD[Nn−p] ∧ αn−k,n+k−2p =

∫
Nn−p

αn−k,n+k−2p = 0

for any (harmonic) (n− k, n+ k − 2p)-form α. Here we also represent PD[Nn−p]
by a closed differential form. Since Nn−p is complex, its tangent space TzN

n−p at
any point z ∈ Nn−p is a vector of form (n− p, n− p). Thus (5.3.4.1) holds.

5.3.5. Exercise. Compute the group Hp,q(T n) of a complex torus T n and the
group Hp,q(CP n).

Hint All the 1-forms dzi and dz̄i on T n and their wedge products are solutions
of 4∂̄θ = 0 : ∂̄∗dzi = ±∗̄∂̄∗̄dzi = 0 = ∂̄dzi = 0. So Hp.q =

(
n
p

)(
n
q

)
. For the second

statement use the fact the H∗(CP n,Z) = (Z[x], xn+1 = 0) and x is represented by
the Kähler form.

26



6 Sobolev spaces and differential operators

In the previous section we considered Laplacian operators acting on the spaces of
smooth sections of certain vector bundles over Riemannian manifolds or Hermitian
manifolds. These vector bundles are also equipped with a natural metric, hence
the space of the smooth sections of these vector bundles is also equipped with the
induced inner product. Its completion is a Hilbert space. In order to apply the
technique of Hilbert spaces (or more generally of Banach spaces) to the theory of
differential operators it is important to have other inner products (resp. norms)
on the space of smooth sections. The most important norms are the Sobolev
norms. We shall consider here only a special class of Sobolev norms which are
called W p,2-norm, also often denoted by L2

p-norm.

6.1 Sobolev spaces

Locally any section on a real vector bundle V k over a Riemannian manifold Mn

can be considered as a function from a bounded domain Ω ⊂ Rn to Rk. We assume
that the domain Rn is equipped with a Riemannian metric (which is not necessary
Euclidean) and hence with a measure (the volume form), and target space Rk

is equipped with an inner product <,>. Let (x1, · · · , xn) be coordinates on Rn

and Di = ∂
∂xi

. Then for an n-tuple α = (i1, · · · , in) we shall denote by Dα the

differential operator Di1
1 · · ·Din

n . Set |α| :=
∑n

k+1 ik.

6.1.1. Definition Let f, g ∈ C∞(Ω,Rk). Then we define

< f, g >W p,2(Ω):=

∫
Ω

< f, g > +
∑
|α|≤p

∫
Ω

< Dαf,Dαg >

This inner product induces a W p,2(Ω)-norm by

||u||W p,2(Ω) =< u, u >
1
2

W 1,2(Ω) .

Let E be a vector bundle equipped with a (Euclidean or Hermitian) metric over
a compact Riemannian manifold Mn. To define a W p,2-norm on the space Γ∞(Ek)
of smooth sections of E we use partition of unity on M and a local trivialization of
E over the chosen covering on M . Thus any smooth section on E can be written
as a sum of Rk-valued function on a domain U ⊂ Rn. Now the inner products on
the fixed local trivialization over the fixed covering extends to the inner product
on the whole space Γ∞(E). This inner product induces then the W p,2-norm on
Γ∞(E). Now we denote by W p,2(E) the completion of Γ∞(E). This space is called
the Sobolev space of sections over E equipped with a W p,2-norm.
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It is an easy fact that different W p,2-norms on the same Sobolev space are
equivalent, i.e. the choice of covering as well as of trivialization of E does not
effect on the equivalence class of any W p,2-norm on E. Thus as a topological space
W p,2(E) is uniquely defined and we can work with any local trivialization on E.

The following two theorems are fundamental in the theory of Sobolev spaces.
Denote by Γk(E) the Banach space of all Ck-sections of E.

6.1.2. Sobolev imbedding theorem Let n = dimMn. Then for s > [n/2]+
k + 1 we have the embedding

W s,2(E) ⊂ Γk(E).

6.1.3. Rellich imbedding theorem The natural inclusion

j : W s,2(E)→ W t,2(E)

for t < s is a compact linear operator.

We recall that a linear operator L is compact, if the image of any closed ball
is compact.

We shall not prove these theorems and refer to the book by Wells for a partial
proof and the the book by Adams on the Sobolev spaces for a complete proof.

These theorems are very important in proving the existence and smoothness
of solutions of elliptic differentail equations. Using the Rellich theorem we can
usually show the existence of a generalized solution - an element in an appropriate
Sobolev space W p,2, p is given, by considering a Cauchy sequence of approximated
generalized sequence of bounded norm in another Sobolev space. Sometime we can
use tools of functional analysis to show the existence of a generalized solution to a
given linear elliptic equation. To show a generalized solution is smooth according to
the Sobolev theorem we need to show that the gen higher norms W q,2, for q = p+1
and iterating this process. This estimate is usually achieved by considering the
equation which poses a constrain to the derivatives of its solutions.

Now we shall define the notion of an adjoint operator and a formal adjoint
operator. Suppose that E and F are vector bundles over a compact Riemannian
manifold Mn. Let L : Γ∞(E)→ Γ∞(F ) be a R-linear operator. Then operator

L∗ : Γ∞(F )→ Γ∞(E)

is called the adjoint of L if for all f ∈ Γ∞(E) and g ∈ Γ∞(F ) we have

(6.1.4) < Lf, g >L2=< f, L∗g >L2 .

This definition can be extended to non-compact manifold Mn but we shall take
for defining (6.1.4) only sections f, g with compact support. The operator L∗ shall
be called the formal adjoint of L.

6.1.5. Exercise Prove that (L1 ◦ L2)∗ = L∗2 ◦ L∗1.
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6.2 Differential operators

In this section we shall consider only linear differential operators, since they are
necessary and sufficient for their applications in the Hodge theory.

Now let Ep and F q be vector bundles over a differentiable manifold Mn. A
linear operator L : Γ∞(E)→ Γ∞(F ) is called a (linear) differential operator, if
on any local trivialization of Ep over a local coordinate (x1, · · · , xn) for any section
f of Ep over U

f(x) = (f1(x), · · · , fp(x))

we have

(6.2.1) L(f)i(x) =

p∑
j=1 |α|≤k

aijα (x)Dαfj(x), i = 1, · · · , q.

We say that L has order k, if in its local representation (6.2.1) there is no
partial differentiation of order larger than k.

The following proposition explains why we can use the Sobolev space theory
to study the differential operators. Denote by Diffk(E,F ) the vector space of all
linear differential operators of order k on E with values in F .

6.2.2. Proposition 1. For each L ∈ Diffk(E,F ) there is extension

L̄s : W s,2(E)→ W s−k,2(F )

for all s.
2. For each L ∈ Diff(E,F ) there exists its adjoint L∗ : Γ∞(F )→ Γ∞(E) and its
adjoint

(L∗)s : W s,2(F )→ W s−k,2(E)

with (L∗)s = Ls
∗
.

6.2.3. Exercise Prove 6.2.2.
Hint Use the Fourier transformation

f̂(y) =
1

(2π)n

∫
e−i<x,y>f(x) dx

and notice that

||f ||2L2
s(Rn) =

∫
|f̂(y)|2(1 + |y|2)s dy

because
D̂αf(y) = i|α|yαf̂(y).

Here yα = yα1 · · · yαn for α = (α1, · · ·αn).
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6.3 Symbol of differential operators

The main characteristic of a linear differential operator L acting on E and taking
values in F is its symbol, a linear operator acting on a finite dimensional space
π∗E and taking values in a finite dimensional space π∗F . Here we define π∗E and
π∗F as follows. Let p : E → M and p : F → M be vector bundle over a manifold
M . Let T ′M = T ∗M \ {0}, i.e. T ′xM is a subset consisting of all non-zero vectors
of T ∗xM . Let π : T ′M → M be the projection. Then π∗E (resp. π∗F ) is the
induced vector bundle ( π∗E = {(x, v) ∈ T ′M × E| π(x) = p(E)}. Now we put

Smblk(E,F ) = {σ ∈ Hom(π∗E, π∗F )|

σ(x, ρv) = ρkσ(x, v) for all (x, v) ∈ T ′M and all ρ > 0}.

Now we shall define a linear map

σk : Diffk(E,F )→ Smblk(E,F ),

(6.3.1) σk(L)(x, v)e = L(
1

k!
[g − g(x)]k · f)(x) ∈ Fx,

where
- g ∈ C∞(M) with dgx = v, and
- f ∈ Γ∞(E) with f(x) = e.

6.3.2. Exercise Show that (6.3.1) does not depend on the choice of g and f .
Hint Let Dig = ξi, so v = (ξ1, · · · , ξn). For L =

∑
|ν|≤k AνD

ν as in (6.2.1) show
that

σk(L)(x, v)e =
∑
|ν|=k

Aνξ
ν1
1 · · · ξνnn .

6.3.3. Definition The image σk(L) is called the k-symbol of L.

6.3.4. Example: Symbol of the d-operator Let us consider the de Rham
complex

Ω0(Mn)
d→ Ω1(Mn)

d→ · · · d→ Ωn(Mn)→ 0.

It generates the corresponding complex

Λ0T ∗x
σ1(d)(x,v)→ Λ1T ∗x

σ1(d)(x,v)→ · · ·

with
σ1(d)(x, v)e = v ∧ e

for all e ∈ ΛpT ∗x .
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6.3.5. Exercise Compute the symbol of the operator ∂ and ∂̄.
Hint. Let v∧ : Ωp(M)→ Ωp+1(M). Show that (v∧)∗ω = (−1)deg ω ∗ v ∧ ∗.

6.3.6. Exercise. i) Prove that σr+s(P ·Q) = σr(P )·σs(Q) for P ∈ Diffr(E,F )
and Q ∈ Diffs(F,G). Use this compute σ(4d) and σ(4∂̄).

ii) Prove that σk(L
∗) = (−1)k(σk(L))∗. Compute σ(d∗), σ(∂∗) and σ(∂̄∗).

Hint (i) Use (6.3.1).
(ii) Use the partition of unity and the fact that (Dν)∗ = (−1)|ν|Dν . Then use the
formula in 6.3.2 and 6.3.6.i.

7 Pseudo differential operators

The class of differential operators is too small in order to contain the inverse
for a very important class of differential operators - elliptic differential operators,
whose symbols are invertible. Thus we need to investigate a larger class containing
differential operators - class of pseudo differential operators. This class is very
natural if we look at differential operators in views of Fourier transformations.
Suppose that U is an open domain in Rn and p(x, ξ) polynomial of degree m in
ξ ∈ Rn whose coefficients are smooth functions in x ∈ U . We shall associate p(x, ξ)
with a differential operator D(p) by setting

D(p) := p(x,D)

where D = (
√
−1D1, · · · ,

√
−1Dn) is a formal substitute for ξ = (ξ1, · · ·xn) ∈ Rn

with Dj = ∂/∂xj. Using the inverse Fourier transformation we get the follow-
ing formula for all u ∈ C∞0 (U) (C∞0 (U) is the subset in C∞(U) consisting of all
functions with compact support):

[D(p)u]x = [p(x,D)u]x =

∫
Rn
p(x, ξ)û(ξ)e

√
−1<x,ξ>dξ,

where

û(ξ) =
1

2πn

∫
u(x)e−

√
−1<x,ξ> dx

the Fourier transformation of u.

7.1 Pseudo differential operators

Let U be an open set in Rn and m an arbitrary integer. We denote by S̃m(U)
the subset on C∞(U × Rn) consisting of functions p(x, ξ) satisfying the following
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condition. For each compact subset K ⊂ U and for any multi-indices α, β exists a
constant Cα,β,K(p) ∈ R such that

(7.1.1) |[Dβ
xD

α
ξ q](x, ξ)| ≤ Cα,β,K(1 + |ξ|)m−|α| for all x ∈ K, ξ ∈ Rn,

Now we shall consider the subset Sm(U) ⊂ S̃m(U) defined by the following condi-
tions (7.1.2) and (7.1.3)

(7.1.2) lim
λ→∞

p(x, λξ)

λm
exists for ξ 6= 0,

(7.1.3) p(x, ξ)− ψ(ξ)σm(p)(x, ξ) ∈ S̃m−1(U),

where σm(p)(x, ξ) denotes the LHS of (7.1.2) and ψ(ξ) is some cut off function on
Rn with support in the unit ball in Rn.

Next we define subset S̃m0 (U) ⊂ S̃m(U) as follows. A function p ∈ S̃m(U)
belongs to S̃m0 (U) if there exists a compact K ⊂ U such that for each fixed ξ the
function p(x, ξ) in variable x ∈ U has compact support in K.

Finally we set Sm0 (U) = Sm(U) ∩ S̃m0 (U).

Set for p ∈ S̃m(U) and u ∈ C∞0 (U):

(7.1.4) (L(p)u)x :=

∫
p(x, ξ)û(ξ)e

√
−1<x,ξ> dξ,

Operator L(p) defined by (7.1.4) is called a linear pseudo-differential operator
of order m.

This definition is easily extended to the case of a linear operator L : Γ∞0 (El)→
Γ∞(F k) for vector bundles El of dimension l and F k of dimension k over a
differentiable manifold Mn by using any trivialization of El over a given cov-
ering {Ui} of Mn. Namely L is called a linear pseudo differential operator of
order m, if for any given covering {Ui} on M operator L can be locally ex-
pressed by a matrix L(pij), i = 1, l, j = 1, k of l × k pseudo differential operators
L(pij) : Γ∞0 (Ui)→ Γ∞(Ui) of order m as in (7.1.4).

Denote the set of linear pseudo differential operators of order m from E to F
by PDiffm(E,F ). The most important properties of pseudo differential operators
are summarized in the following Theorem.

7.1.5. Theorem 1) If L ∈ PDiffm(E,F ) then L can be extended to a con-
tinuous linear operator L̄s : W s(E)→ W s−m(F ) for all s.
2) There exists a canonical linear map

σm : PDiffm(E,F )→ Smblm(E,F )
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which on a trivialization of E and F over U is defined the formula

σm(LU)(x, ξ) = [σm(pij)(x, ξ)].

Furthermore this linear map σm is surjective.

We refer to the book by Wells for a proof of this Theorem.

7.1.6. Exercise(compare with 6.3.6.) Let Mn be a compact manifold, E, F
and G vector bundles over Mn. Show that

i) If P ∈ PDiffs(F,G) and Q ∈ PDiffr(E,F ) then P ◦Q ∈ PDiffr+s(E,G)
with σr+s(P ◦Q) = σs(P ) ◦ σr(Q).

ii) If P ∈ PDiffm(E,F ) then there exists its adjoint operator P ∗ ∈ PDiffm(F,E),
moreover σm(P ∗) = (−1)m[σm(P )]∗.

7.2 Parametrics for elliptic pseudo differential operators

We shall show (Theorem 7.2.4) that a pseudo-differential operator is invertible, if
its symbol is invertible.

7.2.1. Definition Let L ∈ PDiffk(E,F ) over a manifold Mn. We say that
L is elliptic, if σk(L)(x, ξ) : Ex → Fx is isomorphism for all (x, ξ). We also say in
this case that σk(L) is elliptic.

We say that a linear operator L : Γ∞(E)→ Γ∞(F ) is a smoothing operator,
if there is a smooth extension L̄s : W s,2(E) → W s+1,2(F ) for all s. We also say
that L is an operator of order −1 and we denote the set of all linear operators of
order (−1) from E to F by OP−1(E,F ).

7.2.2. Exercise Show that if L ∈ OP−1(E,F ) over a compact manifold
Mn then Ids+1,s ◦ L is a compact operator, i.e. for any s the image L(Bs) of a
unit ball w.r.t. the norm W s,2 is compact. Here Ids+1,s denotes the embedding
W s+1,2(F )→ W s,2(F ).

Hint Use the Rellich theorem.

7.2.3. Definition Let L ∈ PDiff(E,F ). Operator L̃ ∈ PDiff(F,E) is
called parametrix ( or pseudo inverse) for L, if it satisfies the following conditions

L ◦ L̃− IdF ∈ OP−1(F ),

L̃ ◦ L− IdE ∈ OP−1(E).

7.2.4. Theorem Let k be an arbitrary integer and L ∈ PDiffk(E,F ) elliptic
operator. Then there exists a parametrix for L.
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Proof Since L ∈ PDiffk(E,F ) its symbol σk(L) is invertible, i.e. σk(L)−1(x, ξ) :
Fx → Ex is an element in Smblk(F,E). According to Theorem 7.1.5.2 there exists
L̃ ∈ PDiffk(F,E) such that σ−k(L̃) = σk(L)−1. Now

σ0(L ◦ L̃− IdF ) = σk(L) ◦ σ−k(L̃)− σ0(IdF ) = 0.

Hence now applying 7.2.2. (ii) we get

L ◦ L̃− IdF ∈ OP−1(F, F ).

In the same way we prove the L̃ ◦ L− IdE ∈ OP−1(E,E). 2

8 Decomposition theorems for self-adjoint ellip-

tic differential operators

We shall apply results in the previous section to study the space of solutions of
linear self-adjoint elliptic differential operators on a compact manifold Mn. For
L ∈ Diff(E,F ) we set

HL = {ξ ∈ Γ∞(E) : Lξ = 0}.

8.1 Finiteness theorem for elliptic differential operators

We recall that a bounded linear operator T on a Banach space is called a Fred-
holm operator, if its range is closed and T has finite dimensional kernel and
cokernel.

8.1.1. Lemma Let L ∈ PDiff(E,F ) be elliptic differential operator. Then
there exists a parametric P for L such that L◦P and P◦L are extended continuously
to Fredholm operators mapping W s,2(F ) → W s,2(F ) and W s,2(E) → W s,2(E)
correspondingly for all s.

Proof Recall that (7.2.2) L ◦ P = Id − S, where S is a smoothing compact
operator. Hence L ◦ P extends to operator acting on W s,2(F ). Its kernel consists
of all x such that Sx = x, hence the kernel is compact because S is compact and
therefore dim kerL <∞. Next we note that Im(L ◦P ) is orthogonal to ker I −S∗
and therefore the range of L ◦ P is closed. Since S is a smoothing operator its
adjoint S∗ is also a smoothing operator. Hence dim coker (L ◦ P ) <∞. 2

8.1.2. Theorem Let L ∈ Diffk(E,F ) be an elliptic operator and HLs =
ker{Ls : W 2,2(E)→ W s−k,2(F )}. Then
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a) HLs ⊂ Γ∞(X,E) for all s
b) dimHLs = dimHL <∞, dimW s−k(F )/Ls(W

s(E)) <∞.

Proof First we show that dimHLs <∞ for all s. Let P be a parametrix for L.
Then by Lemma 8.1.1 we get

(P ◦ L)s : W s,2(E)→ W s,2(F )

has a finite dimensional kernel. Since kerLs ⊂ ker(P ◦L)s, the operator Ls has also
a finite dimensional kernel. So to prove (a) it suffices HLs contains only a smooth
sections (regularity of the solution to L). Since S := P ◦ L − Id is a smoothing
operator we get for any ξ kerLs ⊂ W s,2(E)

ξ = (P ◦ L− S)ξ = −Sξ ∈ W s+1,2(E)

so in fact ξ ∈ W l,2(E) for all l. By the Sobolev embedding theorem ξ ∈ Γ∞(E).
This proves a) and first part of b). The second part of b) follows from the inclusion
Im (Ls ◦ Ps−k) ⊂ ImLs ⊂ W s,2(F ) and the Fredholm property of Ls ◦ Ps−k (see
8.1.1). 2

8.2 Proof of the Hodge decomposition theorem

First we prove a generalization of the Hodge theorem 5.2.1.

8.2.1 Theorem Let L ∈ Diffm(E) be a linear self-adjoint elliptic operator,
i.e. L = L∗. Then exists a linear map L̂ : Γ∞(E) → Γ∞(E) and GL : Γ∞(E) →
Γ∞(E) such that:
a) L̂(γ∞(E)) = HL(E),
b) L ◦GL + L̂ = GL ◦ L+ L̂ = IdE,
c) Γ∞(E) = HL(E)⊕GL ◦ L(Γ∞(E)) = HL(E)⊕ L ◦GL(Γ(E)).

Proof We take L̂ to be the orthogonal projection in L2(E) on the (finite dimen-
sional) space HL(E). Taking into account (8.1.2.b) this proves (a).

Now we shall construct GL for (b), (c). Let HL(E)⊥ be the orthogonal com-
plement of HL(E) in W 0,2(E). Now denote by Lm the continuous extension of L
from Wm,2(E)→ W 0,2(E). Clearly

Lm(Wm,2(E)) ⊂ HL(E)⊥

since L is self-adjoint. The restriction

L̄m : Wm,2(E) ∩HL(E)⊥)→ HL(E)⊥

is injective, since L is linear, and any element in the kernel of Lm is in HL(E).
Since L is self-adjoint and Lm is Fredholm, for each τ ∈ HL(E)⊥ there exists ξ ∈
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Wm,2(E) such that Lmξ = τ . This proves that L̄m is onto on W 0,2(E) ∩HL(E)⊥.
So L̄m is a bijection.

By Banach theorem on the inverse map there exists an continuous linear inverse
map Ḡ0 of L̄m. Denote by G0 its linear extension to the whole space W 0,2(E) by
setting G0|HL(E) = 0. Now set GL := G|Γ∞(E)⊂W 0,2(E). Note that statement (b)
follows from the identity

(8.2.2) Lm ◦GL + L̂ = IdE = GL ◦ Lm + L̂,

which holds because Lm ◦GL = Id|HL(E)⊥ = GL ◦ Lm. The last statement (c) also
follows from (8.2.2). 2

Clearly the Hodge Theorems 5.2.1 and 5.2.4 follow from 8.2.1 by setting E =
Γp,q(Mn), and L = L in the first case and E = Ωp(Mn), L = 4d in the second
case.

8.2.3. Exercise. Let G be the Green operator for the Laplacian 4d as in
Theorem 8.2.1. Show that the pseudo differential operator dGd∗ : Ω1(M) →
Ω1(M) is the orthogonal projection to the subspace d(C∞(M)).

9 The Lefschetz decomposition

Besides the Hodge decomposition theorem 5.3.2 it is also very useful to consider
another decomposition of the cohomology group of a compact Kähler manifold.
The idea which leads to the Lefschetz decomposition is the fact that the space of
harmonic forms is invariant under the multiplication by ω. Moreover this operation
is an isomorphism on appropriated spaces.

We recall that L is operator acting on differential form by ω and Λ is its adjoint:
Λ = ∗−1L∗.

9.1. Lemma We have the commutation relation for all x ∈M2n

[L,Λ] = (k − n)Id on Λk(T ∗x (M2n)).

Proof The Lemma can be obtained by straightforward calculation in linear
algebra using explicit formula for L and Λ (s. e.g. Voisin for explicit calculations).

Since ω is closed we have an induced operator also denoted by L

L : Hk(M2n,R)→ Hk+2(M2n,R)

We say that an element α ∈ Hk−2r is primitive, if Ln−k+2r−1α = 0 ∈ H2n−k+2r+2(M2n,R).
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9.2. Theorem (The Lefschetz decomposition) i) If X is a compact Kähler
manifold of dimension n, then for every k ≤ n

Ln−k : Hk(X,R)→ H2n−k(X,R)

is an isomorphism.
ii) Each cohomology class α ∈ Hk(M2n,R) admits a unique decomposition

α =
∑
r

Lrαr

We shall first show that the analogous decomposition theorem holds on the
level of differential forms.

9.3. Lemma The morphism of vector bundles

Ln−k : Λk(T ∗xM
2n)→ Λ2n−k(T ∗xM

2n)

is an isomorphism.

Proof of Lemma 9.3 Since L is linear and dim Λk(T ∗xM
2n) = dim Λ2n−k(T ∗xM

2n)
its suffices to show that Ln−k is injective. Using Lemma 9.1 we get

[Lr,Λ] = L[Lr−1,Λ] + [L,Λ]Lr−1.

Using induction we get for all r ≥ 1

(9.4) [Lr,Λ] = [r(k − n) + r(r − 1)]Lr−1.

Now we shall prove Lemma 9.3 by induction on k. Clearly Ln−0 is an isomorphism.
Assume that Ln−r is not injective and α ∈ kerLn−r ⊂ Λk(T ∗xM

2n). Then using
(9.4) we get

(9.5) LrΛα−[r(k−n)+r(r−1)]Lr−1α = Lr−1(LΛ−(r(k−n)+r(r−1))Id)α = 0.

By induction step (9.5) implies that

(9.6) (LΛ− r[(k − n) + (r − 1)]Id)α = 0.

Since k − n + r − 1 6= 0 we get from (9.6) that α = Lβ, where β ∈ Λk−2(T ∗xM
2n)

and combining Lemma 9.1 with (9.6) we get Lr+1β = 0. Using the induction step
we get β = 0, hence α = 0. 2

Proof of Theorem 9.2. Clearly the spaces of harmonic forms are invariant un-
der the action of L since ω is a harmonic form. Then the first statement follows
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from the Hodge theory (Corollary 5.2.5) that the space of harmonic forms is iso-
morphic to the de Rham cohomology groups and from Lemma 9.3 which leads to
isomorphism of spaces of harmonic forms of the corresponding degrees.

Using Lemma 9.3 we reduce (ii) to the case of k ≤ n. First we shall prove the
uniqueness of the decomposition. Suppose that the decomposition is not unique.
Then there exists αr primitive such that

(9.7)
∑
r≥0

Lrαr = 0.

Suppose that in this sum α0 = 0. Then

L(
∑
r≥0

Lr−1αr)) = 0

and by Lemma 9.3 we get
∑

r≥0 L
r−1αr = 0 since Lr−1αr is a k-form with k ≥ 1.

Now suppose that α0 6= 0 so α0 is a form of degree k. Since Ln−k+1α0 = 0,
applying Ln−k to RHS of (9.7) to get

Ln−k+1(
∑
r≥1

Lrαr) = 0 = Ln−k+2(
∑
r≥1

Lr−1αr).

Lemma 9.3 implies again that
∑

r≥1 L
r−1αr = 0. By induction step we get α = 0.

This proves the uniqueness of the decomposition.
Now we shall show the existence of the decomposition. It suffices to assume

that k ≤ n. Lemma 9.3 shows that there exits β ∈ Λk−2(T ∗xM
2n) such that

Ln−k+2β = Ln−k+1α. Thus α0 = α − Lβ is primitive, and α = Lβ + α0. The
induction step gives us the desired decomposition. 2

9.10. Remark Using the the Lefschetz decomposition theorem we can define
a nondegenerated bilinear form Q on the space Hr(M,C) by

Q(ξ, η) =
∑

s≥(r−n)+

(−1)
r(r+1)

2
+s

∫
M

Ln−r+2s(ξs ∧ ηs),

where ξ +
∑
Lsξs, η +

∑
Lsηs are the decomposition into primitive forms. This

bilinear from is called the Hodge-Riemannian bilinear relation. It plays important
properties in theory of Kähler manifolds.

10 The Kodaira embedding theorem

It is important to know if a compact complex manifold Mn is a projective algebraic
manifold i.e. it can be realized as a complex submanifold of CPN for some large
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N . As we have seen in 4.2.5 and 4.2.6 any projective algebraic manifold is Kähler,
moreover its Kähler form represents a non-trivial element in the group H2(Mn,Z),
it is natural to ask if a compact complex manifold Mn admitting a Kähler form
in H2(Mn,Z) is also a projective algebraic manifold. This question was posed by
Hodge and solved by Kodaira.

10.1 Hodge manifolds, positive line bundles and the Ko-
daira theorem

10.1.1. A Hodge manifold is a compact complex manifold Mn admitting
a Kähler metric h whose associated Kähler form Ωh is integral, i.e. [Ωh] ∈
H2(Mn,Z).

10.1.2. The Kodaira embedding theorem Let Mn be a Hodge manifold.
Then Mn is projective algebraic.

It is important to find another feature which also characterizes Hodge mani-
folds.

10.1.3. Proposition If Mn is a Hodge manifold with a Kähler form Ωh then
there exists a holomorphic line bundle L on Mn such that c1(L) = [Ωh].

We shall not prove this theorem which is a consequence of the Lefschetz (1, 1)-
form theorem which states that if ω is an integral (1, 1)-form, then there exits a
holomorphic line bundle L over M such that c1(L) = [ω].

Now we shall say that a holomorphic line bundle L over M2n is positive,
if L satisfies the condition in Proposition 10.1.3 for some Kähler form Ωh. A
holomorphic line bundle L is called semi-positive, if c1(L) = [ωh] where ωh is a
closed (1, 1) such that the bilinear form h = ωh(., J.) is semi-positive.

10.1.4. Exercise Show that
i) If L1 and L2 are positive then L1 ⊗ L2 is positive.
ii) For any positive line bundle L and for any give line bundle K there exists n
such that Ln ⊗K is positive.
iii) If L is positive on M and f : N → M is a holomorphic map, then f ∗(L) is
semi positive on N .

Now we state the most important theorem on positive line bundles. We refer
to the book of Wells for an exposition of th proof of this theorem which is based
on the Hodge theory as well as the theory of elliptic differential operators of orders
2.
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10.1.5 Kodaira-Nakano vanishing theorem Let L→Mn be a positive line
bundle. Then

Hq(M,Ωp(L)) = 0 for p+ q > n.

Here Ωp(L) denotes the sheaf of holomomorphic p-forms valued in L

10.2 Line bundles and maps to projective spaces

Let L be a holomorphic line bundle, and O(L) the sheaf of holomorphic sections of
L. The group H0(M,O(L)) is the set of all global holomorphic sections of L. This
space is of finite dimension. Let s0, · · · , sN be a basis of H0(M,O(L)). Considering
si as generalized functions we want to parametrize M by values of si(x). Let Uα be
an open neighborhood on M . Then the value [sα0 (x), · · · , sαN(x)] ∈ CN depends on
the choice of trivialization of L, but the value τL(x) := [sα0 (x) : · · · : sαN(x)] ∈ CPN

does not depend on the choice of a trivialization, since two trivializations differ by
multiplication with a scalar λ ∈ C∗. Thus our parametrization τL of M by si is
a holomorphic map to CPN . Of course here we need not to forget the condition
that this map is defined at any point x ∈ M , i.e. there exists some k such that
sk(x) 6= 0. If so the restriction map

(10.2.1) CN+1 = H0(M,O(L))
rx→ Lx = C.

is a non-trivial map and rx is surjective.
If (10.2.1) holds we want to know if τL is an embedding, i.e. it is injective

map and the differential DτL(x) is also injective for all x ∈ M . The injectivity
of τL is equivalent to the fact that λ(s0(x), · · · , sN(x)) 6= (s0(y), · · · , sN(y)) for
all λ ∈ C∗. Equivalently ker rx 6= ker ry. That last condition holds if and only if
ker rx,y = ker rx ∩ ker ry has codimension 2, or equivalently

CN+1 = H0(M,O(L))
rx,y→ Lx ⊗ Ly = C2

is surjective.
Finally the differential DτL(x) : TxM → TτL(x)CP n is injective x, if and

only if in a coordinate neighborhood Uα 3 x with s0(x) 6= 0 and DτL(x) =
{ds1(x), · · · , dsN(x)} : TxM → CN} is an embedding. By changing ”coordinates
si by adding λs0 to si(x) we can assume that the image τL(x) = (1, 0, · · · , 0).
Denote by Jx(L) the sheaf of all section in H0(M,O(L)) vanishing at x, then
Jx(L) is generated by {s1, · · · , sN}. Thus the condition that DτL(x) is injective
is equivalent to the fact that ⋂

i≥1

dsi(x) 6= 0.
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Equivalently, for all v ∈ TxM there exists si, i ≥ 1 such that dsi(V ) 6= 0. After a
linear transformation, it is equivalent to the fact, that for any w∗ ∈ T ∗xM there is
s ∈ Jx(L) such that ds(x) = v. To write this condition independent of the choice
of a neighborhood Uα we note that the change of Uα to Uβ leads to the change of
corresponding differential ds, s ∈ Jx(L) as follows

dsα(x) = dsβ(x) · gαβ,

where gαβ is the transition function of L under the change of coordinates and
trivializations φα, φβ of L (so sα = φ∗αs, s

β = φ∗βs.) Thus in fact we have defined
a map

dx : Jx(L)→ T ∗x ⊗ Lx
and by the argument above, dx is surjective, iff DτL(x) is injective.

11 Proof of the Kodaira embedding theorem

11.1. Remark Why we need to blow up M , if dimM ≥ 2 ?

11.1 Blow-up of a Kähler manifold

Let M is a complex manifold. A blow-up of M at a point x ∈M is a manifold M̃
together with a holomorphic projection π : M̃ → M with the following property.
The preimage E := π−1(x) is a divisor in M which is biholomorphic to CP n−1.
The map π : M̃ \ E → M \ {x} is a diffeomorphism. Since this operation is
local we shall first construct a blow up of the origin in the disk D ⊂ Cn. Let
z = (z1, · · · , zn) be complex coordinates in D and l = [l1 : · · · ln] homogeneous
coordinates in CP n−1. We denote by

D̃ := {(z, l) ∈ D × CP n−1| zilj = zjli for all i, j}.

If we consider l ∈ CP n−1 is a line in Cn the above condition means that z ∈ l.
Now π : D̃ → D is the projection to the first factor: (z, l) 7→ z. Clearly π is
ismorphism if z 6= 0 and E := π−1(0) = CP n−1.

Now let M be a complex manifold of dimension n, x ∈ M and U → D is a
complex neighborhood a round x. Let p : D̃ \ E → U − {x} ⊂ M is the blow up
of U according to the above recipe. Then we define a blowup of M at x to be

M̃x = M \ {x} ∪p D̃.
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11.1.1. Exercise Let L be a positive line bundle on M . Prove that there
exists a number k0 such that the line bundle π∗(L)k ⊗ [−E] is positive on M̃ , for
k ≥ k0.

Hint.
11.1.2. Exercise Let us denote by KMn the holomorphic line bundle ΛnT ∗M .

Show that
KM̃ = π∗KM ⊗ (n− 1)[E].

Hint .

11.1.3. Exercise Let E be a holomorphic vector bundle over a complex
manifold Mn. Prove that O(E) = Ωn(E ⊗K∗M).

Hint. Associate each f = f(z) · e(z) ∈ O(E) to f(x) · dz1 ∧ · · · ∧ dzne(z) · dz̄1 ∧
· · · ∧ dz̄n ∈ Ωn(E ⊗K∗M).

11.2 Proof of the Kodaira theorem

Let L be a positive line bundle on the compact complex manifold M . We shall
show that there is a k0 such that

11.3.1. Lemma The restriction map

H0(M,O(Lk))
rx,y→ Lkx ⊕ Lky

is surjective for all x 6= y, k ≤ k0.

11.3.2. Lemma The differential map

H0(M,Jx(Lk))
dx→ T ∗′x ⊕ Lkx

is surjective for all x ∈M , k ≤ k0.

By the discussion in the previous section these Lemmas imply the Kodaira
embedding theorem.

Proof of Lemma 11.3.1 Suppose that dimCM ≥ 2. Let M̃
π→ M denote the

blow-up of M at both x and y, Ex = π−1(x), and Ey = π−1(y) the exceptional
divisors of the blow-up. Denote by E the divisor Ex + Ey and L̃ = π∗L. If
dimCM = 1, then we let M̃ = M and π = Id.

Now we consider the pullback map on sections

π∗ : H0(M,OM(Lk))→ H0(M̃,OM̃(L̃k)).

For any global section σ̃ of L̃k, the section of Lk given by σ over M \{x, y} extends
by Hartogs’ theorem to a global section σ ∈ H0(M,O(L)) and so we see that π∗ is
an isomorphism. Furthermore, by definition L̃k is trivial along Ex and Ex, hence

H0(E,OE(L̃k)) = Lkx ⊕ Lky.
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Now let us consider the following commutative diagram

H0(M̃,OM̃(L̃k))
rE // H0(E,OE(L̃k))

H0(M,O(Lk))

OO

rx,y // Lkx ⊕ Lky

where rE denotes the restriction to E. Thus to prove 11.3.1 it suffices to show
that rE is surjective.

Note that we have the following exact sheaf sequence (see 3.2.7.ii)

0→ OM̃(L̃k ⊗ [−E])→ OM̃(L̃k)
rE→ OE(L̃k|E)→ 0.

Choose k1 such that Lk1 ⊗K∗M is positive on M . Using 10.1.4.ii and 11.1.1 we can
choose k2 such that L̃k ⊗ [−E]n is positive for k ≥ k2. By Lemma 11.1.3 we have

(11.3.3) KM̃ = K̃M ⊗ [E]n−1,

where tildeKM = π∗KM . Thus for k ≥ k0 = k1 + k2 we have

OM̃(L̃k ⊗ [−E]) = Ωn
M̃

(L̃k ⊗ [−E]⊗K∗
M̃

) =

11.3.3
= Ωn

M̃
((L̃k1 ⊗ K̃∗M)⊗ (L̃k

′ ⊗ [−E]n)

with k′ ≥ k2.
By our choice L̃k

′ ⊗ [E]n is positive on M̃ , and Lk1 ⊗K∗M is positive on M so
L̃k1 ⊗ K̃∗M) is semipositive on M̃ . Thus (L̃k1 ⊗ K̃∗M)⊗ (L̃k

′ ⊗ [−E]n) is positive on
M̃ . By Kodaira vanishing theorem we get for k ≥ k0

H1(M̃,OM̃(L̃k ⊗ [−E]) = H1(M̃,Ωn
M̃

(L̃k1 ⊗ K̃∗M)⊗ (L̃k
′ ⊗ [−E]n) = 0

Hence the map rEH
0(M̃,OM̃(L̃k)) → H0(E,OE(π∗Lk) is surjective for k ≥ k0.

Since M is compact we can choose k0 independent of choice of x. 2

Proof of Lemma 11.3.2 We use the same notations as in the proof of the previous
Lemma except we do not take any y so E = Ex. As before

π∗ : H0(M,OM(Lk))→ H0(M̃,OM̃(L̃k))

is an isomorphism. Further, if σ ∈ H0(M,OM(Lk)) then σ(x) = 0 if and only if
σ̃ = π∗σ vanishes on E, thus π∗ restricts to give an isomorphism

π∗ : H0(M,Jx(Lk)→ Ho(M̃,OM̃(L̃k ⊗ [−E]).
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As in (??) we can identify

H0(E,OE(L̃k ⊗ [−E]) = Lkx ⊗H0(E,OE([−E])) ∼= Lkx ⊗ T ∗x
′.

Using the following commutative diagram

H0(M̃,OM̃(L̃k ⊗ [−E]))
rE // H0(E,OE(L̃k ⊗ [−E]))

H0(M,Jx(Lk))

π∗ ∼=

OO

dx // T ∗′x ⊕ Lky

It suffices to show that rE is surjective for k >> 0. Consider the following
exact sequence (see 3.2.7.ii)

0→ OM̃(L̃k ⊗ [−E])→ OM̃(L̃k ⊗ [−E])
rE→ OE(L̃k ⊗ [−E])→ 0.

Again choose k1 such that Lk1⊗K∗M is positive on M and k2 such that L̃k
′⊗[−E]n+1

is positive on M̃ for k′ ≥ k2. For k ≥ k0 = k1 + k2 we have

OM̃(L̃k ⊗ [−E]2) = Ωn
M̃

((L̃k1 ⊕ (L̃k
′ ⊗ [−E]n+1))

with k′ ≥ k2. It follows by Kodaira vanishing theorem that

H1(M̃,OM̃(L̃k ⊗ [−E]2)) = 0

for k ≥ k0. Hence rE is surjective. Since M is compact we can choose k0 indepen-
dent of x. 2

12 The Hodge conjecture

The Hodge conjecture characterizes algebraic cycles in a projective algebraic man-
ifold M via the Hodge structure on the cohomology group of M .

12.1 Algebraic cycles

Let M2n be a projective algebraic manifold. An algebraic set Z ⊂Mn is locally
given as the zero set of holomorphic functions on M2n. If Z is compact we can find
a neighborhood V of Z in M2n and a finitely generated ideal I(Z) of holomorphic
functions on V such that Z is the zero set of I(Z). Furthermore a point z ∈ Z is
called regular or smooth, if the rank of the set {df(z), | f ∈ I(Z)} is maximal.
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It is easy to see that the set of regular points Zsmooth ⊂ Z is a smooth submanifold
in Mn. Its dimension d(Z) := dimZsmooth is called the dimension of Z. We also
write Zk if k = dimZ.

12.1.1. Proposition Algebraic set Zk ⊂ Mn defines an element [Z] ∈
H2n−2k(M,Q) as follows

[Z]2n−2k([Y ] ∈ H2n−2k(M,Q)) = [Zsmooth ∩ [Y ]] ∈ Q.

Proof Since the set of singularity is of codimension 2, this intersection number
does not depend on the choice of representative of [Y ]. 2

12.1.2. Remark In fact we can define the image of [Z] ∈ H2n−2k(M,Z) ⊂
H2n−2k(M,Z) by using the fact that H l(Mn − Sn−r,Z) = H l(M,Z) if l ≤ 2r and
using the Thom isomorphism Hk(Xn, Xn \ Y n−k,Z) = H0(Y,Z), (see [Voisin] for
more detail.).

An algebraic cycle of dimension 2k in Mn is a linear combination Z =
∑
niZi

where Zi are closed algebraic sets in Mn.

12.1.3. Exercise Let M be a compact Kähler manifold and Z6k an algebraic
cycle. Show that the image [Zk] ∈ H2n−2k(M,Q) ⊂ H2n−2k(M,C) is an element
of degree (n− k, n− k).

12.2 The Hodge conjecture

A class [Y ] ∈ H2n−2k(M,Q) is called a Hodge class, if [Y ] ∈ Hn−k,n−k(M,C).
The Hodge conjecture states that any Hodge class is a multiple (with a coefficient
in Q) of an algebraic class.

12.2.2. Exercise. Prove the Hodge conjecture for complex torus CP n.
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