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1. Introduction

The theory of higher dimensional minimal surfaces, especially its main branch—the
Plateau problem, has been intensively developed since the sixties when E. R. Reifen-
berg, H. Federer, W. H. Fleming, E. De Giorgi and F. Almgren proved the existence
and almost regularity theorems for solutions of the higher dimensional Plateau prob-
lem (or simply speaking, globally minimal surfaces) in different contexts of geometric
measure theory. After that, the other part of the theory, namely, construction, classifica-
tion and study of geometry of globally minimal surfaces has been developed rapidly.
The first non-trivial example of globally minimal surfaces was obtained by H. Federer
by showing that every Kéhler submanifold is globally (homologically) minimal in its
ambient Kahler manifold [7]. His method of employing exterior powers of the Kahler
form in Kihler manifolds has been generalized for other Riemannian manifolds in the
works of M. Berger, H. B. Lawson, Dao Trong Thi, R. Harvey and H. B. Lawson
([17, [177, [3], [13]). Now, this method is called the calibration method and it has
various applications in the study of geometry of globally minimal surfaces as well as
of (locally) minimal surfaces ([5], [6], [11], [18], [19],...). Other interesting examples
of globally minimal surfaces were obtained by A. T. Fomenko [9], [22] by using an
estimate from below for the volume of globally minimal surfaces in Riemannian
manifolds. His idea came from Griffiths’ idea of using exhaustion functions on algebraic
manifolds in the Nevanlinna theory. His method allows us to construct homological
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minimal submanifolds when the coefficient group of homologies may be finite (Z,) or
infinite (Z). Note that the calibration method works only for homology groups with
coefficients in R. But Fomenko’s method which depends on an estimate involving only
the injective radius, Riemannian curvature of ambient manifolds and dimension of
submanifolds, cannot give us so many examples of globally minimal surfaces. To our
knowledge, up to now, all non-trivial examples of globally minimal surfaces are
obtained by using the above-mentioned methods with the exception of some globally
minimal hypersurfaces with large symmetry groups where one can reduce the problem
of higher dimension to dimension 2 which can be completely analysed. This reduction
method was invented by W-Y. Hsiang and H. B. Lawson [14] and [16].

This paper is an attempt to fill the gap between the calibration method and the
Fomenko method. This new method may also be called an analog of the calibration
method for discrete coefficients of homology groups (of Riemannian manifolds). The
idea is simple; it also comes from complex geometry. Let us recall the Grofton-type
formula (which originates in probability theory [23]).

Theorem. [2, p. 146] Let f: M — CP" be a compact holomorphic curve with or
without boundary. Then

f #(f(M) ny)dy = Area(M), (1.1)
cpn

where y is a (complex) hyperplane of CP", and the space of these hyperplanes is identified
with CP" equipped with the invariant measure, and # (X) denotes the number of points
in X.

A more detailed analysis shows that if we replace a holomorphic curve M by any
(real) two-dimensional surface M’, then the equality (1.1) becomes an inequality, where
the right-hand side is greater than the left one (see Proposition 2.11 and Proposition
3.10 which we call Integral Wirtinger Inequality). So, this strengthened Crofton-type
formula gives us a new proof of homological minimality of CP!, and moreover, an
estimate on the measure of all (complex) hyperplanes meeting a fixed holomorphic
curve k times (see Equidistribution Theorem [2, p. 146] and Theorem 4.1). In fact,
some authors have used similar integral formulae in order to estimate the volume of
2-dimensional analytical sets in C", but their formulae concern only the simplest case
of real dimension 1 (cf. [15] and references in that paper). Our idea is a natural
generalization of the Crofton-type formula. Namely, we want to estimate the volume
of a submanifold N = M by its intersection number # (N n N}), where N} is a family
of submanifolds in M. Since the algebraic intersection number is a homology invariant
we hope to get an estimate from below for the volume of a submanifold realizing a
given cycle. The use of intersection number as a homology invariant explains the
analogy between this method and the calibration method, which essentially employs
another homology invariant—the Stokes formula. But in view of the Federer stability
theorem [8] the relation between these methods proves to be more intimate; in many
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cases, the effectiveness of one method leads to the effectiveness of the other one (see
Sec. 4). Applying this intersection method we obtain some old and new examples of
globally minimal submanifolds in Grassmannian spaces. In a few cases this gives us a
classification theorem for globally minimal submanifolds in a certain class (see Sec. 3
and Sec. 4) and their new properties such as equidistribution in measure of globally
minimal surfaces. Other applications of integral geometry to minimal surfaces will
appear in our next paper. The present note is based on a revised form of the author’s
preprint [20].

2. General Construction and Examples
Let us begin with a simple example.

Example 2.1. Let M™ be a Riemannian manifold and TM its tangent bundle. Let
the Riemannian metric on M be naturally lifted on TM. Then M™ realizes a nontrivial
cycle in the homology group H,,(TM,Z,) and moreover it has the minimal volume in
its homology class [M7]. In fact, if M’ is another submanifold in TM and realizing the
cycle [M] € H,(TM, Z,), then M’ must meet every fiber 7, x € M. Consequently, the
projection = : M’ — M is surjective. It is easy to see that the projection n decreases the
volume element (in any dimension not exceeding dim M = m). Hence we get the
assertion. This example is interesting because if M is not orientable then H,,(TM,Z) =
0 and the classical calibration method is not applicable!

Now let us give a general construction, which generally does not depend on fibrations
(such simple fibrations as the above example occur very rarely). Let us consider a
Riemannian manifold M™. Suppose we have a family (M)* of n-dimensional sub-
manifolds N, = M, y € (M)*. Suppose further that (M)* is a smooth manifold with a
volume element y, = vol,+, where m* is the dimension of (M)*. For every X = M
denote by Sy = (M)* the set of all submanifolds N, passing through the set X. Now
we fix a point x € M and a (m — n)-dimensional subspace V™" c T,M. Denote by
B(x, V™" r) the geodesic ball of radius r in M with its center at x and its tangent space
at x equal to V™", Let us consider the following limit

_ . VOl (Sp(x, ymn ")
d mny _ | ymonl 2.1
cd(x V™) ,1”3 vol(B(x, V™", r)) @1)

Suppose for every x € M the set S, is a compact smooth submanifold in (M)*. Then
the limit in (2.1) exists. To compute this limit we fix a submanifold S, and a small
normal neighborhood of S, in (M)*. Obviously, there exists a fiber bundle F over S,
in this neighborhood such that S, is embedded into it as a zero section of generic
position. For instance, in order to construct F we can use the exponential map from
the normal bundle over S, to (M)*. Forevery y € S,, with the help of F, we can construct
a map F, from a neighborhood of x € M to the fixed neighborhood of S, as follows:
M3 x'+— 8. np~ty where p~'yis the fiber over y € S,. Since S, meets fibers transver-
sally, the map F, is well defined in a sufficiently small neighborhood of x, that is, p™' y
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meets S, only at one point. Then we have

cd(x, V™) = J vol(TyS'; A dF(V™™).

Sx

Here for any linear subspace L we denote by L the unit polyvector associated with L.
We call the limit in (2.1) a deformation coefficient cd(x, V™ "). Put

o(M)k_, = max{cd(x, V" ™")|xe M, V™" < T, M}.
Suppose that o(M)}:_, > 0. The following theorem is related to integral geometry on

Riemannian manifolds.

Theorem 2.1. Let W be a compact (m — n)-dimensional submanifold in M. Then its
volume can be estimated from below:

vol(W) = (o (M%) f #(W N, (22)

(M)*

Proof. It is easy to find a finite triangulation W7 of W by simplices of diameter
less than e, that is, W = ( ), W and vol,,_, (W n W) = 0 if i # j, such that for every i
the number of connected components of the intersection of W:* with any submanifold
N, is at most one. So we have:

vol(W) = z vol(W¢), (2.3)

j #(WmNy)dyz}:J #(WFnN,)dy. (2.4
3n* on*

With the help of (2.3) and (2.4) Theorem 2.1 can be proved if we show (2.2) for W:?
instead of W. Hence, in view of our assumption it suffices to prove:

vol(W*) > (a(M)%_,) ™" f . (2.2.¢)

Swe

Letting ¢ — 0 we get the infinitesimal version of (2.2.¢):

vol(W?) o .
lim i, = €40 LW ™ = (M) (220)

Obviously, (2.2.0) follows from (2.1). By integrating we obtain (2.2.¢). This completes
the proof.
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In Example 2.1, if we exhaust TM™ by compact bundles TMy, of tangent vectors of
length R over M, then we can also get the deformation coefficient (T Mpg)% = 1. Here
the set (TMpg)* consisting of m-dimensional tangent balls of radius R is diffeomorphic
to M.

Corollary 2.2. Lower bound of the volume of nontrivial cycles in Riemannian mani-
folds. Suppose N = M is a k-dimensional submanifold realizing a nontrivial cycle
[N]e H(M"**,G), G = Z or Z,. Let (M)* be a family of n-dimensional submanifolds
N¥ realizing a nontrivial cycle [N*] € H,(M"**, G). Let y be the (algebraic) intersection
number of [N] and [ N*]. Then we get:

vol(N) = 1+ (a(M)¥) ™t - vol(M)*.

We note that Theorem 2.1 is still valid for a compact k-dimensional set W almost
everywhere smooth except singularities of codimension 1. On the other hand, it is
well-known that homological volume-minimizing cycles are such sets [7]. So Corollary
2.2 yields the following criterion for global minimality.

Corollary 2.3. Let N = M be a k-cycle almost everywhere smooth except singu-
larities of codimension 1. Suppose that the inequality in Corollary 2.2 is an equality for
N. Then N is a globally minimal cycle.

Example 2.2. Consider the group U, equipped with the standard bi-invariant
metric, that is, on the tangent space T,U, = u,, this metric is defined as follows:
(E Y = —tr(&n). Applying Corollary 2.3 we will show that the subgroup S* of all
diagonal scalar elements is a homological minimal submanifold. Indeed, U, is a fibred
space over S!: g det(g), whose fibers are congruent with the subgroup SU,. First,
we note that SU, meets S! at exactly n points x, = diag (exp 21:?); k=0,...,n—1.
Therefore, any fibre a- SU,, a € S*, meets S! exactly in n points a- x,. Clearly, at every
intersection point y = a- x, the tangent spaces T,S" and T,(a- SU,) are perpendicular.
Further, we observe that the algebraic intersection number between S and SU, equals
n since S! is homologous to n times of the circle U; which generates the homology
group H,(U,,Z). Now, it is easy to see that if we set (M)* to be the space of cosets of
the subgroup SU, in U,, then ¢(M)* = 1, and by Corollary 2.3, S* has the minimal
length in its homology class of H,(U,, Z)).

In most of our applications we are interested in cycles of compact homogeneous
Riemannian spaces. We shall denote () the group multiplication or the action of a
group on homogeneous spaces. Sometimes we omit this notation () if no confusion
arises. Let M = G/H, where H is a compact subgroup in a compact group G. Let K
be another compact subgroup of G. Denote L the intersection of H and K. We consider
the space (M)* of all submanifolds g+ K/L = G/H which are obtained from K/L by the
left shift g, g € G. Obviously, G acts transitively on (M)*. Let us denote I(K) its isotropy
group at the point e* K/L € (M)*.
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Lemma 2.4. The isotropy group I(K) coincides with the subgroup K -(H n N(K)),
where N(K) is the normalizer of the subgroup K in G.

Proof. Clearly, the subgroup I(K) consists of all elements g € G such that g-K <
K-H.So we have

IK)= () K-HB= ] {ﬂ (K-h-k)}.

heH (keK

Let h € H be an element such that the intersection (), .x (K -h-k) is not empty. We
easily verify that the last condition is equivalent to 4 being an element of the normalizer
N(K). Hence the lemma follows immediately.

The condition under which submanifold y-K/L = M contains a point x =
(g- H)/H € M is the relation y € g+ H - K. So we have the following lemma.

Lemma 2.5. Let x = {gH} € M = G/H. Then the set S, = (M)* = G/I(K) is the
submanifold gH/L', where L' = H n I(K).

Our purpose now is to compute the deformation coefficient cd(x, V) for x e M.
Without loss of generality we can assume that x = {eH},and then V < T, M. Denote
by g the Lie algebra of G. Let us consider the map =, : g — T}z, M which is induced
by the natural projection n: G — G/H = M. Let h® be the orthogonal complement
(with respect to some Adg-invariant metric on g) to the subalgebra [) in g. Then we
identify Tj.4yM with b® by the map =,. This isomorphism 7, is an isomorphism of
Ady-modules. From now on we consider the metric on h® which is induced by the
isomorphism 7.

Proposition 2.6. Let k = codim(K/L). Then the k-dimensional deformation coeffi-
cient cd({eH}, V*) depends only on the H-action orbit passing through the k-dimensional
subspace V* on the space N¢(b%).

Proof. Let us denote by exp the exponential map from Lie algebra onto Lie group.
We note that we can replace the family of exhausting geodesic balls B({eH}, V,r) and
the corresponding set Sg(cq),y,,) in the formula (2.1) by any family of exhausting
submanifolds B'({eH},V,r) and Sg(.m) v, such that T4 B'({eH},V,r)=V,
B'({eH},V,r) = B'({eH},V,r,) if r, <r,, and B'({eH},V,r) > {eH} when r - 0. We
choose B'({eH}, V,r) = {exp V(r)- H}/H, where V(r) denotes the ball of radius r in
the tangent space V = h® = g. Hence, according to Lemma 2.5 we get Sp((en,v,r =
exp V(r)- H/L'. Therefore we obtain

. vol(exp V(r)-H/L')

d({eH},V) =1 . 2.5
cd({eH}, V) ,ﬂ"& vol(exp V(r)-e/H) @3)

We choose an orthonormal basis of vectors {v;} in V. Fix a point x = {XL'} € H/L'
G/I(K), where X € H < G. The tangent space to exp V(r)- H/L’ at the point x is the sum
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of the tangent spaces T,(H/L’) and T.(exp V(r)- x). Consider the map
p:V(r)—>expV(r) {XL'};  vexpu-{XL}.

Its differential dp sends the vector v; to the projection of the vector

d -
aexp tvi-xl,zq e T.G

on the tangent space T.(G/I(K)) since G/I(K) is the quotient space of the right
I(K)-action on G. Denote 7;(x) the resulting vector dp(v;) € T,(G/I(K)). Then we have
T.(exp V(r): x) = span{d;, i = 1,...,n}. So (2.5) can be rewritten as follows:

[ — ~

cd({eH), V) = f Vol(TLHTL) A Vit 2.6)

H/L’

where T.(H/L') denotes the unit polyvector associated with T.(H/L'), and V, =
B,(x) A ==+ A D, (x). First, we note that vol(T,(H/L') A I7x) = |<I7x, W_>|, where the asso-
ciated subspace W, is the orthogonal complement to T,(H/L’) in T,(G/I(K)). Secondly,
we observe that for each h € H we have

AN
Adyvi(x) = hd,(h™' - x).

Therefore we obtain

cd({eH}, Ad,V) = J

[<h Vi WD | 2.7
H/L'
Now Proposition 2.6 immediately follows from (2.6), (2.7) and the G-invariance of the
metric on G/I(K).

Let us consider the case when the invariant metrics on G/H and G/I(K) are canonical
(i.e. they are obtained from a bi-invariant metric on G factorized by the action of its
subgroups H and I(K) respectively.) In this case the formula for cd({eH}, V') has a very
simple expression. Denote by [) and f the Lie algebras of the subgroups H and K
respectively. Let W be the orthogonal complement to the span of these subalgebras in
g, that is,

g=Wabh+i).
Then we obtain the following lemma.
Lemma 2.7. Under the above assumptions we have

cd({eH}, V) = f

H/L

<V, Adg(W)>|dx. (2.8)
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Proof. Denote by pr(h) the orthogonal projection of f onto the orthogonal comple-
ment to fin (h + ). We have the following orthogonal decomposition

Tierx); G/1(K) = W @ span{z € pr(b)|<z,h nn(f)) = 0},
and

Ty yH/L' = span{z e pr(h)|<z,h nn(f)) = 0}.

Therefore, the normal fiber W, coincides with W. Since X € H the shift L; preserves
the normal bundle of H/L' in G/I(K). Hence, W, = X, W.

Our next aim is to compute 9;(x). Let us choose an orthonormal basis fi, ..., fy
of the space II(K)¢ = Tierk)yG/I(K). The shift L;:G/I(K)— G/I(K), {gI(K)}—
%-{gI(K)}, sends the vector f; to the vector f;*(x). Obviously, f;*(x) is an orthogonal
basis of the tangent space T,(G/I(K)). Straightforward calculation shows that

(0i(x), f7(x)) = <vi, Ad: £,

where { , ) in the right-hand side of the above formula denotes the restriction of the
bi-invariant metric on G to the algebra g.

Now, taking into account (2.7) (with h = ) we immediately get the formula (2.8).
Clearly, the space W is invariant under the action Ad;.. Therefore, the integrand on
the right-hand side of (2.8) depends only on x. This completes the proof of Lemma 2.7.

Example 2.3. Let M = §" = SO,,,/S0,, and (M)* = SO, ,,/S(0;+; X O,_,) be the
set of great (totally geodesic) k-dimensional spheres in S". Here H = SO, acts on the
Grassmannian G,_,(T,M) = SO,/S(0, x O,_,) transitively. This means that cd(x, V) is
aconstant {,_,. Taking into account (2.2.¢), (2.2.0) (which become equalities in this case)
and (2.3), (2.4) we get:

Proposition 2.8. [23] Let N*™* be a submanifold in S". Then its volume can be
computed from the following formula:

Vol(N"™¥) = Cn-k'j #(N"7 0 S4(x)) e »

50,,+1/5(0kc+1 X O0p—k)

where {,_, = 1/2vol($" %) vol(S0,.,/S(0y+; x 0,-;)) L.

The same formula holds for a submanifold N*~* = RP", but we should replace S*
by RP* Further, we note that any projective space RP* meets almost all projective
spaces of complementary dimension at one point (cf. Proposition 3.6). Hence in view
of Corollary 2.3 we obtain:

Proposition 2.9. The projective space RP* has the minimal volume in its homology
class [RP*] € H(RP",Z,) = Z,.
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This proposition was obtained by Fomenko [9] using a different method of geodesic
defects.

Example 24. Let M = CP" = U,,,/(U, x U;). Then T,CP" = C" = R*",and H =
U, x U, does not act on G,(R?") transitively. But H acts on the complex Grassmannian
G,(C") transitively, and H also acts on the Lagrangian Grassmannian GL(C") = U, /0,
transitively. Considering the family (M)¥ = U, ., /(U,-x+1 X U;) of all canonically em-
bedded complex projective spaces of dimension (n — k) in M, and the family (M)} =
U,+1/0,+, of all canonically embedded real projective spaces of dimension n in M,
we get:

Proposition 2.10. a) Crofton type formula. Let N** be a complex manifold in CP".
Then its volume can be computed from the following formula:

Vol(N?) = (- J #(N** 0 CP ™ (X)),

Un+1/(Un-ge+1 X Uy)

where the constant {{ does not depend on N?*,
b) Let N" be a Lagrangian manifold in CP". Then its volume can be computed from

the following formula;

Vol(N") = C,{‘J #(N" N RP"(x))py
Upn+1/0n+y

where the constant {}F does not depend on N" and U,,,/0,., is the space of all real
projective spaces of dimension n in CP".

When k = 1 we have the following inequality.

Proposition 2.11. Integral Wirtinger Inequality. Let N* be a real surface in CP".
Then the following inequality holds

J #(N? ny)dy < Area(N?),
Ccpn

where y is a (complex) hyperplane of CP", and the space of these hyperplanes is identified
with CP" equipped with the invariant measure. Moreover, the inequality becomes an
equality if and only if N? is a complex curve.

Proof. We consider the family (CP")* of complex hyperplanes in CP". According
to Theorem 2.1 it suffices to show that the associated deformation coefficient cd(x, V?)
attains its maximal value if and only if V% is a complex line. Using the above notations
we have H=U, x U, K=U, x U,, L=L"=U, x U,_; x Uy, and then H/L' =
CP"!. With the help of (2.8) we get

cd({eH}, V?) =f (V2 Adg(W)) dx.

cpn
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Let L” = {1} x U,_; x U;. Then $>"~! = H/L" is also considered as the unit sphere
in the orthogonal complement (I")¥ to 1” in §. We consider the Hopf fibration
§2"=1 _ CP""!. It is well-known that the Hopf fibres are the U, orbits on $?*!, and
the invariant Riemannian metric on CP" is obtained from the one on S?"~! factorized
by the U, action. Therefore we get

cd({eH},V?*) = vol(U;)™ J KV, Ado(W))| dx.

S2n-1

Now we apply the normal form theorem of Harvey and Lawson to V2.

Lemma 2.12. [13, Lemma 6.13] There exists a unitary basis v;, Jv;in C" = T, CP"
such that V? = cost-v; A Ju; +sint-v; A v,.

Taking into account the equality Ad;(W) = x A Jx for x € $?"! = ()" we obtain

cd({eH}, V?) = vol(U,)! J [{cost vy AJu; +8int v, A vy, x A Jx)ldx. (2.9)

s2n-t

Let a;(x) = {x,v;» and b;(x) = {x, Jv; ). From (2.9) we get

cd({eH},V?*) = vol(U;)™! f [(a%(x) + b#(x))cost + (—a,(x)b,y(x)

S2n*l
+ a,(x)b,(x))sin 7| dx. (2.10)
Since the integrand in (2.10) is homogeneous of degree 2 on R?", we observe that our

calculation can be reduced to the one on sphere S*. Namely, there exists a constant y,,
such that

cd({eH},V?) =y, f [(@?(x) + b?(x))cos T + sin t(—a, (x)b,(x) + a,(x)b;(x))sin t|dx.

S3

Hence we obtain

cd({eH},V?) < x,,(f |a2(x)cos T — a,;(x)b,(x)sin t|

S3
+ |b?(x)cos T + a,(x)b,(x)sin 1| dx> (2.11)
We choose the torus coordinates on S3. Namely we put

a,(x) = sin f(x) cos a(x), a,(x) = sin B(x)sin a(x),

by (x) = cos f(x)cos y(x),  by(x) = cos f(x)siny(x),
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where f € [0, 7], a € [0, 2], y € [0, 2n]. So, the action of the group S* x S* on S* given
by: a(x) = a(x) + 6, y(x) = 7(x) + 0, preserves the invariant measure on S°. In these
coordinates (2.11) becomes the following inequality

cd({eH},V?) < x,,(J

|sin? B cos acos(a + 1)| u(a, B, 7)
SS

+ J |cos? B cosycos(y — 1) u(a, B, y)) , (2.11)
S3

where y is the invariant measure on S*. Applying the Schwarz inequality for integrals
to the right-hand side of (2.11") we get

12 12
cd({eH},V?*) < 1, {(Ls |sin? ﬁcos2a|y> ‘<LS |sin? B cos? (o + r)l,u)

+ <J |cos2ﬁcoszy|u>1/2~<f |cos? Bcos?(y — r)|/,¢>1/2}.

As it was mentioned above the transformation g(t) : « — o + 7,y — y — T preserves the
invariant measure u. Therefore we get

cd({eH},V?*) < 7, f

|sin? B cos? o + cos? B cos® | u. (2.12)
S3
The inequality (2.11) becomes an equality if and only if T = 0. Observe that the
right-hand side of (2.12) equals cd({eH},v; A Jv,). This means that the deformation
coefficient cd({eH}, V'?) attains its maximal value only at complex lines. Our proof is

completed.

Remark. From the above proof we immediately deduce a dual proposition which
replaces a two-dimensional surface N> = CP" by a surface of codimension 2. A proof
for the case of an arbitrary k will be given in Sec. 3 (see Proposition 3.10).

3. Minimal Cycles in Grassmannian Manifolds

We denote by G,(R") the Grassmannian of unoriented k-planes through the origin
in R" and its 2-sheeted covering by G; (R"). We denote by G,(C") and G,(H") the
complex Grassmannian and the quaternionic Grassmannian respectively. The ques-
tion of finding and classifying globally minimal cycles in Grassmannian manifolds has
attracted attention of many mathematicians. The first non-trivial result was obtained
by A. T. Fomenko in 1972 using his method of geodesic defects [9], [22] and by M.
Berger in the same year using calibration method [1]. In particular, Fomenko proved
that the canonically embedded real projective space RP' —» RP", [ < n, is globally
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minimal, and Berger proved that HP* is homologically volume-minimizing in HP"
if k < n. Recently, employing Euler forms and their “adjusted powers” as calibration
H. Gluck, F. Morgan and W. Ziller proved that if k = even > 4, then each

G;(R’H—l) c G;(Rk+2) c Gl+(Rk+l)

is uniquely volume minimizing in its homology class [11]. H. Tasaki showed that the
same proof implies that G,(H™**) is uniquely volume minimizing in its homology class
in G,(H™*") for all m, even and odd [25]. In this section using our method we prove:

Theorem 3.1. The canonically embedded real Grassmannian submanifold G,(R**™)
in G(R'™™), k < I, has the minimal volume in its homology class with coefficients in
ZorZ,.

We will show in Sec. 4 that this theorem implies the G-M-Z Theorem mentioned
above. But the G-M-Z Theorem implies our Theorem only in the case when m is even
and G = Z, because when mis odd, each G (R**™) bounds over the reals in G;* (R'*™).

Theorem 3.1.  Classification Theorem. Let M be a volume-minimizing cycle of the
non-trivial homology class [G(R™**)] € H,(G,(R™*"), G), where G = Z or Z,. Then M
must be one of these sub-Grassmannians.

Theorem 3.2. The canonically embedded complex Grassmannian submanifold
G (C**™)in G(C**™), k < I, has the minimal volume in its homology class with coefficients
inZ,.

Theorem 3.3. The canonically embedded quaternionic Grassmannian submanifold
G (H**™)in G(H"*™), k < I, has the minimal volume in its homology class with coefficients
inZ,.

Remark. Of course, we can also prove these theorems with respect to integral
homologies (and then real homologies) by the same method.

Proof of Theorem 3.1. We apply results of Sec. 2 to G = SO,,,,, H = S(0, x 0,,),
I(K)=K =800, x O_4p), L=L"=S(0, x O,_, x 0,,). We consider the family
(M)* = SO,4,/S(Oy X O)_y+,,) of homogeneous subspaces obtained from G,_,(R'~**™)
by the action of the group SO(R'*™) (see Sec. 2). Let V be a km-dimensional subspace
of T,G,(R"*™), where e = {eH}. According to Lemma 2.7 we get:

cd(e, V)= J [{V, Ad W )| dx

5(0;%x0,,)/S(0x X011 XOyn)

=f <V, Ad; WD) dx, (3.1)
S04/S(0) X0y )

where W denotes the tangent space T,G,(R**™).
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Clearly, the group SO, acts on the tangent space T,G,(R"*™) = R' ® R™ as the sum
of mirreducible representations 7, of dimension I. Namely, in the matrix representation
of T,G,(R""™) = so,,,, these irreducible spaces can be chosen as m columns R}. Let us
denote by I the canonical operator of the decomposition T,G,(R"*™) = PR} with
respect to the adjoint action of SO,, thatis, I - Ad = Ad-I and I(R}) = R},,. Obviously,
we have W = W, @ [(W,) ® --- ® I" ' (W,), where W; = W N R}. So we get Ad,W =
Ad,W, @ I(Ad,W,) @ -+ @ I"'(Ad,W,). Now we consider the following fibration
j:80,/80,_, — S0,/S(0, x O,_,), where the total space is considered as the Stiefel
manifold of frames of k orthonormal vectors in R}, and the base is the Grassmannian
of unit simple k-vectors in R’, which is identified with the set of all Ad;W. Thus, if x is
a frame of k orthonormal vectors (vy,...,v;), then j(x) = v; A --* A v,. Let the metrics
on the above spaces be the standard ones. Since the volume of each fibre O, is a constant
A1, we can rewrite integral (3.1) as follows

cd(e,V) = Ak,lJ IKVj(x) A T(j) A oo A T7H(j(x))) ] dx. (3.2)

S0,/S0;

We consider the fibration S0,/SO,_, = SO,/SO,_,,, with fibre $'; it maps a k-frame
x = (g,...,1) to a (k — 1)-frame x’ = (v;,...,0,_;). Denote by R""**1(x’) the linear
subspace associated with the fiber S'"* over the point x’. Using integration along fibres
we deduce from (3.2)

cd(e, V) = ik,lf L ( KV jGey) A s A TP, )0l dy dx!
1-k x’)

S0/SO)-1c+1

= ik,:J {KVJ(X’) A ATPTH())D
S0,/SO;-+1

'L IKVHX),y A cee A Im"l(y)>|dy}dX’- (3.3)
l—k(x)

where |(V, z)| denotes the volume of the orthogonal projection of a simple polyvector
z on the plane V; and V*(x’) is the intersection of ¥ with the space R" **!(x") @ - @
Im—l (Rl—k+1 (x/))_

Proposition 3.4. Let p <gq. For each mp-plane V < R1@® - @ I"™'(RY), where
R? < R}, we put

M) =j [{V,x A= AT Hx))|dx.

Then M(V) reaches its maximal value if and only if V = VP A -+ A I™ Y (VP), where
VP < R4
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Repeating the reduction process (3.3) and applying Proposition 3.4 we obtain the
following proposition immediately.

Proposition 3.5. The deformation coefficient cd(e, V) attains its maximum at V, if
and only if there exists X € SO, such that V, = Ad;W.

Proof of Proposition 3.4. Obviously, we have

M(V)SJ 71|<V,X>i'---'|<V,I'”'1(X)>|dX- (3.4

Sa

Applying the theorem about geometric and arithmetic means we infer from (3.4)

M) < <1>m/2 f (Z |<V,1'(x)>|2)"'/2 dx. (35)

m

Now we study the projection I};(x) of I"(x) on V and its length | (¥, I"(x) > |. Let B, denote
the symmetric bilinear form on R? defined by B,(x,x) = <{I}(x), I;,(x)>. Let 6] be the
eigenvalues of B,,j = 1, ..., q. Evidently, 0 < 6/ < 1.

Lemma 3.6. The following identity holds

207 = tr(B,) = dimV = mp.
rJj r

Proof. Let II, be the bilinear form on V defined by: I1,(x, x) = {(x,(x), ,(x) >, where
n, denotes the orthogonal projection on I"(R?). We will show that tr(B,) = tr(IL,).
Without loss of generality we can assume that dim ¥ > dim I"(R%). Now we consider
the eigenvectors { f;"} € I'(R?) of B, corresponding to 6. Then { f} can be chosen as
an orthonormal basis in I"(R?). Clearly, we have

() = (N I (1)) = 6,6; . (3.6)

We want to find the orthogonal projection I,’,/(\ fi") of the vector Iy(f") € V on I"(RY).

We note that this projection is defined uniquely, up to multiplication by a constant,
by the hyperplane orthogonal to it in the subspace I"(R?). Obviously, this hyperplane
H;] is defined by the following equation

H = span{z|<{Iy(f),z) = 0}. (3.7)

Now, comparing (3.7) with (3.6), it is easy to see that I{,/(\fj’) e span{ f;'}. Therefore, the
orthogonal projection of the vector I;,(f")/|I;(f")| € V on the subspace I"(R?) is 6] f;".
Note that for any vector w in the orthogonal complement to span{Ij,(f)} in V we
have {(w, f"> = 0. Hence, in view of (3.7), we have that 6/, j =1, ..., ¢, and 0 with
multiplicity mp — q are eigenvalues of IT,, and then we have tr(B,) = tr(Il,). Further
we note that ) IL(x, x) = {x,x). Therefore ) tr(B,) = Y tr(Il,) = dim V. This com-
pletes the proof of Lemma 3.6.
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Let us continue the proof of Proposition 3.4. From the proof of Lemma 3.6 we know
that

Z [V, I"(x)>|* = Z B,(x,x).

We set B(x,x) = Y, B,(x,x). Since B,(x, x) are symmetric bilinear forms whose eigen-
values belong to the segment [0, 1], the symmetric bilinear form B(x, x) is also positive,
moreover, its eigenvalues belong to the segment [0,m]. Denote these eigenvalues by
M i=1,...,q From Lemma 3.6 we know that ) n; = Tr(B) = ) Tr(B,) = dim V =
pm. Let w; be the eigenvectors corresponding to #;. Obviously, we can choose w; as an
orthonormal basis in R% So, we write (3.5) as follows

1 m/2 m/2
MWV) < <f> J (Z nj(xj)2> dx, (3.8)
m sa-1 \'Jj

where x; is the j-th coordinate of x € $97" with respect to the basis of vectors {w,}. Let
F(n,,...,n,) be the function in the right-hand side of (3.8) whose variables satisfy the
following condition:

nelO,m]; Y n,=mp. (€)

We want to find the maximum of F. To see this we choose any two variables n, and
1, among #; and fix the others. So, we have n, = ¢ — 5, where ¢ is some constant.
Straightforward calculation yields:

d2 1 m/2 (m—4)/2
0= ) L G5 ] e

If m > 3 the above formula shows that F is a convex function with respect to #;.
Therefore, F attains its maximal value at only “boundary” variables. This means that
under the condition C we have

F(ny,...,n) < F(m,...,m,0,...,0).

This formula shows that M (V) attains its maximal value if and only if the eigenvalues
of B(x,x) = Y B,(x,x) are (m,...,m,0,...,0). Since 0] € [0, 1] we immediately obtain
that for every r the eigenvalues of B, are(l,...,1,0,...,0), moreover B, = B, for all i, j.
Consequently, we have V.=V, A I(V}) A== A 1" }(V;). If m = 2 then F is a linear
function with respect to #;. In this case it suffices to consider two inequalities (3.4)
and (3.5) to obtain our assertion. This completes the proof of Proposition 3.4. Now
we study the intersection between Grassmannian submanifolds in G,(R**™).

Proposition 3.7. For almost all (in dimension sense) y € (M)* = SO,,,,/S(0O; x
O\—+m) the space N, = 7 G,_,(R'"™**™) meets G,(R**™) at only one point.
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Proof. Geometrically, the embedding G, (R**™) — G,(R'"™™) can be described as
follows:

G, (R*"™) 3 x> x A v,_, € G(R"™),

where v'™* denotes the subspace orthogonal to R* in R’ So, the intersection T(y)
of the considered Grassmannians consists of those [-dimensional subspaces W' such
that:

W' e (G(R*™) A 0'7) A (Goy(F-R7TH™) A §-05). (3.9)

Clearly, the following lemmas yield Proposition 3.7.

Lemma 3.8. The set of all elements y e (M)* such that the dimension of §-R* A R'7*
is greater than or equal to 1 has codimension 1.

Lemma 3.9. If j-R* n R'* contains only the origin in R'*™ then T(y) contains only
one element.

Proof of Lemma 3.8. If suffices to prove that the set of j € SO,,,, with the above
property has codimension greater than or equal to 1 in SO,,,,. Let j belong to this set.
Then its entries (we consider j as a matrix) satisfy the equation:

vol(§-v* A v'*) = 0. (3.10)

The solution to (3.10) is an algebraic hypersurface in SO, ,,,. This completes the proof.

Proof of Lemma 3.9. Let W'e T(y). According to (3.9) W' contains both R'* and
7+ R*. By our assumption W' must be their span. This yields the assertion.

Let us complete the proof of Theorem 3.1. Suppose V is a submanifold of G,(R'*™)
representing the same homology class as G,(R**™). Then V meets every submanifold
N, = 7 G, (R""**™) at least one time. Hence, our theorem immediately follows from
Proposition 3.5, Proposition 3.7 and Corollary 2.3.

Proof of Theorem 3.1’. Let N be a volume-minimizing cycle in the homology class
[G.(R™*¥*)]. First, we observe that N is almost everywhere smooth (see [7]) and then
we can apply Corollary 2.2 to N. On the other hand, since G,(R™**) satisfies the
condition in Corollary 2.3, we conclude that the cycle N also satisfies this condition.
In particular, we obtain that for almost all x € N (in dimension sense) the tangent space
T.N to N satisfies the condition of maximal deformation coefficient: cd(x, T N) =
a(M)¥,. In view of Proposition 3.6 we obtain that the tangent space T, N is also
tangent to some sub-Grassmannian g- G,(R**™). Then we can apply Proposition 3.2
in [11], which states that such a submanifold must be one of the sub-Grassmannians
g G (R¥*™). Indeed, Proposition 3.2 in [11] is stated for the case of Grassmannian of
oriented planes G;f (R**™), but their Grassmannian and ours locally isometric, so their
Proposition is still valid in our case. This completes the proof of Theorem 3.1'.
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Proof of Theorem 3.2. The proof of this theorem is similar to that of Theorem 3.1.
First we will prove the Integral Wirtinger Inequality for arbitrary k (cf. Proposition
2.10.a).

Proposition 3.10. Let N be a manifold in CP". Then its volume can be estimated
from below by

vol(N?¥) > C,fj #(N 0 CP" ¥ (x))p,,

Upns1/(Upge+1 xUs)

where [ is the constant in Proposition 2.10.a. Moreover, the inequality becomes an
equality if and only if N** is a complex submanifold.

Proof. Asin the proof of Proposition 2.11, it suffices to show that the deformation
coefficient y,,(e, V*), related to the family of complex projective subspaces of dimen-
sion (n — k) in CP", reaches its maximal value iff V¥ is a complex space. According to
(2.8) we obtain (see also Proposition 2.10.a):

cd(e, V%) = J IKVZE Ad (W) dx,

Gy (T, CP™)

where W is the tangent space to the (fixed) complex projective space CP*. Now we
consider the complex Grassmannian G,_,(T,CP"). We associate to each point x e
Gi—1(T,CP") the fibre q(x) of complex lines in the complex (n — k + 1)-dimensional
orthogonal complement to the space span(x) in T,CP". As a result we get a fibre
bundle over G,_;(T,CP") whose fibres are diffeomorphic to CP""*. Let us denote this
fibre bundle by T;', ,. Obviously, T;L, , is also a fibre bundle over the complex
Grassmannian G,(T,CP") with the natural projection p : (v, x)—v A x. So we have the
following fibrations

CP' > TI‘cl—l,n - G(T.CP"),
CP"™* > TL, , - G, (T.CP").

We observe that the invariant metric on T;*, , ~ U,/(U,_; x U,_, x U,), obtained
from the bi-invariant metric on U, factorized by the action of its subgroup U,_, x
U,-« x Uy, coincides with those which are obtained by lifting the invariant metric on

n

G-, (T,CP") via g, and the one on G,(T,CP") via p. Therefore we get

cd(e, V) = 4., f f KV YA x| dxdy,
CPnk(y)

G- 1 (T (CPM))

where A4, , is a constant which depends only on » and k.
For any point y € G,_,(T,CP") are denoted by IT, y the orthogonal projection of y
on the subspace V?*. Let IT, y* denote the orthogonal complement to the projection
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I,y in V2* Then we get

J |<I7ﬁ‘,y/\X>|dX=l<V,?>I'J <My y*, %) dx. (3.11)
CPni(y)

CPni(y)

From the proof of Proposition 2.11 we conclude that the right-hand side of (3.11) is
less than or equal to |{V,7|. Moreover, the equality holds if and only if IT, y* is a
complex line. Repeating the reduction procedure as above we obtain Proposition 3.10
from the following lemma.

Lemma 3.11. Let V?* be a subspace of real dimension 2k in C***. For every x € CP"
let us denote |{V?* x| the volume of the projection of the unit complex line x € CP" on
the space V**. Then the function

M (V) = f <KV, x)|dx

cpr

reaches its maximal value if and only if V?* is a complex subspace.

Proof. We consider the Hopf fibration $>"*! — CP". As in the proof of Proposition
2.11 we conclude that

MC(VZk) = Cn j

S2n+l

[KV x" A Jx'D|dx' = C,,J vol(IT, x’ A IT, Jx")dx’',

S2nt1

where C, = vol(U,) ™", and I1, x’ denotes the orthogonal projection of the unit vector
x’ € §2"*1 on the subspace V2*. Therefore we obtain

M (V) < C,,'J [T, x| - |1, Jx'| dx’, (3.12)

S2n+1

and besides, the equality holds iff IT, x’ is perpendicular to IT, Jx’ for every x’ € $2"*',
That condition is equivalent to the complexity of V2*. Note that the group SO,,,,
acts on the Grassmannian of real 2k-dimensional planes in R***! = C"*! transitively.
Applying the Schwarz inequality for integrals to the right-hand side of (3.12) we get

1/2 1/2
M (V) < c(f |an'|2dx'> (f |H,,Jx’|2dx’> - c,,j |TT, x'|? dx’.
Sn+t S2n+1 S2n+1

Moreover, the inequality becomes an equality if and only if V is a complex plane (and
in this case we also have |1, x’| = |I1,,Jx'|). This completes the proof of Lemma 3.11
and then the proof of Proposition 3.10.

Continuation of Proof of Theorem 3.2. The remaining part of this proof can be
carried out in the same way as in the proof of Theorem 3.1. It is easy to see that the
following key lemma is an analog of Proposition 3.4.
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Lemma 3.12. For each real plane V"™ = =g I'(C?) we put
M(V)=j [KV,x A A TP (x)D|dx.
cpa-

Then M(V) reaches its maximal value if and only if V.=V, A == A I""1(V}), where V,
is some complex subspace in CA.

Proof. Applying the Schwarz inequality and the technique in the proof of Proposi-
tion 3.4 we get

M) < cq,,,,< J B(x, x)™? dx> ( J B(Jx, Jx)"? dx>,
S2q-1 S2g-1

where C, ,, is some constant and B(x, x) is a symmetric bilinear form as in the proof
of Proposition 3.4. Now, the condition that M(V 2*) reaches its maximal value is the
combination of the following two: V** is product of I"(R?*?) and V?* is a complex
subspace. This completes the proof of Lemma 3.12.

Proof of Theorem 3.3. We follow the proof of Theorem 3.2. To do this we consider
the Hopf fibration $*?~! — HP?"! and apply the Holder inequality for integrals (in-
stead of the Schwarz inequality).

4. Properties of (M)*-minimal Cycles

Let N be a k-cycle in Riemannian manifold M™ provided with a family (M)* of
submanifolds Njf in M realizing a cycle [N*] as in Corollary 2.2. If the inequality in
this corollary for the volume of N becomes an equality, we wil call N a (M)*-minimal
cycle. Corollary 2.3 states that a (M)*-minimal cycle is homologically volume-
minimizing. The homological class [N] e H, (M) of such a cycle will be called a
(M)*-class. First we show that there is an analog of Equidistribution Theorem for
homologically volume-minimizing cycles in a (M)*-homology class.

Theorem 4.1.  Equidistribution Theorem. Let N' be a homological volume-minimizing
cycle in a (M)*-homology class. The the set of N € (M)* such that #(N¥ N N') # y is
of measure zero in (M)*. Here y equals the intersection number of cycles[N] and [N*].

Proof. By our assumption and taking into account Corollary 2.2 we conclude that
N’ also satisfies the condition in Corollary 2.3. Namely we have

vol(N') = y-(a(M)¥)™* - vol(M)*.

Theorem 2.1 implies that the above equality holds if and only if N’ satisfies the
following two conditions
1) For almost all x e N’ we have cd(x, T.N) = a(M)}.
2) For almost all y € (M)* the actual intersection number # (N, N N') equals the
algebraic intersection number .
Now Theorem 4.1 follows from the second condition.
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Applying Theorem 4.1 to complex submanifolds in the complex projective manifolds
CP" we obtain the following corollary. Recall that the homology group H,,(CP",Z) =
Z is generated by the element [CP*].

Corollary 4.2. Let r be a positive integer, and let N** be a complex submanifold
realizing the element r[CP*] e H,,(CP",Z). Then the set of (2n — 2K)-dimensional
projective spaces CPy~* = CP" such that #(CP;* n N?¥) # r is of measure zero in the
set of all CP}™* which is identified with SU,/S(U,_, x U,) provided with the invariant
measure.

Proof. Applying Proposition 2.10.a to the cycle rCP* we get that all homology
classes in H,(CP", Z) are (M)*-homology classes. It is well known that the complex
submanifold N2* is volume-minimizing in its homology class. Hence we infer Corollary
4.2 from Theorem 4.1.

Volume-minimizing cycles in an (M)*-homology class possess some properties
similar to those of ¢-currents, where ¢ is a calibration on M. First, we note that the
cycles under consideration are also (M)*-minimal. Further, the tangent space to a
(M)*-minimal cycle belongs to a certain distribution of k-planes in TM. Namely at
every point x € M we put

I(x) = {V € G(T.M)|cd(x, V) = a(M)}.

Then (M)*-minimal cycles are integral submanifolds of the distribution I(x). Recall
that ¢-submanifolds are integral submanifolds of the distribution G4(M) = {V e
TM|$(V) = 1}. When M = G/H is a compact homogeneous Riemannian space, we
find a striking relation between these distributions. Let ¢ be an invariant calibration
on M. Then its restriction to the tangent space of M at the point {¢H} is a H-invariant
form. Therefore, the value of ¢ at a k-vector V < T} G/H can be expressed as follows

¢(v>=j (T, Ad, T a3,
H

where W is some k-vector in the space Ti.yyM. Obviously, the value #(V) depends only
on the orbits of the H-action on A\, Tj,zyM (cf. Proposition 2.6). Moreover, let us
denote by L the isotropy group of the H-action at the k-vector W. Then we have

#(V) =j (V, Ad W dx. (4.1)
H/L

This formula is similar to the one we used for computing deformation coefficient
cd({eH}, V), (see (2.8)). Further, the distribution G, is the set of all k-dimensional
tangent subspaces whose associated unit simple k-vectors maximize ¢(V); the distribu-
tion I is the set of all k-dimensional tangent subspaces whose associated unit simple
k-vectors maximize value cd(x, V). In many cases, for example, for a Kéhler form and
its powers ¢, we can choose a corresponding W as a simple polyvector.
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The similarity between (M)*-cycle and ¢-currents also appears in the following
theorem.

Theorem 4.3. Let N be a (M)*-minimal cycle realizing a torsion free element in the
homology group H,(M,Z). If M is a compact manifold, then N is a ¢-current for some
calibration ¢ on M and the homology class [ N] is stable.

Remark. In many cases, for example, for M = CP", there is a unique (up to
multiplication by a constant) invariant calibration of a given dimension on the mani-
fold M (see also [21]). In such cases, in view of Theorem 4.3, we can obtain a calibration
on M with the help of integral geometry. As it was discussed above, the two kinds of
involved integral inequalities are similar but not equivalent. For instance, we consider
the deformation coefficient as in Proposition 3.5. It is easy to see that if m is even, then
the integrand |{V*" Ad.W)| equals {(V*" 4d. W) for all V* which belongs to the
distribution of maximal deformation coefficient. Therefore, such a plane V*™ also
belongs to the distribution of the calibration associated with W as it was discussed
above (see (4.1)).

Proof of Theorem 4.3. Let us recall the Federer Stability Theorem.

Theorem. [8] For every o € H, (M, G) we put
mass(x) = min{vol X* = M|[X*] = o}.
Then the following equality holds for o. € H (M, Z.).

. mass(na
lim —(—) = mass(og),
n

n—oo

where og denotes the image of o under the map H,(M,Z) — H,(M,R).

If for some n € Z* we have mass(na)/n = mass(ag) we say that the homology class

o is stable.
Now assume N is as in Theorem 4.3. We observe that the cycle pN is also a (M)*-cycle

for all pe Z*. So we get

mass(p[N]j/p = mass([N]).

Therefore, according to the Federer Stability Theorem, the homology class [ N] must
be stable, and N is a volume-minimizing cycle in the class [N]g € H(M,R). It is
well-known that there is a calibration ¢ on M which calibrates N (cf. [4], [21]).
Applying Theorem 4.3 to Theorem 3.1 we obtain the following corollary.

Corollary 4.4. [11] If the Grassmannian of oriented planes G;(R**™) realizes a
non-trivial element in the homology group H,,,(G;"(R"*™),R) with real coefficients, then
G;H(R¥*™) is a volume-minimizing cycle in its homology class with real coefficients.
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Proof. Obviously, G,(R**™) and its 2-sheeted covering G, (R**™) have the same
homology groups with real coefficients. By Theorem 4.3, G,(R¥*™) is a volume-
minimizing real current. Its is well known that in this case there exists an invariants
calibration ¢ on G,(R'*™) such that ¢ calibrates G,(R**™). It is easy to see that the lifted
calibration ¢* on G;"(R**™) must calibrate G, (R**™) too. This means that G,/ (R**™) is
a globally minimal submanifold.

Finally we conjecture that every homology class in Hg(F,/Sping, Z) is a (M)*-class.
A. T. Fomenko and M. Berger proved that the Helgason sphere S® realizing the
generating element of this group is a globally minimal submanifold [9], [1]. We also
conjecture that every canonically embedded sub-Grassmannian G,(F') = G, ,(F"*")
is volume minimizing in its Z, homology, where F = R, C, H (see also [11] for the
case of oriented G;",,,(R'*")).
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