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Abstract. In this note we prove that half of all homotopy classes of almost complex structures onM
is not compatible with any symplectic structure for a certain class of oriented compact 4-manifolds
M . In particular, half of all homotopy classes of almost complex structures on an oriented 4-manifold
is not compatible to any Kähler structure.
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1. Introduction

On a symplectic manifold (M 2n; !) there is an almost complex structure J! com-
patible to ! (i.e. !(J!x; J!y) = !(x; y) and !(x; J!x) > 0). It is well known
that the homotopy class [J!] is a symplectic invariant of (M 2n; !). The questions
concerned in this note are:

S: Given a homotopy class [J ] of an almost complex structure on a compact
4-manifold M 4 is there a symplectic structure ! which is compatible with [J ]?

K: An analogous question for the existence of a compatible Kähler structure.
Remark. We would like to mention some results related to the questions S and K.
(1) A recent result of Taubes [12] states that a necessary condition for the

existence of such a compatible [J ] is that the Seiberg–Witten invariant (or one of
its values in the case b+2 (M

4) = 1) of the canonical spinc-structure associated to J
must be�1 (see the next section for more details). Hence we get many examples of
oriented manifolds M 4 which admit almost complex structures but no symplectic
structures.

(2) Using the Yang–Mills Instanton theory, Donaldson showed that there is
a homotopy class of almost complex structures on K3 surfaces which does not
contain any complex structure [2].
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(3) Hirzebruch conjectured that (integrable) complex structures on S2 � S2

and CP 2 # CP 2 are unique up to diffeomorphisms and deformation equivalence.
This conjecture was recently proved by Friedmann and Qin [5]. Thus the existence
of an almost complex structure which is not compatible with a Kähler structure
on Hirzebruch’s surfaces, follows straightforward from their result combined with
an argument in [2]. A similar classification theorem of symplectic structures on
minimal rational and ruled surfaces was very recently proved by Taubes (for CP 2)
[13] and Lalonde and McDuff.

In [3] Donaldson showed that there is a free involution p on the set of homotopy
classes of almost complex structures on a compact oriented closed manifold M 4.
Using this we shall prove the following theorems

THEOREM 1.1. Let M 4 be a closed oriented manifold such that b2
+(M) � 2,

or b2
+(M) = 1 and b1(M) = 0, or M is diffeomorphic to a ruled surface or a

hyperelliptic surface. Suppose that a homotopy class [J ] on M 4 is compatible with
a symplectic structure. Then the homotopy class p[J ] is not compatible with any
symplectic structure.

The following theorem follows from Theorem 1.1 except the case of properly ellip-
tic surface with pg = 0 and q = 1. It extends a result of Donaldson we mentioned
above to all oriented 4-manifolds.

THEOREM 1.2. Let M 4 be a closed oriented manifold. Suppose that a homotopy
class [J ] on M 4 is compatible with a Kähler structure. Then the homotopy class
p[J ] is not compatible with any Kähler structure.

LetM be a symplectic (respectively Kähler) 4-manifold considered in Theorem 1.1
(respectively in Theorem 1.2). It follows from our theorems that the action of the
orientation preserving diffeomorphism group ofM 4 on the set of homotopy classes
of almost complex structures on M 4 is not transitive.

A proof of our theorems will be given in Section 3. In Section 2 some facts on
almost complex structures on 4-manifolds and the Seiberg–Witten equation (which
is the main tool of our proof) will be collected.

2. Preliminaries

2.1. HOMOTOPY CLASSES OF ALMOST COMPLEX STRUCTURES ON AN ORIENTED
CLOSED 4-MANIFOLD M 4

(a) It is a classical result due to Ehresmann and Wu [14] that two cohomology
classes c1 2 H2(M 4;Z) and c2 2 H4(M4;Z) are the first and second Chern
classes of an almost complex structure J compatible with a given orientation on
M 4, if and only if c1 and c2 satisfy the following conditions
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c2 = e(M 4);

c1 = w2(M)mod 2;

c2
1 = 3�(M) + 2e(M);

where e denotes the Euler class, w2 the second Whitney class, and � the signature
of M 4.

(b) An almost complex structure J on M 4 can be considered as a section of
the associated (SO4=U2)-bundle over M 4. Given an almost complex structure J
on M we denote by p(J) an almost complex structure on M which coincides with
J outside a small ball in M 4, and, moreover, the homotopy class [p(J)] differs
from the homotopy class [J ] by the non-zero element ofH4(M4; �4(SO4=U2)) =
�4(S

2) = Z2. Using the obstruction theory we see easily that p is defined uniquely
up to homotopy. It is easy to see that c1(J) = c1(p(J)). In [2], Donaldson detected
the difference of these two homotopy classes of almost complex structures in terms
of a cohomological orientation. Namely, he considered the elliptic operator

� := d� � d+ : 
1 ! (
0 � 
2
+):

Using Hodge theory one can show that the kernel (respectively cokernel) of �
equals H1(M4;R) (respectively H0(M4;R) � H2

+(M
4;R)). An orientation of

detH1(M4;R) 
 det(H0(M 4;R) �H2
+(M;R)) of an oriented 4-manifold M 4

is called a cohomological orientation. Given an almost complex structure J on M 4

we can deform the operator � to a complex linear operator �1=2
J = (1=2)(��J�J).

Thus �1=2
J gives a canonical way to define a cohomological orientation o[J] of M 4

preferred by [J ].
If M 4 is a Kähler manifold with a Kähler form !, then we can write

H1(M4;R) = H1;0; H0 �H2
+(M

4;R) = R�R! �H2;0:

Donaldson defines a complex structure on H0 �H2
+ by setting I � 1 = �!=

p
2.

Clearly this complex structure together with the cohomological orientation of M 4

preferred by J induces an orientation on H1(M4;R) which is also called the
cohomological orientation preferred by [J ].

Claim 2.1.c [2, lemma 6.4], [3, p. 418]. The cohomological orientations o[J] and
op([J]) are opposite. Thus p defines a free involution on the set of homotopy classes
of almost complex structures on M 4. If M 4 is Kähler, the canonical orientation of
H1(M 4;R) defined by the complex structure J coincides with the cohomological
orientation preferred by [J ].

If ! is a closed 2-form on M 4, then it induces a 2-form Q! on the linear space
H1(M 4;R) as follows

Q!(�; �) = �
Z
M
� ^ � ^ !: (2.1)
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If ! is a Kähler form, then Q! is the Hodge–Riemann bilinear form (see,
e.g. [14]). Thus a Kähler form ! defines a symplectic form on H1(M4;R) and,
therefore, induces a natural orientation on it. We get easily the following observation

Remark 2.1.d. Let (M 4; J; !) be a Kähler manifold. Then the orientations on
H1(M;R) defined by J and Q! concide.

2.2. SEIBERG–WITTEN EQUATION FOR SYMPLECTIC 4-MANIFOLDS

For more details, see [6, 7, 11–13]. Let us recall that the Seiberg–Witten equation
for a spinc-structure on a Riemannian 4-manifold M 4 is the pair of the following
equations for A and a positive half spinor �.

DA(�) = 0 (SW1)

F+
A = q(�)

 
:= �
 �� � j�j2

2
Id

!
; (SW2)

whereA is a connection on the associated line bundle of the spinc-structure and q(�)
is a traceless symmetric endomorphism of the positive spinor bundle which can be
identified with an imaginary valued self-dual 2-form via the Clifford multiplication.
We can also perturb the Seiberg–Witten equation by adding a term � 2 i
2

+(M
4)

to q(�) in the second equation (SW2). If b+2 (M
4) � 2, the “number” (or the

cobordism type of the moduli space) of the solutions to (SW1–2) (actually to any
its perturbed equation) does not depend on metric g and, therefore, defines, roughly
speaking, the Seiberg–Witten invariant of the spinc-structure onM . If b2

+(M
4) = 1,

for each spinc-structure there are exactly two chambers in the space of pairs (g; �)
consisting of a metric g and a perturbation term � such that the “number” of the
solutions of the SW-equation with respect to the metric g and the perturbation term
� depends only on the chamber to which the pair (g; �) belongs. The wall dividing
these two chambers is defined by the equationZ �

c1(L)�
i�

2�

�
!g = 0; (2.2)

where !g is the unique (up to scalar) self dual harmonic form on M 4 and L is
the associated line bundle of the spinc-structure. If b1(M) = 0, then one has
a (relatively simple) wall-crossing formula which relates the difference of the
Seiberg–Witten invariant in two chambers [7]. In short it says that the difference
is �1. A general formula in the case b1 6= 0 may be well known to specialists and
can be found, for instance, in [8, 10].

For a symplectic manifold (M 4; !) (or more generally, for an almost complex
manifold M 2n) we always have a choice of a canonical spinc-structure Scan [6].
The cohomological orientation preferred by J also defines a canonical orientation
of the moduli space of the solutions of the Seiberg–Witten equation. We call the
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invariant defined by the perturbed Seiberg–Witten equation with � = �ir!, r large
enough, the Seiberg–Witten–Taubes invariant. We denote the Seiberg–Witten–
Taubes invariant for the canonical spinc-structure by SWT(Scan(!)). Taubes [12]
proved that SWT(Scan(!)) is �1. In fact, Salamon [11] showed that the invariant
is 1 (see Appendix).

3. Proof of Theorems

LEMMA 3.1. Let J be an almost complex structure on M 4. Then the canonical
spinc-structures defined by [J ] and p[J ] are equivalent.

Proof. Without lost of generality we can assume that two almost complex struc-
tures J and p(J) coincide outside a ball B1 of a point and inside B1 the complex
structure J is standard. Then we have a natural identification of the two spinc-
structures outside of the ball. For two spinc-structures on a given manifold, the
difference of them is detected by a U(1)-bundle. Let L be a U(1)-bundle detecting
the difference of these two spinc-structures. Take a bit bigger open ballB. Since the
two spinc-structures coincide outside of B1, the U(1)-bundle L is trivial outside of
B1, especially onB�B1. The trivialization onB�B1 automatically extends to the
4-ballB. HenceL is trivial onM . It follows that the two canonical spinc-structures
associated to J and p(J) are equivalent. 2

LEMMA 3.2. Let M 4 be a symplectic manifold with b2
+ = 1. Let ! and !0 be

symplectic forms on M 4 such that [J!] = [p(J!0)]. Suppose that b1(M
4) = 0.

Then ! and !0 are in the same connected component of the positive cone in
H2(M ; R).

Proof. According to Taubes’ theorem we have(
1 = SWT(Scan(!));

1 = SWT(Scan(!
0)):

(3.1)

Recall that SWT(Scan(!)) = SW(Scan(!); o[J];�ir!), where the cohomological
orientation o[J] also defines the orientation of the moduli space, and �ir! with
very large r is the perturbation term in the Seiberg–Witten equation (SW2). By
Lemma 3.1 we denote Scan(!

0) = Scan(!) = Scan. From (3.1) and Claim 2.1.c we
get

1 = SW(Scan; o[J];�ir!) = SW(Scan;�o[J];�ir!0): (3.2)

Now we suppose that ! and!0 are not in the same component ofH2
+(M;R). From

the last term in (3.2) we get

1 = �SW(Scan; o[J]; ir!):

Hence we get

SW(Scan; o[J];�ir!)� SW(Scan; o[J]; ir!) = 2: (3.3)
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But (3.3) contradicts to the wall-crossing formula [7] (see also Section 2). 2

Proof of Theorem 1.1. Suppose the opposite, i.e. there are two symplectic
structures ! and !0 which are compatible to [J ] and p[J ]. According to Lemma 3.1
we can denote by Scan the canonical spinc-structure for both ! and !0. Firstly, we
consider the case b2

+(M
4) � 2. Taubes’ theorem tells us that the Seiberg–Witten

invariant of the canonical spinc-structure Scan is 1. On the other hand, a result by
Donaldson (Claim 2.1.c) tells us that the cohomological orientation preferred by J
and p(J) are opposite. Since the preferred cohomological orientation defines the
canonical orientation of the moduli spaces of the SW-solutions [11] we obtain a
contradiction.

Secondly we consider the case b+2 (M) = 1 and b1(M) = 0. By Lemma 3.2 both
! and !0 are in the same connected component of the positive cone H2

+(M
4;R).

Hence for r large enough we have SW(Scan; o[J];�ir!) = SW(Scan; o[J];�ir!0).
But this equality contradicts to Taubes’ theorem and the fact that o[J] = �o[p(J)]
(Claim 2.1.c).

Finally, we consider the case when M 4 is diffeomorphic to a ruled surface or
a hyperelliptic surface. Since a rational ruled surface is simply connected, that is
included in the case that b1(M) = 0, we only deal with irrational ruled surfaces
and hyperelliptic surfaces.

Subcase A. M 4 is diffeomorphic to an irrational ruled surfaces.
Subcase B. M 4 is diffeomorphic to a hyperelliptic surface.
Let us consider Subcase A. If we imitate the argument in the above case with

b1(M
4) = 0 and b+2 (M

4) = 1, then there is a problem arising in computing
the wall-crossing formula. We note that a ruled surface admits a positive scalar
curvature metric g0. Therefore the two chambers for the canonical spinc-structure
on M 4 have the following two representatives: one is the pair (g0; � = 0), and
for the other chamber a pair of a metric compatible to ! and Taubes’ perturbation
� = �ir!. Thus ! and !0 should be in the same connected component of the
positive cone in H2(M;R). Now we can proceed as in the case when b+2 (M

4) = 1
and b1(M

4) = 0.
Subcase B.M is diffeomorphic to a hyperelliptic surface. First we want to show

that the image of the first Chern class c1(M;!) in H2(M;Q) is zero. To do this
we consider the covering space ~M of M which is diffeomorphic to a product of
two elliptic curves. Let ~! be a symplectic form on ~M which is the pull-back of the
symplectic form ! on M . According to Taubes’ theorem the canonical bundle of
( ~M; ~!) is a Seiberg–Witten class [12]. (Note that b+2 ( ~M) = 3 � 2.) Because the
only SW class of a 4-torus is the trivial class, c1( ~M; ~!) is 0 in H2( ~M;Q). Hence
the image of c1(M;!) in rational cohomology is also zero.

Since c1(M;!) is zero inH2(M;Q) the wall-crossing number for the canonical
spinc-structure is also 0 for (M;!). Now suppose that!0 is a symplectic form which
is compatible with [p(J!)]. Notice that till the (3.2) the argument of Lemma 3.2
does not depend on the condition b1 = 0. Now suppose that ! and !0 are in the
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same connected componentent of the positive cone in H2(M;R). Then (3.2) yields
a contradiction. Hence these symplectic forms must be in different components of
the positive cone. Considering the above obtained wall crossing formula and (3.3)
leads to a contradiction. 2

Proof of Theorem 1.2. We consider several cases. Suppose that b+2 (M
4) � 2,

or b+2 (M
4) = 1 and b1(M

4) = 0, or M 4 is a ruled surface. In these cases The-
orem 1.2 follows from Theorem 1.1. By Noether’s theorem if M 4 is a minimal
surface of general type with pg = 0, then q(M) = 0. Hence if M 4 is Kähler with
b2
+(M

4) = 1, b1 6= 0, then M 4 must be an irrational ruled surface or an elliptic
surface. Thus by the Enriques-Kodaira classification of complex surfaces it suffices
to prove Theorem 1.2 in the case that M 4 is an elliptic surface with b1 = 2 and
b+2 = 1. (Note that if M is a hyperelliptic surface the conclusion follows from
Theorem 1.1. But the following argument works also for hyperelliptic surfaces.)2

LEMMA 3.3. Suppose that b+2 (M) = 1 and ! and !0 are two Kähler forms in the
same connected component of the positive cone inH2(M;R). Then the orientations
defined by Q! and Q!0 on H1(M 4;R) are the same.

Proof. Our argument is similar to that in [9]. Note that for �, � 2 H1(M ; R),
�^� lies in the null-cone ofH2(M;R). Consider a path f!tg in the e cone from !

to !0. Then we have a one-parameter family of bilinear forms Q!t . If these bilinear
forms are all non-degenerate, then the orientations determined byQ!t are constant.
Thus Lemma 3.3 is a consequence of the following fact.

Suppose that A and B are in the closure of a connected component of the
positive cone inH2(M;R). ThenA�B � 0. Moreover, ifA2 > 0, then the equality
A:B = 0 holds if and only if B = 0. This fact can be easily proved by considering
an orthogonal decomposition of A and B as follows: A = a0x0 +

P
i�1 aixi,

B = b0x0 +
P

i�1 bixi. Here x0 is a unit vector in H2
+(M;R) and fxi; ji � 1g

is an orthonormal basis in H2
�
(M;R). The desired fact follows by applying the

Cauchy inequality to the RHS of the following inequality:

a0b0 �
sX

i>0

a2
i

sX
i>0

b2
i :

2

Now we consider two subcases.
(1) Suppose that ! and !0 are in the same connected component of the positive

cone in H2(M;R). The same argument as before tells us that the cohomological
orientations defined by J and p[J ] are the same, which contradicts to Donaldson’s
theorem.

(2) Suppose that ! and !0 are in different connected components of the positive
cone. Since b1(M

4) = 2, Lemma 3.3 tells us that the orientations on H1(M4;R)
induced by ! and !0 are opposite. Thus the cohomological orientations defined by
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J and p[J ] are the same, which is a contradiction. This completes the proof. 2

Remark 3.4. The following statement was pointed out to us by the referee.
Namely Theorem 1.1 is also valid for a manifold M of the same diffeomorphism
type as a proper elliptic surface X with pg = 0 and q = 1 over a curve of genus 1.
To see this we assume the opposite, i.e. there are almost complex structures J and
p(J) such that [J ] (respectively [p(J)]) is compatible with a symplectic structure
! (respectively !0). Donaldson’s theorem and Taubes’ theorem tells us that ! and
!0 must be in different components of the positive cone in H2(M;R). On the
other hand, the Seiberg–Witten–Taubes invariant of the canonical spinc-structure
associated to J is non-trivial. It is known (see, e.g., [4]) that in this case the first
Chern class c1(J) in rational cohomology must be a multiple of the image of
the canonical class KX , here X is the corresponding proper elliptic surface. The
wall-crossing formula tell us that in this case the crossing number is zero which
contradicts to (3.3).
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Appendix. The Sign of the Seiberg–Witten–Taubes Invariant of the
Canonical spinc-Structure of a Symplectic Manifold (M 4; !)

The following theorem is due to Taubes

THEOREM [11, 12]. Let (M 4; !) be a symplectic 4-manifold with its orientation
given by !^! and its cohomological orientation given by a compatible to ! almost
complex structure J . Then SWT(M 4; Scan) = 1.

Actually in [12] Taubes states this theorem only up to sign (without considering
cohomological orientation) and Salamon makes it more precise by considering the
preferred cohomological orientation [11]. In his proof Salamon gives a detailed
argument for a Kähler manifold M 4 and outlines a proof for the symplectic case.
For the case of completeness we make his argument more detailed in our Appendix.
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First we recall that to define the sign of the Seiberg–Witten–Taubes invariant
we have to consider the following family of Fredholm operatorsDt [11]


0;0(M 4) 
0;0(M4)
� �

Dt : 
0;1(M 4) �! 
0;1(M4)
� �


0;2(M 4) 
0;2(M4)

;

where

Dt = D0 + t _D0 (A.1)

with D0 being a complex linear operator:

D0(�0; �1; �2) = (�@��1; �@�0 + �@��2; �@�1) (A.2)

and _D0 depending on �:

_D�
0 (�0; �1; �2) = (�p���0;

p
4��1; ��1 �NJ=4 �p���2): (A.3)

Here � denotes the “size” of the Taubes’ perturbation term in the SW-equation
and in the last formula NJ denotes the Nijenhuis tensor. Recall that the orientation
of the determinant of the real vector space ^max(kerD0)
 ^max(kerD�

0) which is
defined by the almost complex structure J agrees with the preferred cohomological
orientation [2, 3, 11] and to define the sign of the Seiberg–Witten–Taubes invariant
we must define the orientation of ^max(kerD1)
 ^max(kerD�

1) which is obtained
by a trivialization of the determinant line bundle ^max(kerDt) 
 ^max(ker;D�

t )
over [0; 1]. In [11] Salamon proved that for all t > 0 the operator Dt is invertible.
Thus we need to examine what happens at t = 0. If D0 is also invertible then we
are done. Hence we assume that there is a crossing at t = 0. It can be shown that
the crossing is regular at t = 0 in the sense of [11] and we can conclude that the
sign of the invariant is + by the argument in the Appendix of [11].

Here is another way to show the invariant is +1. We deform the operatorD0 by
a (0; 1)-form a. Namely, we deform the operator �@ by �@ + a and �@� by the adjoint
of �@ + a. By Sard–Smale theorem, the deformed operator is surjective for almost
all a. We denote the deformed operator by Da. For a sufficiently large � > 0,
we consider a family of linear elliptic differential operators tDa + (1 � t)D1(�),
0 � t � 1. Recall that D1(�) is the linearization of the Seiberg–Witten equation
perturbed by � = i� ! [see Section 2.2 and (A.1), (A.3)]. Then the argument in
[11] also implies that these operators are surjective for all t 2 [0; 1]. Note that Da

is complex linear. Hence the sign of the invariant is +.

References

1. Barth, W., Peters, C. and van de Ven, A.: Compact Complex Surfaces, Springer-Verlag, Berlin,
1984.



334 F. CONNOLLY ET AL.

2. Donaldson, S.: Polynomial invariant for smooth four-manifolds, Topology (1990), 257–315.
3. Donaldson, S.: The orientation of Yang-Mills moduli spaces and 4-manifold topology, J.D.G. 26

(1987), 397–428.
4. Friedman, R. and Morgan, J.: Algebraic surfaces and Seiberg–Witten invariant, Preprint, 1995.
5. Friedman, R. and Qin, Z.: On complex surfaces diffeomorphic to rational surfaces, Inv. Math.

120 (1995), 81–117.
6. Hitchin, N.: Harmonic spinors, Adv. in Math. 14 (1974), 1–55.
7. Kronheimer, P. and Mrowka, T.: The genus of embedded surfaces in the projective plane, Math.

Res. Lett. 1 (1994), 797–808.
8. Li, T. J. and Liu, A.: The wall-crossing formula, Math. Res. Lett. 2 (1995), 797–810.
9. Ono, K.: Note on Ruan’s example, Preprint, 1992.

10. Ohta, H. and Ono, K.: Note on symplectic manifolds with b+2 = 1, II, Inter. J. Math. 7 (1996),
755–770.

11. Salamon, D.: The Seiberg–Witten Invariants, Birkhäuser (to appear).
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