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identified with the conpletely physical Fokker-Planck equation (cf., e.g., Mathenatical
Encycl opedi a [inRussian], Vol. 2, p. 958). The asynptotic expansion corresponding to the
Fokker —Planck process of effective diffusion can be obtained as here considering the ideas
of [7].
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JACCBI EQUATIONS ON M NI MAL HOMOGENEQUS  SUBMANIFOLDS | N HOMOGENEQUS
RIEMANNIAN SPACES

Le Khong Van UDC 517.974

| NTRCDUCTI ON

There are nany articles devoted to the problem of stability of mninal surfaces. The
subject attracted interest, in particular, because of the follow ng circumstances. Firstly,
the influence of the topology and the R emannian curvature tensor of a nmanifold M upon the
stability of its mniml submanifolds was discovered (Snons and Lawson [14], Le Khong Van
[9, Aminov [2]). Secondly, stable minimal surfaces provide an internediate |ink between
m ni mal surfaces, which are numerous, and gl obal mni nmal surfaces, which are rare and very
difficult to describe and classify [4, 8]. The study of stability for mnimal surfaces can
be reduced, in the end, to the study of the spectrumof the elliptic Jacobi differential
operator | corresponding to the second variation fornula for the volume functional. The
sumof dimensions of all eigensubspaces of | that correspond to negative eigenvalues is
called the index of a minimal submanifold. Inportant results have been obtained in the study
of the index for two-dimensional mnimal surfaces in R' [11, 18]. In specific cases where
the minimal surface has a najor symmetry group, a technique has been devel oped for studying
the stability of the surface [13, 15]. In [9, 10] the nethod of relative scaling was pro-
posed in order to obtain a lower estimate of the second variation of the volunme functional
for mnimal surfaces.

The contents of this article are the following. In Sec. 1 we wite down an explicit
formula for the Jacobi equation on a mnimal honogeneous submanifold HL in a honogeneous
R emannian space GK in terns of the induced representation of the group H fromthe subgroup
L acting on the normal fiber mi C T, (G, K). The idea that the space C=(H, mt), (see Sec. 1)
can be used to evaluate various invariant operators (in particular, the Laplace and Jacobi
operators) goes back to Smth [17}. This article, as well as the recent article [15 by
nita, is concerned only with the case of a totally geodesic inbedding of HL in a symetric
space G K equipped with a canonical netric that generates a connection, which is easy to
evaluate.

V. M Lononosov Moscow State University, Mscow Translated from Funktsional'nyi Analiz
Ego Prilozheniya, Vol. 24, No. 2, pp. 50-62, April-June, 1990. Ciginal article submtted
June 8, 1989.
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In Sec. 1 we also prove Theorem 1.2 on invariant subspaces of finite measure for the
Jacobi operator.

In Sec. 2, applying the results of Sec. 1, we solve the long-standing problem of classi-
fication of stable minimal simple subgroups in classical Lie groups. In Sec. 3 we estimate
frombelow the indices of some homogeneous minimal surfaces in the space SUy-,/T, equipped
with the Killing metric. In Sec. A we prove the theorem on "tiny" irreducible components of

the tensor product of irreducible representations of a compact Lie group and some technical
lemmas, which are used in Secs. 2 and 3.

Finally, the author wishes to express his gratitude to A. T. Fomenko for constant atten-
tion and valuable discussions. The author is also grateful to E. B. Vinberg for improving

the proof of Theorem 4.1 and to A. V. Tyrin for critical remarks concerning the second varia-
tion formula.

1. LIFTING THE JACOBI OPERATOR ONTO THE SPACE c*(H, ml)f

Let an isotopic variation £+(N) be given on a minimal submanifold N ¢ M. Then it is
known [16] that the second variation of the volume functional can be expressed as

| vor ey = L caw Wy an.
N
Here Wt is the orthogonal projection of the vector field W (X) = (d/dt) li=of: (x),associated with

the variation f, onto the normal bundle 4 (N) — T, M, and I is called the Jacobi operator of
the minimal submanifold N. It is known [16] that

ITAW)=—v(W)+RMW)-AW). a.n
Here —v2 = A s the Laplace operator on the normal bundle (locally), which can be expressed
as AW)=2(Ve, Ve, ~ Vo, g )W, where {E;} are (locally) orthogonal vector fields on N forming

a basis, and V is the covariant derivative in the normal bundle 4" (N). Moreover, R is the
Ricci transformation in 4~ (N): R (W) = X (R (E;, W)E,)+, where R is the Riemannian curvature

tensor on M and ( )!{ denotes the orthogonal projection onto . (N). Finally, A(W) is the
second fundamental form of the submanifold N ¢ M in the direction of W, namely AWM, Y) =
<~VxW, Y>, where V is the covariant derivative on M, and <A(W), V> = <A(W), AQV)> for any V.

In what follows we shall consider only the case where M = G/K is a homogeneous space with
a G-invariant Riemannian metric and N denotes its minimal homogeneous submanifold H/L, where
L =Hn K. We denote by mt the normal fiber over the pointz,= {eL} L, SO thatml CTs X
(G/K)c"IG. It is obvious that the normal bundle 4~ (H ~ L), on which H acts on the left,
is H-equivalent to the bundle H Xxaq mi, which is factorized according to the action of Ad(L).

With each section ¥ = I' (#" (H ~ L)) we associate an ml-valued function ye ¢~ (H, mi) on H
such that

i
b

v (R) = kv (b /L)
It is clear that y satisfies the following condition:

Y (rl) = Ad ()9 (k). (1.3)
We denote by c*(H, ml); the subspace in c*(H, ml) defined by (1.3). It follows from what
is said above that the correspondence between the space of normal sections T (4" (H/ L)) and
C*(H, ml)y, given by (1.2) is a one-to-one correspondence. Therefore, any operator (in par-

ticular, the Laplace and Jacobi operators) /: T' (¥ (H /L))—>T (4 (H L)) can be lifted to an ,;
operator |I:

(1.2)

= (H, ml)L — C~ (H, mi)L.

Before formulating the basic theorem, we introduce some new notation. We consider the
following orthogonal decompositions:

I6=1K+m, IH=IL +p, IL= 1K) IH, m =pm + mi, (1.4)

where p, is the orthogonal pr6jection of the tangent space p = Ty, (H/L) onto the tangent
space m = T, (G/K). It is obvious that the projection w, is a 1—1 function from p to pp.
Thus, the metric induced from p, ¢ m can be defined on p.

o e
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We also define a linear operator 6: m » End (m) in the following way:
O WX, Y> = v, Xlm, YD + Y, vlm, XD + <Y, X]m, ), (1.5)

where <, > is a K-invariant metric on m, being the restriction of the G-invariant Riemannian
metric on G/H to the tangent space Txo(G/H) = m. We set e = (1/2) 30 (e))e;, here ey, i = 1, s
is an orthonormal basis in py,. 7

Proposition 1.1. a) The second functional form at Z¢ = H /L can be expressed as

4 (W)X, Y) = (1/2K—6 (Xm)W, ¥ ).

b) The Ricci transformation of the normal bundle ml can be expressed as follows (xp
and xpL are the orthogonal projections of x onto m and ml, respectively):

R (e;, W)e; = ((I0 (e.), 0 (W)] — 0 [e;, Whey),, 1
THEOREM 1.1. The lifting of the Jacobi operator I onto C®(H, m—'-)L has the form

[@)=—CHLM — Y EGCD +E® + (580 — 1 3 0 e) + R —2) @
i=1 i=1

Here the left-invariant fields {E;j} on H, which are regarded first-order differential opera-
tors {&; = E; (z)m, i = 1,5}, form an orthonormal basis in pp, CHf — }_‘, E,E, R u A the curvature
operator, and A is the operator of the second fundamental form.

It is obvious that I can be extended to a linear operator on the space C® (H, m&c).,
which, by the Peter —Weyl theorem and by the Frobenius duality principle (see also [6, 15]),
is isomorphic to the direct sum 3,_,y, T (Vi ® Homy (Vi, mgc)), where v (v, @ T)h) = T (A (A™V)w).
Here Z (H) is the set of ill irreducible complex representations A of H, and Homj, is the set
of L-invariant linear operators.

THEOREM 1.2. = (V, < Homg (Vi, mde)) is an invariant sub;pace of the Jacobi operator I,
which acts on this subspace as follows: /t (v 2 T) =1 (»n ® I,T), where I, is a linear operator
on the space Homy (V,, m¥c).

If we consider the special case where H/L is a totally geodesic submanifold in the space
G/K equipped with the Killing metric, then we have py = p, 6(X) = (adX)p, A = 0 = e,. There-
fore, Theorems 1.1 and 1.2 can be rewritten as follows.

COROLLARY 1.1. 1In the case in question thz lifting of the Jacobi operator I has the form

1) =—CHL@ — z (Eifes Bl — [en [0 Phx))-

The induced operator i on Homy (Vy, mge) has the form

([ T)L = 2 T (l“(é’ )L)” [ei A'(e )L”m 'i" [e,,[e,, Tv]lk]m)

The remaining part of the present section is devoted to the proofs of Proposition 1.1
and Theorems 1.1 and 1.2.

Proof of Proposition l.l1. First, we choose a local system of coordinates near the point
ro={eK} / K=6G /K with the aid of the exponentlal mapping exp: e — U, (zo) C G,/ K, where Z.
is a neighborhood of the point {0} in m' = p + m-. In what follows, unless it may lead to
misunderstandings, we shall identify each point {yK} ~ K with its representative y = exp T,
in the contiguity class (for example, X, = e}. Next, we choose local sections {Ei} C T, (¢ / K)
over Uc(x,) so that E;(x,) = vy, i =T, s is an orthonormal basis in p, Ej(x,) = vj, j =
s+ 1, r is an orthonormal basis is mt, and E; (exp #/K) = exp Z,E; (zo)y 1 = 1, r. Along with
the vector fields {Ej} on Uc(x,), we also consider the followmg vector fields on G/K:Ej i(x) =
('t {1 = {exp tv;r}/K.  The followxng lemma is obvious.

LEMMA 1.1. For any point 7<= Ue (ro), the following relations hold:

a) <Ei, El> = 5,’,‘2
b) <Exy E = {Adwv. vy = a (1)

c) {Ei E;} = —dfot |, o (exp t v, v;la)/K.
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With the aid of Lemma 1.1, we evaluate the second-order denvatlve following the known
prescription [7, p. 155]. To do this, we define the functions y§ = ({E,, E;}, E> on Ue(x,).
Then we have [7] 2 (Vg E;, Ex> = Bij, where

BY = 1l + vk + iy (1.5)

We set dfi (z) = {(Ad_ [vg, v ])m, V>, and # (z) = ({Adc-wy, v;lm, v;>. Direct computation shows that
the following equalities hold:

vh = (E,( (E; (¢ aP — cickdf — E,ick) ab), (1.6)
E,(at) = fio : (1.7)
Ei(c}) = — 2 cifuck (1.8)

{,s
where (c‘ ) = (a, () and E; = C;'E,.

Scrupulous calculations involving Lemma 1.1 and formulas (1.5)-(1.8) show that the fol-
lowing lemma holds.

LEMMA 1.2. At the point X, we have Vg yij =0 = Ve By for all i, j, k, and p.

The final part of the proof of Proposition l1.1. Part a) follows from formula (1.5).
Part b) follows from Lemma 1.2, formula (1.5), and the following formula: ¢

RewW)ei=[(Ve,Vw — YwVe, — Viw.£p) Eil 1.

Proof of Theorem 1.1. It is obvious that Theorem 1.1 follows from the propositions
stated below.

m e

Proposition 1.2. The operator I defined in Theorem 1.1 is an H-invariant operator.
Moreover, I transforms the space C*(H, mL)L into itself.

Proposition 1.3. For any section ye=T'(#(H /L)) the equality (') l. = 1 (%) le, holds,
where xp and Iw denote the liftings of ¥ and Iy onto C™(H, ml)L, respectively.

Proof of Proposition 1.3. Let y be a section of the normal bundle #'(H L). ¥ can be
represented as U¢(z,)¥ in a neighborhood Ug(x,), where {aj} are functions on V¢(x,) and
{E{} are the sections defined in Lemma 1.1 for i = s + 1, r. Using formulas (l.1), (1.5),

and Lemma 1.2, we get %
Iy| = ;ZJ (= Ve,Ve, (@), — Ve (@) 0 @) v; ;
+ e () vy + [(12)8 (o) — (1,4) X0 () + B~ T]agy). (1.9) ¢

We define the lifting of a section Ej, where i =_s + 1; r, onto the space C*(H, m—L)L by
E;(h) = h"*E{(h/L) = vi. It is obvious that Ej (EJ) = 0, where each E; is a left-invariant
f1eld on H/L with the value vj at e. Therefore, we have

1@ = *‘IE;, (EiEj(2j)v; — Ei (@) 0 (v;)v; 4
— Eo(o)) vy — 0 [(172) 8 (rg) — (1/4) 2192(".') + R — ). (1.10)

Comparing (1.9) with (1.10), we find that T (y) | =/ F) le-

Proof of Proposition 1.2. The first assertion is trivial. Next, we remark that the
metric on m is L-invariant, and so 8 commutes with the action of the group L. Taking into

account that $ = C* (H,. m-), {i.e.y (lexp tr;) = Ad (") % (exp t (Ad ()v,)) ], we can easily get
the following lemma.

LEMMA 1.3. Ad()(H ()= (— " §) —DE: (0 () $) + Eo (§) +«i.'2)e<e;>+>3<— 1/4)0%(es) + R— X)) (e)r 3

where ¢i = Adl(e;) is a new orthonormal basis in pp.

__By virtue of Proposition 1.3, the right-hand side of the equality in Lemma 1.3 is equal
to Iv(e). It follows that the identity K
Ad (e) Oy ()] = (Iy] (r) (1.11)

- 1
holds for h = e. As mentioned above, I is an H-invariant operator. Thus, the fact that 3
(1.11) holds for h = e and for any ¢ implies that (1.11) holds for all h. Hence, we get
immediately the second assertion of Proposition 1.2.
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Proof of Theorem 1.2. Let ¢ (h) =T . T). Then Eg (h) = (0/dt) [T (A ((exp(te))h'nn) =
—T (M(e) A (R wa). It follows that '

It$T) (h) = (1,T) A ) w),

where_I, is a linear endomorphism OF the space Hom (Vi mgc). Since ¢ & €= (H, méc), we find
that I, belongs to the space End Hom; (V:,mg¢). The theorem is proved.

2.  CLASSIFICATION OF STABLE MINIMAL SIMPLE SUBGROUPS IN CLASSICAL LEE GROUPS

Every compact Lee group G is a globally symmetric space with respect to the Riemannian
structure generated by the Killing form on the algebra 2G. If H is a compact subgroup of G,
then H is a totally geodesic submanifold, and so it is a locally minimal submanifold in G.

THEOREM 2.1. Let G be a classical Lee group, and let p: H + G be an imbedding of a
simple compact group H. The subgroup p(H) is a stable minimal submanifold in G if and only if

a) G = SUp4,» H = SUp4,, and p is the canonical imbedding, or H = Sp, and p is the
canonical imbedding;

b) G = SO, H = SU,, or Sp,, and p is the composition of the canonical imbeddings p, and

p2s Where p;: SU, —80,, (Or p;: Spn = SUsn +8504) and ps: SO —>SOm(or py: SO = SOn TOr
H = Spgn),

or H= 80, and p is the canonical imbedding (for n = 7, 8, 16, we have additional semi-
spinor imbeddings),

or H=G,, F,, Eg and p is a representation of the last dimension,

or H=E,, E,, F,and p is the composition of the adjoint representation Adg and the
canonical imbedding SO ({H) — SO,.;

¢) G = Spy, H= SP,, and p is the canonical imbedding.

Before proving Theorem 2. 1a), we introduce new notation and we rewrite Corollary 1.1 in
a form that will be suitable for our purposes. First, we remark that the compact Lie group
G acts on itself by transitive left and right translations, which preserve the Killing metric
on G. It follows that G, regarded as a homogeneous Riemannian space, can be represented in
the form of a factor space GX G /G ~ GX G 7 Diag (GXG). The canonical involution T on G,
which acts in the following way: t(g,, g,) = (g,, g,), defines the structure of a global sym-

metric space on M = G x G/Diag (G x G). Therefore, in this case Corollary 1.1 reads as fol-
lows (see also Lemma 3.2 of [15]):

Proposition 2.1. The Jacobi operator 1 on the bundle C*(H x H, m-L)diag(HxH) has the
form

I(§) = —CHllu @) + Citsn (F)s

where H x H acts on the algebra G + G by means_.of the adjoint representation Ad (p = p),

where p is the imbedding H -~ G, and cfkﬁ and ci.% are the differential and the algebraic
Casimir operators on H x H, respectively. '

We denote by m the orthogonal complement of the subalgebra p(2H) in the algebra 2G. m
can be decomposed into irreducible components of the representation Adgpe, namely m = 3:m,.
It is well known [15, 23] that the Casimir operator of the representation Adp of H on m3 can
be diagonalized, i.e., the equality

CH iy, — a:-1d LAY
holds. We recall that the imbedding of the tangent space !M —I (G X G) is antidiagonal,
ice., LM = {{z. —». ©& IG} . It is obvious that the normal fiber over the pointe& p (H X HI

H) ~oincides with the subspace m — {(z. —x), * 5= m} T IM.
We set m; = m () (m; @m;). The following lemma follows immediately from Proposition 2.1.

LEMMA 2.1. The space €= (H X H, m)i; can be written as a direct sum of subspaces #; C*
*// - //,m,)y. all of which are invariant subspaces for the Jacobi operator 1.

Moreover, on ¢> (// X H. my)u the Jacobi operator has the form / (y) = —C¥y () + a¥,
where a; is the eigenvalue of the Casimir operator with respect to the irreducible represen-
tation Adgp of H on m; [see formula (2.1)].
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Thus, we get the following

COROLLARY 2.1. The subgroup p(H) is a stable minimal submanifold in G if and only if for
any irreducible complex representation A& ¥ (H X H) of the subgroup H x H and for any irre-
ducibility component mj < m, the following inequality holds:

(—en + a;) dim Hompy (Vi, mixe) >» 0

where c) (aj, respectively) is the value of the Casimir operator of the group H x H (of the
group H) on the space V (on the space mj) of the representation X (of the representation
Adg p).

The eigenvalue c) of the Casimir operator of the irreducible representation A of H can
be evaluated from the following formula {12, 20]:

6. = — <do (&) + §, do (A), (2.2)

where do(A) is the dominant weight of A, and § is the sum of all positive roots of the group
H. The following proposition holds.

R G PO

¥

Proposition 2.2 [12]. The equality
0> +ey>ept v

holds for all irreducible representations A and y. (Here A + y is the Cartan composition
of irreducible representations A and y [15].)

Proposition 2.3. 1If among the irreducibility components mj there is a representation
that is distinct from the fundamental representations wj; of H, then the subgroup p(H) is not
a stable minimal submanifold in G.

Proof. Let the irreducible component gy = 0|ml be not a fundamental representation of
H. Then 9i = i F ci, where oi and o} are nontrivial 1rreduc1b1e representations of H. We
denote by m1 and m1 the spaces of the representations o1 and 01, respectlvely It is easily
seen that m1 ® m1 iz the space of the irreducible representation ¢} %) of of the group H x H,

and the eigenvalue of the Casimir operator of this representation is equal to ¢ (of) + ¢ (o}).
It is obvious that the space Homy (mi X m?, m;) is nonempty since it contains the orthogonal

projection from nh\g mi{ onto m. Hence, using Corollary 2.1 and Proposition 2.2, we obtain
Proposition 2.3 immediately.

Proof of Theorem 2.1.

a) Classificationof stable minimal simple subgroups in SUp.

Proposition 2.4. a) Let p be an irreducible representation of the group SUp4; in SUp
that is distinct from the representations 7, and 7m; = w;. Then the subgroup p(SUp+,) is a
stable minimal submanifold in SU.

b) Let p be an irreducible representation of SO, with > 7 in SUp. Then the subgroup
p(SO,) is not a stable minimal submanifold in SUp.

c) Let p be an irreducible representation of the group Sp, in SUy that is distinct from
m,. Then p(Sp,) is not a stable minimal submanifold in SUp.

d) Let H be a singular Lee group and let p be an irreducible representation of H in SUp,.
Then p(H) is not a stable minimal submanifold in SUp.

Proof. By Theorem 3.8 of [19] the representation Adp on the complexification SUmec
is equivalent to the representation p ® p* — Id [Id is the trivial representation on the sub-
space Diag (gln (C)]. This means that the restriction of the representation Adgyp,-p to the
subspace Mec is equivalent to the representation ¢ (p) = p X p* — Id — Ady. Let p(H) be one
of the representations mentioned above. Then p + p* differs from Adg, and so it does not
appear in the decomposition of o(p). Since p + p* is not a fundamental representation of
H, using Proposition 2.3, we get Proposition 2.4 immediately.

Proposition 2.5. Let p: H > SUy, be a sum of k irreducible representations, among which
there are at least two components that differ from the trivial representation. Then p(H) is
not a stable minimal submanifold in SUy.

Proof. Let p = 3,0;. It follows from Proposition 2.3 that if at least ome subgroup
pi(H) is not a stable minimal submanifold in SUp4,, then p(H) is not a stable minimal sub-
manifold in SUyp4, either, Hence, taking Proposition 2.4 into account, we derive Proposition
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2.5 by direct verification in the case where H = SUp4, or Spp, and P1 B P2 is equal either to

@ n, or to 1, ®at, or to 7t @ nf. The last assertion is easy to obtain with the aid of
Proposition 2.3.

It is obvious that Theorem 2.1 follows from Propositions 2.4 and 2.5, and from direct
verification of the fact that the imbeddings enumerated in Theorem 2.la) are stable minimal
imbeddings. It is easy to establish this fact with the aid of Corollary 2.1, taking into
account that |cq (H) |, for H = SU,, Sp, is the least number among the values |c¢ (H) |, where
{A} is an irreducible representation of H [20].

b) Classification of Stable Minimal Simple Subgroups in SOp. The proof for this series
of spaces is similar to that in case a) but more delicate. First we restrict our consider-
ations to those irreducible representations p of H in SO, that are irreducible in the real
domain. By Theorem 3.8 of [19], the restriction of the representation Adp to mec is equiv-
alent to the representation o(p) = A?(p) — Adyg. Using [5] and 2.3, we find at once that all
representations p of simple groups H that are irreducible in the real domain, except for the
representations enumerated in Theorem 2.1b) and also the (semi)spinor orthogonal representa-

tions of SO, for n = 8q, 8q + 1, satisfy the criterion for nonstable minimal submanifolds
(Proposition 2.3).

We denote by 8 a (semi)spinor representation of H, where H is equal either to S0gq>
where ¢ >3, or to SOgq+1 or SOgg4s, where ¢ >1. Then A =§ @ﬁ is an irreducible repre-
sentation of the group H x H. Let r = rkH — 2 if H = SOg4y, and let r = rkH — 1 if H = SOgq+1>»
SOEq+7. It follows from Table 5 of [3] that Homyg (Vj, Var) = 1, and it follows from Table 3
of [20] that cy = ZCB > Crpe This means that the subgroup B(H) is not a stable minimal sub-
manifold in SO, if H = SOgq for ¢ >3, or SOgq41, SOgqes for ¢=>1. To complete the proof of
Theorem 2.1b), we will need to prove that the subgroups enumerated in Theorem 2.1b) are stable.

We denote by cp(H) the eigenvalue of the Casimir operator for the fundamental represen-
tations of H that has the least absolute value.

LEMMA 2.2. Let A be an irreducible representation of the group H x H. Let 7w be a
fundamental representation of the algebra tH and let |cmi| 3c, (H). If —6y + cx <0, then A
must be one of the representations ns’§nq of H x H, where mg and 0q are fundamental repre- :
sentations of H such that |ca 4 ¢, | <ol b

Proof. We have % = @‘€3¢~ where ¥, and y are irreducible representations of H, and
Q= Qg'%tqw Let ¢ be not a fundamental representation of the algebra #H. Then, by Proposi-
tion -2,Iap! > | 2e (H) | . Hence, we find that [cp + ey i > | 3em (H) | > ¢x,. The lemma is
proved.
Continuation of the Proof of Theorem 2.b). Direct selection with the aid of Lemma 2.2

and formula (2.2) (see Table 3 of [20]) shows that the representations p named above satisfy
the inequality in Corollary 2.1. The proof is completed.

c) Classification of Stable Minimal Simple Subgroups in Spp. It follows from Theorem
3.8 of [19] that the restriction of the representation AdS,p to mec 1is equivalent to
the representation S?(p) — Ady . Since the component p p = 2p appears in the decompo-
sition of the representation S?(p), the remaining part of the proof is the same as that
in case a). Namely, it is easy to verify with the aid of [20] that any symplectic repre-
sentation of a simple group H satisfies the criterion for nonstable minimal submanifolds
(see Proposition 2.3) except for the case where H = Sp; and p =an, ¢ [kln, . In this
case we have o (p) = (kla, @[k (k + 1)l 7, and, by virtue of Corollary 2.1, p(Sp,) is a station-
ary minimal imbedding in the group Spy. The theorem is proved.

3. LOWER ESTIMATE FOR THE INDICES OF SOME HOMOGENEOUS MINIMAL SPACES IN SUpy, /Ty

€ -spaces G/C(t), i.e., spaces that can be realized as orbits of the adjoint represen-
tations of compact Lie groups, lend themselves well to investigations in geometry [1] and in
tepresentation theory [3]. They are equipped with numerous invariant Riemannian structures
[1, 8], including the Einstein—Kihler metric [1] and the Killing metric. The latter gen-
erates the canonical connection of genus two [7]. Any suborbit in G/C(t) is a complex sub-
manifold, and so a global minimal and a stable minimal submanifold [4] in G/C(t) is equipped
with the Killing metric, the picture changes sharply. In this section we consider only the
case where G = SUp4, and C(t) is its maximal tore Ty.




We recall that the sum of dimensions of whose eigensubspaces in I' (-/” (N)). that corre-

spond to negative eigenvalues of the Jacobi operator on N is what we call the index of a
minimal submanifold N ¢ M.

THEOREM 3.1. (i) Any suborbit H/Tyg, where Ty is the maximal tore in H and H ¢ SUyy4,,
is a totally geodesic submanifold in SUyy, /Ty equipped with the Killing metric.

(ii) Let H = SU,4+; and let the imbedding p+H > SUy,y, be an irreducible representation
that differs from each of the fundamental representations wj(H). Then the index of the sub-
manifold p(H/Ty) is not less than dimH = (0 + 1)? - 1.

(iii) Let H = SO,4+,, Where n > 3. Then the index of the submanifold p(H/Tg) is not
less than 2n + 1.

Proof of Theorem 3.1 (i). We-~consiter-the subortit H/Ty-> SUpy, /Ty, Where~Ty-= M n Tp.
Let W be the orthogonal complement of the Cartan subalgebra Ty in the algebra 2H and let V
be the orthogonal complement of the Cartan algebra &Tp in SUpy, . It s easy to convince one-
self that W is orthogonal to ¢H, i.e., W belongs to V. Since the metric on V is the Killing
metric, it follows that H/Ty is a totally geodesic submanifold in SUp4,/Tp.

(ii) We choose the canonical basis inV (x;) ~ €™ consisting of normalized weighting
vectors vy, . We denote the dual basis in V(r,) by { ). We imbed the space V(2w, + 2m,)
in V (27,0 2x,).  For convenience we denote v, & v-z, by Vs Vx, "5 & V (§* (m)}by Prpxp etc.

LEMMA 3.1. The linear operator defined as follows:

7 = > ¥ . *
L (vx,-x)= CiCjlx +xX Voxyox; — ctzcixvx,+x:(x) U-x,—x,’

L (le‘xt): (1/2) Uox, ’\?’S\: I"t2~"l — Uxytx, (X) l}—x,—x,v

*
L (Uxg—y) = Uzprry ® V-, — ( 1 2) Vgx, ) V_gxy

where (2 —6,; —8a —8;) (2 —8i; —8;; —85) # O,and ¢y = 1 for k= i, and cyy = 1/2 otherwise,
transforms the space V(w, + m,) into V(2w, + 2w,).
Proof. We define the convolution operator t: V (2n; % 2n,) =V (7, > n,) as in the proof of

Theorem 4.1. It is easy to check that Ker T =V (2m, + 2xn,) and tL (V (m, 4 m,)) = 0, which yields
our assertion.

By Proposition 4.3 (&) stated below, the component V(2w, + 2n,) appears in the decompo-
sition of the representation Ad p — Adgy,4, ® We denote by w,lL the orthogonal projection onto
mgc Then Lemma 3.1 and the fact that L and mpd transform weighting vectors into weighting
ones and preserve the weight imply that the operator L ==, WL belongs to the space Homp, X
(V (ny -~ m,), mgc). There is a natural metric on the space Homt, (V, W) induced by the metrics
on V and W. Direct verification based on Corollary 1.1 shows that

P

n+1
AL, Ly= 3  dLvg Lvg)y = -(n) D (|Lvxes * +1Lvx o2 +
asABU 4q) j=1 ‘ :
T ILUx,—x; (il va,"xz ) — (n + 1) (| Log,-x, [ + | Lvgys, 1) <O (3.1)

It follows from (3.1) and Corollary 1.1 that ind @@ (SUnu/Ty)) 2 dime T (V (v, — ) ® L) = 5
(h+ 1) -1. ;
(iii) We choose Witt's basis in ¢20t! consisting of the base vectors V+x, and v,, where
Ve, | =1 = @2) | v, |, for the representationw, 0fSO,,4,. We define L: V(m,)— V (§* (%)) '
in the following way:
L(v4x) = Vix Vor

L (vy) = (vovp) + (2/'1)21 Ux V_x .
it i i

It is easy to convince oneself that L (V (n,))C V (2n) C V (82 ().

By Proposition 4.3 (b) stated below, the component 2w, appears in the decomposition of
the representation Ad p — Adso,,,, = We denote by mnt the orthogonal projection onto mgc. Then,
arguing as in case (ii), we find that the operator L — = L belongs to the subspace Homr, X
(V (), mg). Direct computation, in which Corollary 1.1 is used, shows that <I L, L> < 0. As
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in (ii), we have ind (p (SO.,,;,[F,.)) >dimV () =2n + 1. The theorem IS proved.

A. TECHNICAL LEMMAS ON DECOMPOSITION OF THE TENSOR PRODUCT OF REPRESENTATIONS
OF COMPACT LEE GROUPS
The following proposition is well known.

Proposition 4.1 [19, Theorem 3.8]. (i) Let p be a representation of a group G in SUp4,.
Then the representation Ad, in the algebra gl, O ~ umaec Is equivalent to the representation
o & p*, where p* is the contragradient representation corresponding to p.

, (ii) Let p be a representation of G in the group SO,. Then the representation Ad, in
: the algebra so, (O is equivalent to the representation A%(p).

(i11) Let p be a representation of G in the group Sp,. Then the representation Adp iIn
the algebra sp, O is equivalent to the representation S?(p).

It is well known [3, 5] that the Cartan composition ¢ &+v¥ appears in the decomposition
of the product v +¢ of irreducible representations. Moreover,

q>©q> = 5% (9) D A* (o)
and the following proposition holds.

Proposition 4.2 [5]. Let p be an irreducible representation of a group G with dominant
‘ weight do(p). Moreover, let a be a simple root of the group G such that <do(p), a> > O.
‘ Then the irreducible component £(p, a) with dominant weight 2do(p) — a appears in the decom-
' position of the representation A?(p).

Let ® and v be irreducible representations of the semisimple algebra &G with dominant
weights A and M, respectively. Following Dynkin, we shall say that ¢ is a subordinate repre-
sentation to ¢. if for each simple root ai & A (G) we have Ag > M, .

THEOREM 4.1. Let v be a subordinate irreducible representation to an irreducible
representation ¢-

(i) Then the component ¢ R ¢* appears in the decomposition of the tensor representation
Y.

(ii) Suppose that v and ¢ are self-adjoint representations. Then the component A* ()
[5¢ (¢)] appears in the decomposition of the representationA® (¥) [$2(y)] ify and @ are simul-
taneously orthogonal or simultaneously symplectic. Otherwise, the following inclusions hold:

A? () C 82 (¢); S*(v) C A? (¢).
Proof. We denote by do(y) and do (¢) the dominant weights of y and ¢, respectively.

: Then do(q) —do(y) is the dominant weight of some irreducible representation y. We denote

; by E(vw), E (¢). and E(Y) the spaces of the representations ¥, ¢, and ¢, and we denote by
Ex(y), E* (¢), and E*(y) their adjoint spaces, respectively. We define the convolution trans-
formation from

EM)NEE) DE*(¥) QE*(v) B E (¥) ®E* (v)
: as follows
| G(I®y®1*(i‘y*)=y* (y) =@ r*. (4.1)

t is clear that a is an iG-invariant transformation. Since do(y) + do (9) - do(y), we can
imbed E (¢) in the tensor productE (y). E (y) as the dominant irreducible component of the
latter, and in the same way we can imbed E* (y) in E* () X E*(y)). We denote by U(2G) the en-
veloping algebra of the Lee algebra 2G. It is a well-known fact that E (¥) KE* (%) is gen-
erated as a U( ¢G)-module by the vector vgo(v) « vpi(¥*), where vgo(v*) and vp1(¥*) are the
dominant vector and the minor vector in E(y) and E*(y), respectively. Taking into account
that

Vdo (¥) @ Vi (v*) = Ima (B (v) D E* (¥)),

we find that the restriction of a to the subspace E (¢) G E* (g) is a surjective mapping onto
Ew)®E* (v). Hence, we obtain at once the First assertion of Theorem 4.1. To prove asser-
- 1on (ii), It suffices to note that if¢ andy areself-adjoint representations, thenY is
also a self-adjoint representation. Moreover, y is an orthogonal representation if @ and ¥
are either simultaneously symplectic. Otherwise, y is a symplectic representation. There-
fore, the transformation given by (4.1) assumes the following form:
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AXQy®2 @y) =0,y ¥) 2@, (4.2)
where oy is a nonsingular $G-invariant biliner form on E(y), oy is a symmetric form if y is an
orthogonal representation, and It IS a skew-symmetric form if y IS symplectic. Regarding ,
S2(E(y)) andA?(E(y)) as the subspaces of symmetric and skew-symmetric tensors inE(y) * ]
E(y), we can easily deduce (ii) from (i) with the aid of (4.2) and of what is said above.

The theorem is proved. Using Theorem 4.1 and the data in Table 5 of [5], we obtain the fol- T
lowing ;

Proposition 4.3. a) If an irreducible representation y of the algebra supy, differs
from the fundamental representations mwj, then the component 2w; + 2w, appears in the decompo-
sition of the representation

LA L
b) The component 2w, appears in the decomposition of the representation
LSO
where ¢ is an arbitrary irreducible representation of the algébra SO,n+1 -

Finally, we include the following lemma on decomposition of the tensor product of re-
ducible representations.

LEMMA 4.1 [20]. Let®, and ¢ be representations of H. Then the following relations

hold:
ANeEGy) =A () @ AW Ple® vl
St (e v) = S*(¢) @ S* (v) Elo X vl
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A SEMIGROUP OF OPERATORS IN THE BOSON FOCK SPACE

Yu. A. Neretin uDnc 519.46

A boson Fock space with n degrees of freedom is a space of holomorphic functions on n
n-dimensional Hilberts space with the scalar product:

g = SQ f (2) g (2) exp (—(z, z)) dzdz.
We are interested in operators of the form

-l.

Bf(z) = SSG»‘P{% (Zﬁ)([fl f)( )}f(U)EXp (—(u,u))dudg. ©.1)

_t
Ve 0

The main problem considered in this article is the problem of the boundedness of
these operators.

Unitary operators of the form (0.1) appeared in [1], in such a form Berezin has written
down the automorphisms of the canonical commutation relations. In numerous papers of the
years 70-80 (we mention only [2-5]) the fundamental role of the automorphisms of canonical
commutation and anticommutation relations in the representation theory for infinite dimen-
sional groups has been clarified (this role is the same as for the operators of variables
exchange and multiplication by a function in the representation theory of Lie groups). After
it had been discovered that a representation of an infinite dimensional group is, in fact,
the visible part of a representation of an essentially bigger and invisible with the un-
aided eye semigroup (see (61), and, actually, even not a semigroup, but a category, at first
a problem of semigroup with the Weil representation has arisen. Ol"shanskii indicated that
this semigroup is semigroup BO of all operators of the form (0.1), and then a problem has
arisen concerning the algebraic nature of this semigroup, as well as the problem of the
boundedness of the operators. It turns out (Ol'shanskii), that for n < « the boundedness of

the operators (0.1) is equivalent to the pair of conditions: 1) (';,;)<1 Dl Ki<i1, IINI<t

(here, as everywhere in this paper, under the norm of a matrix we understand the Euclidean
norm). In the joint paper by Ol"shanskii, Nazarov, and the author [9] it has been clarified
that the considered semigroup IS isomorphic to some semigroup of linear relations.

In Sec. 1 of this paper we introduce an accurate definition of operators of the form
(0.1), In Sec. 2 we discuss a realization of the semigroup BO as a semigroup of linear rela-
tions, and a semigroup of generalized fraction-linear Krein transformations of an infinite
dimensional matrix ball. 1In Secs. 3 and 4 we formulate and prove theorems on the boundedness
of the operators. In Sec. 5 we consider a somewhat more general class of operators.

For applications of the semigroup BO to the representation theory of the Virasoro alge-
bra, and to the conformal quantum field theory (cf. [7; 101), see the Fermion analog of this
paper (cf., [81).
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