
identified with the completely physical Fokker-Planck equation (cf., e.g., Mathematical
Encyclopedia [in Russian], Vol. 2, p. 958). The asymptotic expansion corresponding to the
Fokker—Planck process of effective diffusion can be obtained as here considering the ideas
of [7].
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JACOBI EQUATIONS ON MINIMAL HOMOGENEOUS SUBMANIFOLDS IN HOMOGENEOUS
RIEMANNIAN SPACES

Le Khong Van UDC 517.974

INTRODUCTION

There are many articles devoted to the problem of stability of minimal surfaces. The
subject attracted interest, in particular, because of the following circumstances. Firstly,
the influence of the topology and the Riemannian curvature tensor of a manifold M upon the
stability of its minimal submanifolds was discovered (Simons and Lawson [14], Le Khong Van
[9], Aminov [2]). Secondly, stable minimal surfaces provide an intermediate link between
minimal surfaces, which are numerous, and global minimal surfaces, which are rare and very
difficult to describe and classify [4, 8]. The study of stability for minimal surfaces can
be reduced, in the end, to the study of the spectrum of the elliptic Jacobi differential
operator I corresponding to the second variation formula for the volume functional. The
sum of dimensions of all eigensubspaces of I that correspond to negative eigenvalues is
called the index of a minimal submanifold. Important results have been obtained in the study
of the index for two-dimensional minimal surfaces in R" [11, 18]. In specific cases where
the minimal surface has a major symmetry group, a technique has been developed for studying
the stability of the surface [13, 15]. In [9, 10] the method of relative scaling was pro-
posed in order to obtain a lower estimate of the second variation of the volume functional
for minimal surfaces.

The contents of this article are the following. In Sec. 1 we write down an explicit
formula for the Jacobi equation on a minimal homogeneous submanifold H/L in a homogeneous
Riemannian space G/K in terms of the induced representation of the group H from the subgroup
L acting on the normal fiber m^ d Te (G/K). The idea that the space Cx (H, m±)L (see Sec. 1)
can be used to evaluate various invariant operators (in particular, the Laplace and Jacobi
operators) goes back to Smith [17]. This article, as well as the recent article [15] by
Onita, is concerned only with the case of a totally geodesic imbedding of H/L in a symmetric
space G/K equipped with a canonical metric that generates a connection, which is easy to
evaluate.

V. M. Lomonosov Moscow State University, Moscow. Translated from Funktsional'nyi Analiz
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In Sec. 1 we also prove Theorem 1.2 on invariant subspaces of finite measure for the
Jacobi operator.

In Sec. 2, applying the results of Sec. 1, we solve the long-standing problem of classi-
fication of stable minimal simple subgroups in classical Lie groups. In Sec. 3 we estimate
from below the indices of some homogeneous minimal surfaces in the space SUjn-i/Tj,, equipped
with the Killing metric. In Sec. A we prove the theorem on "tiny" irreducible components of
the tensor product of irreducible representations of a compact Lie group and some technical
lemmas, which are used in Sees. 2 and 3.

Finally, the author wishes to express his gratitude to A. T. Fomenko for constant atten-
tion and valuable discussions. The author is also grateful to E. B. Vinberg for improving
the proof of Theorem 4.1 and to A. V. Tyrin for critical remarks concerning the second varia-
tion formula.

1. LIFTING THE JACOBI OPERATOR ONTO THE SPACE C^H, mL)L
Let an isotopic variation f^(N) be given on a minimal submanifold N c M. Then it is

known [16] that the second variation of the volume functional can be expressed as

Here W-̂  is the orthogonal projection of the vector field W (x) = (d/dt) |<=o/( (#), associated with f
the variation ft onto the normal bundle -JV (N) d T,
the minimal submanifold N. It is known [16] that

and I is called the Jacobi operator of

/ (W) = -V2 (W) + R (W) - A (W). (1.1)
Here —V2 = A is the Laplace operator on the normal bundle (locally), which can be expressed
as \(W) = X̂ ~ ^~VE E.)W, where {EjJ are (locally) orthogonal vector fields on N forming

a basis, and V is the covariant derivative in the normal bundle -V (N). Moreover, R is the
Ricci transformation in ,/r (N): R (W) = ̂  (R (Et, W)Ei)-L , where R is the Riemannian curvature

i
tensor on M and ( )-L denotes the orthogonal projection onto -AT (N). Finally, A(W) is the
second fundamental form of the submanifold N c M in the direction of W, namely A(W)(X, Y) =
<-VxW, Y>, where V is the covariant derivative on M, and <A(W), V> = <A(W), A(V)> for any V.

In what follows we shall consider only the case where M = G/K is a homogeneous space with
a G-invariant Riemannian metric and N denotes its minimal homogeneous submanifold H/L, where
L = H n K. We denote by m-1- the normal fiber over the point x0 = {eL}/L , so that rn-1 (Z Tx, x
(G/K)d~lG. It is obvious that the normal bundle JV (H/L), on which H acts on the left,
is H-equivalent to the bundle H XAd rnL, which is factoriEed according to the action of Ad(L).
With each section ¥ e F (-V (H/L}} we associate an m-L-valued function ijje C°° (H, m-1-) on H
such that

V(h)=hfo(h/L). (1-2)

It is clear that i|i satisfies the following condition:

^ (hi) = Ad (r1)̂  (h). (1.3)
We denote by C°°(H, m1)^ the subspace in C°°(H, m-1-) defined by (1.3). It follows from what
is said above that the correspondence between the space of normal sections F (</¥" (H / L}} and
C°°(H, m-L)L given by (1.2) is a one-to-one correspondence. Therefore, any operator (in par-
ticular, the Laplace and Jacobi operators) /: T (JV (H/ L))-+ T (^ (H/L)} can be lifted to an
operator I:

C°° (H, m-L)t ->- C°° (H, m*-)L.

Before formulating the basic theorem, we introduce some new notation. We consider the
following orthogonal decompositions:

IG = IK + m, Iff = IL +p, IL = IK fl Iff, m. = pm + m±, d-4)
where pm is the orthogonal pr6jection of the tangent space p = TXo(H/L) onto the tangent
space m = TXo(G/K). It is obvious that the projection irm is a 1-1 function from p to pm.
Thus, the metric induced from pm c m can be defined on p.
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Proof of Theorem 1.2. Let $ (h) = T (y>. <g> T). Then £,-t|> (A) = (d/dt) (X ((exp
1,-x). It follows that

/T fo $ T) (h) =
where_IA is a linear endomorphism of the space Horn_
that IA belongs to the space End Hom^, (V;.,

, /ra®c). Since ̂  €= C°° (//, /re®c)i,, we find
The theorem is proved

2. CLASSIFICATION OF STABLE MINIMAL SIMPLE SUBGROUPS IN CLASSICAL LEE GROUPS
Every compact Lee group G is a globally symmetric space with respect to the Riemannian

structure generated by the Killing form on the algebra £,G. If H is a compact subgroup of G,
then H is a totally geodesic submanifold, and so it is a locally minimal submanifold in G.

THEOREM 2.1. Let G be a classical Lee group, and let p: H + G be an imbedding of a
simple compact group H. The subgroup p(H) is a stable minimal submanifold in G if and only if

a) G = SUm+1, H = SUn+!, and p is the canonical imbedding, or H = Spn and p is the
canonical imbedding;

b) G = S0m, H = SUn, or Spn, and p is the composition of the canonical imbeddings pj and
P2, where px: SUn -+ S02n (or pt: Spn -+SU2n -̂ 504n) and p8: 5Oni-*5Om(or p,: SOtn -+SOm for
H = SPn),

or H = S0n and p is the canonical imbedding (for n = 7, 8, 16, we have additional semi-
spinor imbeddings),

or H = G2, Y^t E8 and p is a representation of the last dimension,
or H = E0, E7 , YH and p is the composition of the adjoint representation Adjj and the

canonical imbedding SO (IH) -*~SOm;

c) G = Spm, H = SPn, and p is the canonical imbedding.
Before proving Theorem 2. la), we introduce new notation and we rewrite Corollary 1.1 in

a form that will be suitable for our purposes. First, we remark that the compact Lie group
G acts on itself by transitive left and right translations, which preserve the Killing metric
on G. It follows that G, regarded as a homogeneous Riemannian space, can be represented in
the form of a factor space GX G / G ~ G x G/Diag (G X G). The canonical involution T on G,
which acts in the following way: x(g1, g2) = (g2, gx), defines the structure of a global sym-
metric space on M = G x G/Diag (G x G). Therefore, in this case Corollary 1.1 reads as fol-
lows (see also Lemma 3.2 of [15]):

Proposition 2.1. The Jacobi operator I on the bundle C°°(H x H, m-L)diag(HxH)
form

where H x H acts on the algebra IG + 2,G by means.of the adjoint representation Ad(p • p),
where p is the imbedding H -+ G, and CHJfjf and Cux§ are the differential and the algebraic
Casimir operators on H x H, respectively.

We denote by m the orthogonal complement of the subalgebra p(fcH) in the algebra fcG. m
can be decomposed into irreducible components of the representation Adgp, namely "* = ©i"»j-
It is well known [15, 23] that the Casimir operator of the representation Ad p of H on mj[ can
be diagonalized, i.e., the equality

/̂ a)8 I „ TJ f 1 1 ̂LH Ijn* ~ on'Id \L*L)
holds. We recall that the imbedding of the tangent space Llf -+~ I (G X G) is antidiagonal,
i.e., LM -~ {(x, —$. cc£ IG} . It is obvious that the normal fiber over the point e €= p (H X HI
H) coincides with the subspace m — {(x, —at). •»" 5= m} CI IM.

We set fti^'^m f\ (m- (& mi)- The following lemma follows immediately from Proposition 2.1.

LEMMA 2.1. The space Cx (H X //, '»);/ can be written as a direct sum of subspaces ̂ t C00

'// ' //, //jj)//, all of which are invariant subspaces for the Jacobi operator I.

Moreover, on 6"̂  (// X //. m^n the Jacobi operator has the form / (t|>) = —€'HXH(^) 4- «î ,
where a^ is the eigenvalue of the Casimir operator with respect to the irreducible represen-
tation AdQ p of H on m^ [see formula (2.1)].
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We recall that the sum of dimensions of whose eigensubspaces in F («f" (Ar)), that corre-
spond to negative eigenvalues of the Jacobi operator on N is what we call the index of a
minimal submanifold N c M.

THEOREM 3.1. (i) Any suborbit H/TH, where TH is the maximal tore in H and H c SU,̂ ,
is a totally geodesic submanifold in 31̂ +!/Tm equipped with the Killing metric.

(ii) Let H = SUn+! and let the imbedding p-H •+ 51̂ +! be an irreducible representation
that differs from each of the fundamental representations ir̂ (H). Then the index of the sub-
manifold P(H/TH) is not less than dimH = (n + I)2 - 1.

(iii) Let H = S02n+1, where n ̂  3. Then the index of the submanifold p(H/Tjj) is not
less than 2n + 1.

^»-«~. "1 1 ( i \ !.!„ ~~ «,-,-,' An~ 4-U*. ^.,.U«_U4+- U /T_ _i. OTT . / T ,.UA»» T_ — U n pProof of Theorem 3.1 (i). We consider the suborbit H/Ty -> SU,̂ /̂ , where TH = H D T
Let W be the orthogonal complement of the Cartan subalgebra fcTjj in the algebra IE and let V
be the orthogonal complement of the Cartan algebra £Tm in SÛ ^ . It is easy to convince one-
self that W is orthogonal to JlH, i.e., W belongs to V. Since the metric on V is the Killing
metric, it follows that H/Ty is a totally geodesic submanifold in SUm+1/Tm.

(ii) We choose the canonical basis in V (jtj) ~ Cn+1 consisting of normalized weighting
We imbed the space V(2vl + 2irn)vectors vXl , We denote the dual basis in V(trn) by {f-x

For convenience we denote vX( (x) v-Xj by *>*,-*/» Vxi ' Vxt ̂  ̂ ̂ (ni)}«t by y-v-x'y » etc«in V (2^ x) 2nn).

LEMMA 3.1. The linear operator defined as follows:

I (vx.-x.) = Cifjj>Xi+Xl g v*Xl.Xl — citcJtvXt+Xt (x) v*_Xt_x^

L (vXl.Xt) = (1/2) vZXl $ r!2.Vl — i'xt+*t (x) v_XrXt,
£ (l'xr-*i) = ̂ f+xi ® ^-xi-vi — (! 2) V2Xt (X) V*2Xt,

where (2 — du — 6a — 6/2) (2 — &u — 6;1 — 6/2) =jfc 0, and cĵ  = 1 for k # i, and c^ = 1/2 otherwise,
transforms the space V(T\I + irn) into V(2^l + 2trn).

Proof. We define the convolution operator t: V (2«i (8) 2nn) ->- V (jtj ;X) n,,) as in the proof of
Theorem 4.1. It is easy to check that Ker T = V (2:̂  •+- 2jtn) and T! (F (ji! -j- nn)) = 0, which yields
our assertion.

By Proposition 4.3 (a) stated below, the component V(2ir1 + 2trn) appears in the decompo-
sition of the representation Ad p — Adgjjn+T • We denote by ir̂ I the orthogonal projection onto
mgC Then Lemma 3.1 and the fact that L and ̂ ^ transform weighting vectors into weighting
ones and preserve the weight imply that the operator L = nmJ_.L belongs to the space Honvĵ  x
(V (xii 4- nn), mgc). There is a natural metric on the space HomTn (V, W) induced by the metrics
on V and W. Direct verification based on Corollary 1.1 shows that

rH-l
</«>«, Luay = - (») S (| LuXl_x |» -f I Lvx Xl I2 +

It follows from (3.1) and Corollary 1.1 that ind (p (SUn+ilTn)) > dimc T (V (n, -1- nn) (g) L) =
(n + I)2 - 1.

(iii) We choose Witt's basis in C2n+1 consisting of the base vectors y±*(, and v0, where
I ̂ ±x; 1 = 1 = (1/2) | u0 |, for the representation IT,, of S02n+1. We define L: V M -̂ F(5a(«i))
in the following way:

(2/n)L(v0) = (v0-

It is easy to convince oneself that L (V (nj) CZ V (2nj) d V (S* (jxj).
By Proposition 4.3 (b) stated below, the component 2^^ appears in the decomposition of

the representation Ad p — Adso2,l+1 • We denote by ir̂ I the orthogonal projection onto m®c- Then,
arguing as in case (ii), we find that the operator L — nm±L belongs to the subspace Hor*j;n x
(V (jii), mc). Direct computation, in which Corollary 1.1 is used, shows that <I^L, L> < 0. As
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in (ii), we have ind (p (SOi^'fT,,)) > dim V (.-ij) = 2n + 1. The theorem is proved.

A. TECHNICAL LEMMAS ON DECOMPOSITION OF THE TENSOR PRODUCT OF REPRESENTATIONS

OF COMPACT LEE GROUPS
The following proposition is well known.

Proposition 4.1 [19t Theorem 3.8]. (i) Let p be a representation of a group G in SUn+1.
Then the representation Adp in the algebra gln (C) ~ U(n+i)ec is equivalent to the representation
[)̂ p*, where p* is the contragradient representation corresponding to p.

(ii) Let p be a representation of G in the group S0n. Then the representation Adp in
the algebra son (C) is equivalent to the representation A2(p).

(iii) Let p be a representation of G in the group Spn. Then the representation Adp in
the algebra spn (C) is equivalent to the representation S2(p).

It is well known [3, 5] that the Cartan composition <P (£ I1 appears in the decomposition
of the product y ~t <P of irreducible representations. Moreover,

<P © <? = s* (<p) a A2 (<p),
and the following proposition holds.

Proposition 4.2 [5]. Let p be an irreducible representation of a group G with dominant
weight do(p). Moreover, let a be a simple root of the group G such that <do(p), a> > 0.
Then the irreducible component 5(p, a) with dominant weight 2do(p) — a appears in the decom-
position of the representation A2(p).

Let <P and ty be irreducible representations of the semisimple algebra HG with dominant
weights A and M, respectively. Following Dynkin, we shall say that ̂  is a subordinate repre-
sentation to <f < if for each simple root a, G: A (G) we have A^ ~^* Ma .

THEOREM 4.1. Let i|> be a subordinate irreducible representation to an irreducible
representation ?•

(i) Then the component <f &(f* appears in the decomposition of the tensor representation

(ii) Suppose that fy and <f are self-adjoint representations. Then the component A2 (<p)
[ X- (q)] appears in the decomposition of the representation A2 (rf) [S2(i|>)] if i|> and V are simul-
taneously orthogonal or simultaneously symplectic. Otherwise, the following inclusions hold:

A2 (H-) C S2 (<f); S* U-) d A2 ((p).
Proof. We denote by do(ip) and do (<f) the dominant weights of 4> and <P , respectively.

Then do(<f) -do(^) is the dominant weight of some irreducible representation Y- We denote
by E(̂ ), E ((p). and E(Y) the spaces of the representations i|>» <?» and q, and we denote by
E*(<f>), E* (ff), and EA(\) their adjoint spaces, respectively. We define the convolution trans-
formation from

as follows
a(x($y®r* Qy*) = y* (y) * ® **• (A.I)

It is clear that a is an iG- invariant transformation. Since do(\|>) + do (<P) - do(Y)» we can
imbed E (<f) in the tensor product E (t) v E (y) as the dominant irreducible component of the
latter, and in the same way we can imbed E* (i|>) in E* M g E*(y)). We denote by U(fcG) the en-
veloping algebra of the Lee algebra 2.G. It is a well-known fact that E (Mp) (g E* ($) is gen-
erated as a U( ?.G)-module by the vector v(jo((j;) « vm]̂ (i|j'{), where v(jo(i|)*) and vmi(<|»*) are the
dominant vector and the minor vector in E('|>) and E*(I|J), respectively. Taking into account
that

GE Im a (E (*) ® £* (*)),

we find that the restriction of a to the subspace E (<y) (5 £* (?) is a surjective mapping onto
£K)(§)£* (\|?). Hence, we obtain at once the first assertion of Theorem 4.1. To prove asser-
' ion (ii), it suffices to note that if <P and ty are self -adjoint representations, then Y is
also a self-adjoint representation. Moreover, y is an orthogonal representation if 9 and t
are either simultaneously symplectic. Otherwise, \ is a symplectic representation. There-
fore, the transformation given by (A.I) assumes the following form:
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a (x . 2)
where o^ is a nonsingular fcG-invariant biliner form on E(Y)> a-y is a symmetric form if ̂  is an
orthogonal representation, and it is a skew- symmetric form if "y is symplectic. Regarding •
S2(E(i|0) and A2(E(i|>)) as the subspaces of symmetric and skew- symmetric tensors in E(I|J) * |
E(i|>), we can easily deduce (ii) from (i) with the aid of (4.2) and of what is said above. •
The theorem is proved. Using Theorem A.I and the data in Table 5 of [5], we obtain the fol- f
lowing '<

Proposition 4.3. a) If an irreducible representation i|) of the algebra sun+x differs
from the fundamental representations TT^, then the component 2̂  + 2irn appears in the decompo-
sition of the representation

b)

m

The component 2̂  appears in the decomposition of the representation

where ty is an arbitrary irreducible representation of the algebra so2n+i.
Finally, we include the following lemma on decomposition of the tensor product of re-

ducible representations.

LEMMA 4.1 [20] . Let <P» and ty be representations of H. Then the following relations
hold:

A2 = A2
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A SEMIGROUP OF OPERATORS IN THE BOSON FOCK SPACE

Yu. A. Neretin UDC 519.46

A boson Fock space with n degrees of freedom is a space of holomorphic functions on n
n-dimensional Hilberts space with the scalar product:

exP dzdz.

We are interested in operators of the form

f (a) exp (- (u, u))du d&. (0.1)

this article is the problem of the boundedness of

Bf(z) =

The main problem considered in
these operators.

Unitary operators of the form (0.1) appeared in [1], in such a form Berezin has written
down the automorphisms of the canonical commutation relations. In numerous papers of the
years 70-80 (we mention only [2-5]) the fundamental role of the automorphisms of canonical
commutation and anticommutation relations in the representation theory for infinite dimen-
sional groups has been clarified (this role is the same as for the operators of variables
exchange and multiplication by a function in the representation theory of Lie groups). After
it had been discovered that a representation of an infinite dimensional group is, in fact,
the visible part of a representation of an essentially bigger and invisible with the un-
aided eye semigroup (see [6]), and, actually, even not a semigroup, but a category, at first
a problem of semigroup with the Weil representation has arisen. Ol'shanskii indicated that
this semigroup is semigroup BO of all operators of the form (0.1), and then a problem has
arisen concerning the algebraic nature of this semigroup, as well as the problem of the
boundedness of the operators. It turns out (Ol'shanskii), that for n < °° the boundedness of
the operators (0.1) is equivalent to the pair of conditions: 1) (v/ ;y] <̂  1; 2) || Jf || < 1, ||̂ V||-<1

(here, as everywhere in this paper, under the norm of a matrix we understand the Euclidean
norm). In the joint paper by Ol'shanskii, Nazarov, and the author [9] it has been clarified
that the considered semigroup is isomorphic to some semigroup of linear relations.

In Sec. 1 of this paper we introduce an accurate definition of operators of the form
(0.1), in Sec. 2 we discuss a realization of the semigroup BO as a semigroup of linear rela-
tions, and a semigroup of generalized fraction-linear Krein transformations of an infinite
dimensional matrix ball. In Sees. 3 and 4 we formulate and prove theorems on the boundedness
of the operators. In Sec. 5 we consider a somewhat more general class of operators.

For applications of the semigroup BO to the representation theory of the Virasoro alge-
bra, and to the conformal quantum field theory (cf. [7; 10]), see the Fermion analog of this
paper (cf., [8]).

The author is grateful to G. I. Ol'shanskii and M. L. Nazarov for cooperation, and also
to E. B. Tsekanovskii for useful remarks.

Moscow Institute of Electronic Machinery. Translated from Funktsional'nyi Analiz i Ego
Prilozheniya, Vol. 24, No. 2, pp. 63-73, March-April, 1990. Original article submitted De-
cember 15, 1989.

0016-2663/90/2402-0135$12.50 © 1990 Plenum Publishing Corporation 135


