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Introduction

It is well known that in each homology class of a Riemannian manifold there exists
a cycle of the least volume (or simply speaking, a globally minimal submanifold).
These globally minimal cycles yield many information of geometry and topology of
their ambient manifold, however, to detect them the existence (and almost regular-
ity) theorems can not help us so much. Intuitively, one knows that globally minimal
submanifolds would occupy a position of “maximal curvature” in their ambient
manifold. In Fomenko’s and author’s announcement [LF] we gave a mathematical
formulation of this conjecture. The aim of this note is to complete the proof of our
announcement [LF]. In particular, we obtain an estimate in terms of upper
curvature bounds for the volume growth of globally minimal submanifolds in
Riemannian manifolds, new isoperimetric inequalities for these submanifolds, an
explicit formula of the least volumes of closed submanifolds in symmetric spaces.
As a result, we prove that every Helgason’s sphere in a compact irreducible simply
connected symmetric space M is a globally minimal submanifold. Note that some
Helgason’s spheres realize a torsion element in the corresponding homology group
of M, therefore, one cannot use the calibration method for proving their global
minimality [HL].

The main idea is to compare the volume growth rate of a family of exhaustion
subsets 4, in a globally minimal submanifold X = M with the volume growth rate
of certain cones with base 04, (see [Fo 1] and the proof of Theorem 2.3 below). On
the other hand, our results and technique are also related to the field of “compari-
son theorems in Riemannian geometry”. In fact, the essential part of our technique
relies on the Rauch-Bishop comparison-monotonicity estimate for Jacobi fields.
We refer to survey articles [K, S] for more information in this field. Sakai’s survey
contains a very extensive bibliography, and Karcher’s survey gives a complete
exposition on the subject with the help of distance functions and the Riccati
equation instead of Jacobi fields. We also refer to Remark 2.4 below on other
related results.
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1 Geodesic defect of Riemannian manifolds and the volume of globally minimal
submanifolds

(a) Let B,(x) be the ball of radius r centered at x in a tangent space T, M. Recall
that the injectivity radius R(x) of a Riemannian manifold M at a point x is defined
as follows:

R(x) = sup {r|Exp: B,(x) > M is a diffeomorphism} .

The injectivity radius R(M) of M is defined as: R(M) = inf,p» R(x). Now we fix
a point xoe M. We define k-dimensional deformation coefficient ye(X > Xo) as
follows (cf. [Fo 2]). Suppose that IT%~! is a (k — 1)-plane through x in the tangent
space T.M. Denote D¥~! the disk of radius ¢ in II57', and by S, the disk
Exp(D¥~1'). We consider the cone CS, formed by geodesics joining the vertex
X0 and the base S,. We put

) 1, CS,
y(x > xo, [1571) = lim YOkt ,
¢—0 VOli—1 S,

(x> x0)= max yplx, 7).
nk-1cT M
(b) Let f(x) be the function which measures the distance between a point xe M
and the fixed point x,. We set

r -1

q(xo, 1) = exp(f( max y.(x > xo)> dt) . (1.1)
0 \ xe{f=1}

We put

Qk('xo, r) = j‘kq(x07 ") B
QM) = inl Q(xo, R(x0)) ,

xoeM
where /4, is volume of the unit ball in R,
The defined value is called the k* geodesic defect of a Riemannian manifold M.
The following theorem was obtained by Fomenko in 1972 [Fo 2].

Theorem 1.1. Let X ¥ = M" be a globally minimal submanifold. Then the following
inequality holds
vol,(X*) = (M) 2 0.

Remark 1.2. Theorem 1.1 has a clear geometric interpretation. It is a consequence of
the fact that logarithmic volume growth rate (with respect to the “exterior” distance
function t) of a globally minimal submanifold X in M is greater than
the integrand in right hand side of (1.1). This derivative d/dt(In vol X,) equals the
“isoperimetric” relation voldX,/vol X, (see also the proof of Theorem 2.3). The
injectivity radius of M is involved because X is a globally minimal submanifold in M.

2 Lower bound for geodesic defects of Riemannian manifolds. New isoperimetric
inequalities

Suppose that a>(aeR or ae./ —1 ® R) is an upper curvature bound of a Riemann-
ian manifold M.
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Theorem 2.1 [LF]. Lower bound of geodesic defects.
(a) If a* 20 and R(M)a £ =, then we have:

R(M)
QM) 2 ka' ™ | (sinar)*~'dt.
0

(b) If a®> > 0 and R(M)a > =, then we have:
Qu(M) > vol(S*(r = 1/a)) .

(¢) If a =0, then we have Q,(M) = 1, R(M)".

(d) If a* £0, then we have:

R(M)
QM) = kiyla|'™* | (sinh|a|t)e"dt .

0

Theorem 2.2 [LF]. Upper bound of the deformation coefficient. Let r be the
distance between x and x,.

(a) If a*> =2 0 and r < n/a, then we have:

[(sinat)*~*dt
x(x > xo) = g

(sinar)* !

(b) If a =0, then we have:

(x> xo) <

Foal B

(c) If a* £0, then we have

(sinh|a|)*~'dt

O ey

X > Xg) S ——
1lx > xo) = (sinh |a|r)* !
Theorem 2.3 [LF]. Isoperimetric inequality. Assume that X * is a globally minimal
submanifolds through a point x e M. Let B.(r) be the geodesic ball of radius r centered
at x. Denote A~ the boundary of the intersection X* N B.(r) = X k.

(@) If a®* > 0 and r < min(R(M), n/a), then we have:

vol(4¥~1) (sinar)*~1
vol(X ©)

v

[(sinat)*~'dt
0

Consequently, the following inequality holds
vol(AX¥~1) = kixa' “*sin*~(ar) .
(b) If a=0 and r £ R(M), then we have:
vol(A¥~1) = ki, r*~1 = the volume of the standard k-dimensional

sphere S* of radius r.
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Hence we obtain the following inequalities:

vol(Af~1) = (kr)~ ' vol(X}),
k 1 k
vol(X ¥) < (K)T=F(Jy)T=k (vol,_ A, )1 .
(c) If a*> <0 and r £ R(M), then we have:

vol(A’,“l)> (sinh|a|r)*~?

le =r N
volXe) T (sinh jaln 1t

0

Hence we get
vol(A¥~1) = kA, |a|* “*sinh*~1(|a|t) .

Remark 2.4. (a) The estimates in Theorems 2.1 and 2.2 are sharp. First, we note
that the equalities in these estimates hold if M and N are spaces of constant
curvature. As Theorem 3.6 and Proposition 3.12 show, the equalities hold even in
some case when M is not of constant curvature, (but N must be of constant
curvature). Roughly speaking, these theorems tell us that globally minimal sub-
manifolds tend to a position of “maximal curvature” in their ambient manifold.

(b) As a particular case of Theorem 2.1 we obtain the Bishop lower estimate for
the volume of a Riemannian manifold in term of its upper curvature bounds [BC].
In fact, the Bishop argument almost coincides with ours in the case N = M.
The slight difference is that we get the estimate for the volume growth rate in
term of the deformation coefficient, while Bishop obtains it in term of the Jacobian
of the exponential map. This is only an analytic modification, but it is necessary in
our case since when dim N < dim M we need to make a surgery for N (cone-
construction) in our proof and therefore, we have to use boundary value Jacobi
estimates instead of initial value Jacobi estimates (see the proofs of Theorem 2.2
and Theorem 2.3). .

(c) We also like to mention the lower estimate for the volume of a closed
submanifold N = M obtained by Heintze and Karcher [ HK ]. Their estimates are
expressed in term of lower curvature bounds, vol M, and the length of the mean
curvature of N. When N is a point, their theorems imply the Bishop upper estimate
for the volume of M in term of lower curvature bounds. In this sense, their
estimates and ours are symmetric. Note that their estimate is obtained with the
help of the initial value Jacobi estimates for the Jacobian of the exponential map on
the normal bundle of a submanifold N = M.

(d) There are many kind of isoperimetric inequality for minimal submanifolds
in space forms (see [Ch], [ChGu] and references in those papers). The argument of
Choe and Gulliver is rather close to ours by the cone-construction comparison. (By
the way, they observe that the value of such a comparison was first noticed by
Blanschke). In particular, they have proved that if M is R" or H" then the volume of
a compact minimal submanifold X* =« M with boundary 0X* is less than the
volume of a cone with base 0X * and vertex at a point xo€ X *. Combining this
result and ours yields that our theorems are still valid for a (locally) minimal
submanifolds in R” or H". It would be interesting to extend this result in the case of
non-positively curved manifold M.

Let us show an immediate consequence of Theorem 2.1.
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Corollary 2.5. If M is a compact simply-connected symmetric space with an upper
curvature bound a, then the volume of any k-dimensional non-trivial cycle in M is
greater than or equal to the volume of k-dimensional sphere of curvature a.

In the course of the proof of Theorems 2.1 and 2.2 we obtain an estimate for the
volume growth of a globally minimal submanifold X < M with respect to the
distance function on M (see (2.5)). Comparing this “exterior” distance function with
the “interior” distance function on X yields the following consequence on the
volume growth of a globally minimal submanifold X < M.

Corollary 2.6. Let X * be a globally minimal submanifold in a complete non-compact
Riemannian manifold M of non-positive curvature. Then the function
V(r) = vol,Bx(r) grows at least as a polynomial of r of degree k, where By(r) is
a geodesic ball of radius r in X *. If the curvature of M has an upper bound strictly
less than zero then the function V(r) grows at least as the exponent of r.

Remark 2.7. (a) It is well known that there is a close relationship between the
curvature of a Riemannian manifold M and the growth of its volume [BC]. As
a consequence, we obtain the estimate for the growth of its fundamental group (see
[M]), and other topological and geometrical invariants of M such as the Betti
numbers, the eigenvalues of the Laplace operator and the Gromov invariants
[Br 1, Br2, Gr1].

(b) We note that our volume growth estimates for globally minimal sub-
manifolds are also valid for locally minimal submanifolds provided that the radius
variable r in these estimates is sufficiently small. For example, taking into account
Corollary 2.6 (more precisely, the formula (2.5) below) and the Bishops volume
estimate, we obtain that if X is a minimal submanifold in a Riemannian manifold
M of non positive curvature then the Ricci curvature of X at every point xe X
cannot be positive.

We also obtain from Theorem 2.1 the following corollary which is often used in
the Gromov theory of moduli space of holomorphic curves in a compact symplec-
tic (almost Kéahlerian) manifold.

Corollary 2.8 [Gr 2]. There exists a positive number h > 0 such that the area of
every non-constant holomorphic curve in a compact almost Kdhlerian manifold M is
greater than or equal to h.

Proof of Theorem 2.2. Let us write down an explicit formula for the coefficient
yi(x > xo, T~ 1). Suppose A(t) is a geodesic curve, parametrized by its length,
joining the points xo = A(0) and x = A(r). First, we note that it suffices to consider
only the case ITX~! L A(r), otherwise we should take into account the angle between

A(r) and IT%! (Obv1ously, if the maximal value of the deformation coefficient is
reached on the subspace IT“~! then the latter must be perpendicular to Ar).
Actually, in our proof (see the proof of Theorem 2.3) we need to consider only those
subspaces IT%~! which are perpendlcular to the corresponding A(r,).) We can write

A(t) = Exp,,(tv), where v = /1(0) e T,, M. By our assumption, x is not conjugate with
Xo, therefore, Exp,, is a local diffeomorphism at the point rve T, M. In particular,
we can choose (k — 1) vectors {w,,. .., w,—} such that the differential dExp,, at
rv sends them to an orthonormal basis {Y,(r),. .., Y,—(r)} of I% ' = T, M:

(Yir), Y(r)> = 0y Yur)e I (*)
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We extend Y;(r) as a Jacobi vector field along A(¢) such that Y;(0) = 0. It is easy to
see that

ilYl(t) A oo AN Yo (b)dt

k—1 _0
alx > X0, 00 = = o R o @D

Put F(t) =Y, ()] ... |Ye—1(). Clearly, |Y;(t) A ... A Y,—;(t)] £ F(t), and In
view of (%), the equality holds at t = r. Therefore, the formula (2.1) yields

f F(t)dt

(x> x0,ITF 1) £ 2 Fo) (2.2)

We need the following lemmas.

Lemma 2.9. Suppose F(t) be as in (2.2). If for all t and Y; the section curvature
S(A(t), Y;(t)) < a*, where a > 0, then the functlon F(t)/G(t) is monotone increasing on
the interval [0, r]. Here G(t) = (sinat)*~!/(sin ar)* 1.

Lemma 2.10. Suppose the function F(t) and G(t) be as in Lemma 2.9. Then the
following inequality holds

]'F(t) dt } G(t)dt
0

IIA
o

F(r) G(r)

Proof of Lemma 2.9. By our assumption, Y;(t), j = 1, 1,k — 1,are orthogonal Jacobi
vector fields along A(t). The Rauch- Bishop comparison theorem [BC] states that
the function f;(¢) = | Y;(t)/sin at is monoton increasing on the interval [0,r]. Hence,
the function F(1)/G(t) = [] f; is such a function.

Proof of Lemma 2.10. Since the function F(t)/G(t) increases on the interval [0,r],
we get F(x;)G(r) £ G(x;)F(r) for every 0 < x; < r. Hence we obtain

i F(kr/n)G Z G(kr/n)F(r) .

Letting n — oo we infer easily Lemma 2.10 from the above inequality.
Let us continue the proof of Theorem 2.2.
Taking into account (2.2) and Lemmas 2.9, 2.10 we get

j F(t)dt } (sinat)*~tdt
0

STy g2 <2
2ulx )= F(r) = (sinar)!

This completes the proof of the first part in Theorem 2.2. In the same way we prove
the remaining parts (b) and (c).

Proof of Theorem 2.1. Put

Pi(r) = kdya' ¥ [ (sinat)*~1dt .
0
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Clearly, ®§(r) denotes the volume of the geodesic ball of radius r in the k-
dimensional sphere of curvature a [BC]. This function can be rewritten in another
way

(sinat)~'dt

Di(r) = A exp I (2.3)

(sinat)*~'dr

O ey

To be correct (and in the same time to prove (2.3)) we note that the right hand side
of (2.3) can be defined with the help of the following tautology

fr)y= {jg:%‘exp f (Inf(@®) — (Ing@)y dt}'g(r)

which can be roughly read as follows. A positive function which vanishes at
zero is defined by ist logarithmic derivative and its behavior near zero. (By the way,
the behavior of ®§ near zero does not depend on a. This fact can be obtained by
taking ¢ — J limit, or simply by noticing that the volume of any geodesic ball of
radius r tends to the volume of the Euclidean ball (of the same dimension) when
r — 0. In the same way we define the function Q,(x, r) by putting its “density” at
zero equal to the “density” of ®§ at the same point. The volume of any k-
dimensional geodesic ball of radius r centered at x in M is an upper bound for
Qu(x, r).)
Let us recall the definition

r -1
Qi(xg, 1) = A exp j( max y(x > x0)> de .

0 xel f=t}

Theorem 2.2(a) yields (taking into account the above remark)

(sinat)*~'dt

Qu(xg, r) = A exp j
Oj sinat)*~'dt
0

Combining the above inequality with (2.3) we obtain immediately Theorem 2.1(a).

The remaining parts (c), (d) are proved in the same way. The part (b) follows
from the fact that if R(M) > n/a then we have Q. (M) > Qi(xo, 7/a) = vol(S*, 1/a).
This completes the proof of Theorem 2.1.

Proof of Theorem 2.3. Let r be as in Theorem 2.3. We denote CA¥™! the geodesic
cone with the base A*~! and with its vertex at the point x. Since X ¥ is a globally
minimal submanifold, and the cone CA*~! is homological to Xf, we have
vol(X ¥) < vol(CA¥~'). Hence we conclude

vol(4k—1) - vol (4k~1)
vol(X %) = vol(CA¥™1)

-1 : k-1
> < max 1y > x)> > Smaf oy
yedr (sinat)*~dt

O Gy
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(The second inequality in (2.4) is inferred from the following formula

vol(CAF Yy = [ xly>x, M5 Y)dy,

Ak-1
r

where I157! denotes the tangent space to A%~ ! at y. The third inequality in (2.4) is
a consequence of Theorem 2.2(a).)

We observe that the “density” of the function vol(X f) at r = 0 is greater than or
equal to that of @§(r) at r = 0, and the equality holds if x, is a regular point of
X*[Fo 2]. Now, integrating the inequality (2.4) (see also Remark 1.2) and taking
into account (2.3) we obtain the following estimate for the volume growth of X*

r : k=1 d
Vol(X*) 2 Jy exp [ S 7L _ payy (2.5)

[ (sinar)*~'de
0

We infer from (2.4) and (2.5) the following inequality

(sinar)*~1 (sin ar)k 1

vol(CAf 1) 2 vol(X¥) - 2 Pi(r) - (2.6)
[ (sinar)*~"dt [ (sinaty*~1dt
0 0

Combining (2.6) and Theorem 2.1.a yields
vol A= > kA, a' ¥sinar) ! .

This completes the proof of Theorem 2.3(a). The remaining part of Theorem 2.3 is
proved in the same way.

Proof of Corollary 2.5. 1tis well known that a compact simply-connected symmet-
ric space satisfies the relation: R(M)a = n. So we get Corollary 2.4 from
Theorem 2.1.

Proof of Corollary 2.8. It 1s well-known that these holomorphic curves are
globally minimal cycles in M since they are w-cycles, where w is the symplectic
formin M [HL, Gr 2]. Now, our statement follows immediately from Theorem 2.1.
This statement can be also obtained from the Heintze-Karcher lower estimate for
the volume of minimal submanifolds [ HK].

3 Explicit formula for geodesic defects of symmetric spaces. Global minimality of
Helgason’s spheres

Suppose M is a compact symmetric space. Let us compute the deformation
coefficient associated with the fixed point e e M. Without loss of generality we
compute this coefficient at a point Exp tx € M, where x is a vector in a Cartan space
H;y of the tangent space IM to M at e. We shall redenote y,(Exprx):=
wl(Exprx > e).

Theorem 3.1. Let {a;} be the roots systems of the symmetric space M with respect to
H,y . Suppose x is a vector of unit length in H,,. Without loss of generality we
assume that o;(x) Z ... Z a,(x) =0,4+1(x)=...=0.
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(a) If K < p, then the following equality holds

{ sin (o (x)t). . .. . sin (o (x)t) dt

sino, (). .. .. sin oy, (x)r
(b) If k = p, then the following equality holds

[ sin(a;(x)8). . ... sin (o, - ((x)¢) - t* P dt
X (Exprx) = ° - =
sin{oty (x)r). .. .. sin(o, — 1 (x)r)-r*-*
Lemma 3.2. Let {v,,...,v,}€M be an orthonormal frame which consists of the
eigenvectors associated with the eigenvalues {a?(x),...,a2(x),0,...,0} of the

operator ad?. Denote Vi(t) the parallel vector field along the geodesic Exptx such
that Vi(0) = v;, and denote W(t) the Jacobi vector field along Exptx such that
Wi(0) = v;. Then we have the following equalities.

~If i < p then Wi(t) = a;(x)~ ! sin(a;(x)t) V(t).

—If i = p then W(t) = tV(2).

Proof of Lemma 3.2. In the tangent space [M the vector field tv; is a Jacobi field
along the ray tx. Observe that the vector field dExp|,(tv;) is also a Jacobi vector
field along the geodesic Exptx < M. Let us write down an explicit formula for the
differential of the exponential mapping at the point tx. We will identify M with the
quotient G/U, where G is the isometry group of M and U is the isotropy subgroup
of the point ¢. We identify the tangent space [M with the orthogonal complement to
the algebra [U in the algebra [G. We denote exp the exponential mapping from the
algebra [G to the group G. Then exptx is an element in G acting on M and we
denote dt(exp tx) the differential of this action. We have [He]
© t2ad?(ty;
dExpy,.(tv) = dz(exp tx) ngo (2n—+(l)')

0 t2ai2 OV (— 1"
= dr(exp tx) n;)( (22 2 (1)! )
sina(x)t  sina(x)t

ta(x) a;(x)
Now we observe that the parallel vector field V] is obtained from the vector v; by

the shift dz(exp) along the geodesic Exp tx, that is, V;(t) = dr(exp tx)v;. Hence we
get Lemma 3.2 from (3.1).

(tv;)

= dt(exp tx) (dt (exptx)v;) . (3.1)

Proof of Theorem 3.1. Now we compute the coefficient y,(Exprx, IT*"1!). We
observe that the tangent space IT*~ !(¢) to the normal section of the cone CD! ™! at
the point Exp tx can be represented as the sum » a;IT¥~'(t), where g; are constant,
and {IT¥"'(t)} is the basis in the space Aj_,(Tg.p:xM) such that ITF~'(¢) is
generated by the orthonormal frame of the vectors {W,(t)€ Tg,,.»M}. Using the
formula (2.1) we get

[1ae=t@lde Y [ alMi- (1) dt

Exprx, [T*F~ 1) =2 — =4 —
ZelExp ) | IT%~1(r)| S @M (r)]

1
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Hence we obtain

JUTi—1(0)]dt
Exprx) = max *ro— .
- X (EXp rx) i o_,m
Combining Lemma 3.2, Lemma 2.9 and Lemma 2.10 we get
fras—t@ide  |sin(a(x)1). .. .. sin (o, (x)t) dt

0 _ 0
PO sinlg (07). - sin (o (X))

if k < p. In the same way we prove the theorem in the case k = p. ThlS completes
the proof of Theorem 3.1.

Corollary 3.3. If M is a symmetric space of rank = 1, that is, dim H;y = 1, then the
deformation coefficient y,(Exprx) depends only on r.

(a) For M = S" (or RP") we have y,(r) = {5 (sint)* ™' dt/(sinr)* .

(b) For M = CP" we have

r

jsm\/t sin t)2* 2 dt

0

2(r) = s
sin \/2r(sinr)?* =2

(c) For M = HP" we have

[ (sin/2t)*(sin)**~* di
0

F) =
) (sin</2r)*(sin r)* ¢

From Corollary 3.3 and by definition (see (1.1)) it follows that the k-dimensional
geodesic defect Q,(RP") of a real (resp., complex, quaternionic) projective space
depends only on k, and therefore, equals to €,(RP*) (resp. for complex and
quaternionic cases). It is easy to see (cf. the proof of Theorem 2.3) that Q. (RP¥)
(resp. for complex and quaternionic cases) is equal to the volume of RP*. Now,
from Theorem 2.1 we obtain immediately the following consequence.

Corollary 3.4 [Fo 1]. For any k < n the canonically embedded space RP* = RP"
(and CP* = CP" HP* = HP" resp.) is a globally minimal submanifold.

Remark. The operator adz coincides with the Ricci transformation R,: y = Ry, x in
the tangent space IM. Therefore, the deformation coefficient y,(Exprx) get the
maximal value, if and only if the plane IT*~! is an eigenspace with the maximal
eigenvalue of the induced Ricci transformation in the space Ay - ; Tgyp.x M. Roughly
speaking, the curvature at point Exp rx in the direction (rx, IT*~ 1) get the maximal
value.

It is well known that in a simply connected irreducible compact symmetric
space M there are totally geodesic spheres of curvature a?, where a? is the curvature
upper bound of M. Further, any such sphere lies in some totally geodesic
Helgason’s sphere of maximal dimension i(M). All Helgason’s spheres are equiv-
alent under the action of the isometry group Iso(M). Moreover, they are of the
same curvature a’[He]. Now we obtain immediately from Corollary 2.5 the
following proposition.
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Proposition 3.5. If a Helgason sphere S(M) realizes a non-trivial cycle in the
homology group of a simply connected symmetric space M, then it is a globally
minimal submanifold in M.

First, we write the list of Helgason’s spheres realizing a non-trivial cycles in real
homologies of compact irreducible simply-connected symmetric spaces.

1) If M is a simple compact group, then i(M) = 3, and S(M) is a subgroup
associated to a highest root of the group M.

2) M =SU;1n/S(Uix Up), ilM) =2, S(M) = SU,/S(U,; x Uy).
3) M = SO[+2/S0[XSOz, l(M) = 2, S(M) - SO3/S02

4) M = SU,,/Sp,, (M) =5, S(M) =SU,/Sp,.

5) M = Sppsn/SPm % SPu, i(M) = 4, S(M) = HP™,

6) M = 80,,/U,, i(M) =2, S(M) =S0,/U,.

7} M = Sp,/U,, i(M) =2, S(M) = Sp,/U,.

8) M = F,/Sping, i(M) = 8, S(M) = Spiny /Sping.

9) M = Ad E¢/T* Spiny,, i(M) =2, S(M) = SU,/T".
10) M = AdE,/T'E,, i(M) = 2, S(M) = SU,/T".

11) M = Eg/F,4, i(M) =9, S(M) = Spin,o/Spins.

Remark. In all listed cases, if the dimension of Helgason’s spheres i(M) = 2, the
corresponding symmetric space are Kilerian manifolds, and their Helgason’s
spheres are diffeomorphic to CP'. The global minimality of the Helgason sphere in
1) was first proved by Fomenko [Fo 1], and then by Dao Chong Thi [Da 1],
Tasaki [ Ts], the author [ Le 1] by the calibration method. The global minimality of
the Helgason sphere in 8) was proved by Fomenko [Fo 1] by the method of
geodesic defect and by Berger [Be] by the calibration method. It would be
interesting to find calibrations which calibrate the Helgason spheres in 4) and 11). -
It is well known that all characteristic classes on spaces M in 4) and 11) are trivial
[Ta 2]. We think a suitable calibration may be chosen among induced invariant
differential forms from the isometry group I(M) to M (see also the proof below). We
also conjecture that all Helgason's spheres are M*-minimal submanifolds (see
[Le 2]). ‘

Proof of our classification. By looking at the table of real homologies of irreducible
globally symmetric spaces [ Ta 1, Ta 2], and the table of Helgason’s spheres in these
spaces [O], comparing dimensions, we conclude that all other Helgason’s spheres
not in the above list are trivial cycles in real homologies of their ambient spaces. By
the above remark, to complete the classification, it suffices to show that the
Helgason spheres in 4) and 11) are non-trivial cycles of real homologies. There are
many methods to verify if a given submanifold realizes a non-trivial cycle of real
homologies of its ambient manifold. In particular, in [ Fo 2] Fomenko and Dao
Chong Thi gives a complete classification of totally geodesic spheres which realize
non-trivial cycles of real homologies of their ambient symmetric spaces. Fomenko’s
method depends on the explicit description of Bott’s periodicity, and it is rather
complicated to apply these results to our concrete case. Dao’s method is simpler
but he computes only for exceptional cases where Bott’s periodicity does not hold.
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Our verification below makes use of Dao’s method. First, we consider the case 4)
S(M) = SU,/Sp, - SU,,/Sp,. We have the following commutative diagram

SU4/Sp2 BE— SUZn/Spn

! !
SU4 e SUzn .

Here the embedding SU,,/Sp, — SU,, k = 2 or n, is the Cartan embedding of the
symmetric space under consideration. We note that S° = SU,/Sp, realizes a non-
trivial cycle in SU 4, since so does the corresponding subgroup Sp,. Therefore, the
sphere S° also realizes a non-trivial cycle in SU,, since the subgroup SU, is totally
non-homologous to zero in SU,,. Hence we conclude that the Helgason sphere S°
realizes a non-trivial cycle of real homologies of SU,,/Sp,.

The fact, that the Helgason’s sphere S° realizes a non-trivial cycle of real
homologies of E¢/F, was proved in Dao’s paper [D2]. (To see it we consider the
following sequence of mappings

S® - E¢/Fy — E¢ = SU,, .

It is easy to see that the resulting map p:S° —» SU,- is a composition of two maps
p, and p,, where p;(S°®) = Spin,, is a primitive cycle, and p, is a spinor representa-
tion of Spin,, which sends the primitive cycle p,(S°) to a non-trivial cycle in SU,-
[Dy, Da 2]. Therefore, we conclude that the Helgason sphere S° realizes a non-
trivial cycle of real homologies of Eq/F,.)

Theorem 3.6. Every Helgason’s sphere in a compact irreducible simply connected
symmetric space is a globally minimal submanifold in its Z (resp. Z,) homology class.

Remark 3.7. As a simple corollary of our theorem we obtain that all Helgason
spheres in irreducible simply connected symmetric spaces are stable minimal. This
corollary was obtained by Ohnita [O] with the help of analyzing the spectrum of
the Jacobi operator on these spheres.

Proof. In view of our classification it suffices to show that the Helgason spheres not
in the above list realize non-trivial cycles of Z, (resp. Z) homologies in their
ambient symmetric spaces. All of them are of dimension 2 [He, O]. Since their
ambient spaces M are simply connected, and besides, in the considered cases we
have n,(M) = Z, [Ta 1], it suffices to show that these spheres realize non-trivial
elements of the second homotopy group n,(M). Let M = G/U, where G is a simply
connected group. Our proof is based on the exact sequence [Ta 1]

0 = 72(G) - 72(G/U) - 7, (U) » 7,(G) = 0.

Thus, the map j:7n,(G/U)— n;(U) is an isomorphism. Therefore, the Helgason
sphere realizes a non-trivial element in 7,(G/U) if and only if its image via j is
a non-trivial circle ' = U in the fundamental group =, (U). Let us recall a geomet-
rical realization of the map j. Assume S? is a sphere in G/U. Fix a point x e §>. Let
us realize the sphere S? as a suspension over S* such that one of its vertices is the
fixed point x, and the other is some point yeS?. This means that we are given
a homotopy F:[0, 1]x S* — 82 such that: F(OxS§!) = x, and F(1 xS!) = yeS>2.
Let y be a point in G whose projection p(j)= y. According to the covering
homotopy theorem there exists a homotopy F:[0,1]xS!— G such that
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F(1xS") =7, and p*F = F. Clearly, F realizes a relative sphere whose boundary
S! lies in the fiber p~ !(x). Hence, this circle is the image of sphere S? via the map ;.
With the above geometric realization j of the map j we will show that the image
jr(S?) of the Helgason sphere S2 € G/U may be chosen as a geodesic circle S' < U.
To do this we consider the following orthogonal decomposition of the Lie algebra
IG = lU @ V, where V is identified with the tangent space of the symmetric space
G/U at e. We note that the totally geodesic subspace exp V' coincides with the
Cartan embedding C(G/U) of the symmetric space G/U into G. Consider a highest
root « of the algebra [G. It is known that its restricted root & is a highest root of the
symmetric space G/U. Fix a Cartan algebra H, < V. Let h;e Hy be the dual vector
to &, and v;€ V the corresponding eigenvector. This implies that

hy =/ —1(1/2)(H, — Hp), Rog = VA C(X, — 6X,), (3.2)

where H, denotes the vector in the Cartan algebra H¢,; corresponding to the root
a, X,eCIG is the corresponding eigenvector, and 6 is the involutive authomor-
phism defining the symmetric space G/U [He]. Recall that in our case Helgason’s
sphere is of dimension 2. Therefore, the multiplicity of & equals 1 and vy is defined
uniquely, moreover, the plane span(hg, v;) is a Lie triple. Indeed, this plane is
the tangent plane to the Helgason sphere S = G/U; it is also the tangent space to
the Cartan embedding C(S?) of this sphere into G. Now we put w, = [hs, v;].
Since the multiplicity of & equals 1 we have w,elUnC(X, + 0X,) (see [He,
p. 336]). Taking into account (3.2) we see that the vectors hg, v, w, form a basis of
the Lie subalgebra in IG corresponding to the root a. Denote SU,(«) the corres-
ponding subgroup in G. We note that the subgroup SU,(x) contains the sphere
C(S?). Further, we observe that the intersection between the group SU,(«) and U is
an one-dimensional compact subgroup S'(x) generated by the vector w,.

Lemma 3.8. There exists a geometrical realization F; such that F; sends the Helgason
sphere S? to the geodesic circle S*().

Proof. Let & denote the antipodal point of ¢ in the sphere C(S%). Let S'(e) be the
equator on C(S?) consisting of those points g S3 = G such that g* = &. We claim
that the natural projection ¢q: G — G/U sends this equator to a point. In fact, this
claim is a consequence of the following assertion.

Proposition 3.9 [Fo 2, p. 124]. Let gU be an arbitrary coset relative to U in G, and
besides, ge C(G/U). Then gU n C(G/U) = {\/¢*} n C(G/U).

(This assertion can be obtained from the following explicit expression for the
Cartan embedding C:G/U — G; gU — ga(g~"'), where o denotes the correspond-
ing involutive automorphism of the group G.)

From Proposition 3.9 and the above claim we deduce immediately that the
semisphere S?* < C(S?) with the boundary S*(¢) and containing the point e is
a relative sphere of the fibration U — G — G/U; moreover, its projection into G/U
coincides with the Helgason sphere S* = G/U. Now, it is easy to see that there
exists a geometric realization F; which sends the Helgason sphere S? to the equator
S'(¢). Suppose z is a point of S!(¢). Then the shift L * sends the equator S*(¢) to
a geodesic circle T !(«). By definition T'!(«) is also a geometric realization of the
image j(S?). To complete the proof of Lemma 3.8 it suffices to show that
T'(x) = S'(x). In fact, the shift L ' sends the fiber containing S'(e) to the
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subgroup U; and on the other hand, the subgroup SU,(a) is invariant under the
action L7 !. Hence, T *(a) belongs to the intersection between SU, () and U. This
implies that 7!(x) = S!(a).

Corollary 3.10. S!(«) is a shortest closed geodesic on the group G, and therefore, on
the group U.

Proof. By construction SU,(a) is the subgroup corresponding to the highest root
a of G. Since G is simply connected the circle S!(«) is of minimal length [He].
Let U = §S0O,. It is known that a shortest closed geodesic on SO, is conjugate
under the action of the group Iso(SO,) with the standardly embedded sub-group
SO, which generates a non-trivial element in the fundamental group =;(SO,).
Hence, from Corollary 3.10 we get immediately the following consequence.

Corollary 3.11. Helgason’s spheres in symmetric spaces SU,/SO,; Eg/S01¢, G,2/SO04
realize non-trivial elements in Z,-homologies of their ambient spaces.

In other cases we have to look more carefully. Our aim is to show that the
geodesic circle S*(a) realizes a non-trivial element in the fundamental group =, (U).
Let w, belong to a Cartan algebra H,; which is contained in a Cartan algebra H,;.
Let h, e Rw, be the vector corresponding to the root a. It is known that the vector
h(x) = 4mhy,/|a|? belongs to the unit lattice I' (G, H,g;) of the group G. Let U denote
the universal covering of the group U. The condition that the geodesic circle S (a)
realizes a non-trivial element in 7, (U) is equivalent to the following that h(x) does
not belong to the unit lattice (U, Hy) of the group U. 1t is known that the unit
lattice I of the simply connected group U is span,{ h(f5;)}, where { f§;} is a funda-
mental system of roots of [U, and h(f3;) = 47[/1,,1./|/f.,-l2 (see [He, Ta 1]).

Let us now consider a symmetric space M = G/U, where [U is a direct sum of
two simple Lie algebras /U, and IU,. In our case M is one of the following spaces:
SO +n/(SO, X SOy,), Eo/(SU,*SUs), E7/(SU,* Spiny3), Eg/(SU,* E5), F4/(SU> " Sp3).
(Except the case of real Grassmannians, other products listed above, U = U, - U,,
are not direct. Namely, the intersection of U; and U, consists of 2 points [ Tal]).
We note that the vector h(a) does not lie in any algebra [U;,i = 1 or 2, otherwise,
the subgroup SU,(a) lies in the group U; < U entirely. This contradicts to our
observation that SU,(x) meets U at only a circle S'(«). Hence, in the case
IU = so, @ so,,, the root o can be written as x; + x;, where x;e Hf, and x;e Hf, .
Thus, h(x) does not belong to the unit lattice of Spm x Spin,,. In the same way we
verify that for all listed above M the Helgason sphere S? realizes a non-trivial
element in 7,(M) = H,(M,Z) = H,(M, Z,) = Z,.

In order to complete the proof of Theorem 3.6 we need to consider the cases
M = E¢/PSp, and M = E,;/SU}. Stralghtforward calculation shows that if
a closed geodesic of minimal length in group U/ {+1}, U= Spa, SUsg, then it 1s
conjugate under I,(U) with either the circle S*( f) generated by a highest root 8 or
the closed geodesic S, whose pull back into the covering group U is the shortest
geodesic joining two elements (+1) = (e) and (—1). Since the group SU,(x) does
not lie in U, we get that « is not a highest root of [U; @ [U,. Hence, we deduce
easily that the circle S*(a) is conjugate with S, . Thus, S!(x) realizes a non-trivial
element in =, (U). This completes the proof.

In conclusion we show a consequence of Theorem 2.1 for non-compact sym-
metric spaces. It is well known that the upper bound of section curvature of these
spaces is zero [ He].
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Proposition 3.12. Let X be a flat totally geodesic submanifold in a non-compact
symmetric space M. Then X is a globally minimal submanifold.
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