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MINIMAL ®-LAGRANGIAN SURFACES
IN ALMOST HERMITIAN MANIFOLDS
UDC 517.97+516.96 '

LE KHONG VAN [LE HONG VAN]

ABSTRACT. A general method of calibrations is developed for the study of minimal
®-Lagrangian surfaces in almost-Hermitian manifolds. A criterion for minimality of
®-Lagrangian surfaces is given, along with a lower bound for the second variation of
the volume functional on minimal ®-Lagrangian surfaces in Hermitian manifolds.
The generalized Maslov index of these surfaces is shown to be trivial.
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§1. Introduction

The study of minimal Lagrangian surfaces in Kihler manifolds M was begun
by Harvey and Lawson [9] for the case M*" = R*" = C" with the standard Kihler
structure. They discovered that any minimal Lagrangian surface L ¢ R*" is glob-
ally minimal (and consequently stable). Later Bryant [8] considered an arbitrary
Kihler manifold M*" and proved a criterion for minimality of Lagrangian surfaces
L ¢ M*. He showed that the restriction of the first Chern form to any minimal
Lagrangian surface L C M*" is equal to zero. A. T. Fomenko conjectured that any
minimal Lagrangian surface in the symplectic space R”" has the following topological
property: its characteristic classes, which generalize the well-known Maslov classes,
are equal to zero. Then Fomenko and the author [4] discovered a criterion for mini-
mality of ®-Lagrangian surfaces in an arbitrary Hermitian manifold and proved that
the Maslov index is trivial for any minimal Lagrangian surface L ¢ R*". A natural
question arises as to whether minimal ®-Lagrangian surfaces are stable and how to
describe their topological classes. In this paper we give an answer to this question.
For this we use the general theory of calibrations that we have developed.

We recall that a fundamental 2-form ® on an almost-Hermitian manifold
(Mz", J,(, ) is defined as follows: ®(X,Y) = (X, J, Y). A submanifold
L" ¢ M* is called a minimal ®-Lagrangian submanifold if it is minimal with re-
spect to the metric (, ) and the restriction of ® to L” is annihilated. The manifold
M™ is called an Hermitian manifold if the complex structure J is integrable, and it
is called an almost-Kdhler manifold if ® is closed. Finally, an Hermitian manifold
M™ with a closed form ® is called a Kdhler manifold. Any almost-Kihler manifold
is symplectic, and its ®-Lagrangian submanifolds are simply Lagrangian.
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The plan of the paper is as follows. In §2 we develop the method of calibrations
to study local minimality and stable minimality of submanifolds of Riemannian
manifolds. In §3 we construct a canonical almost-Hermitian connection on an almost-
Hermitian manifold M>", after which we give a criterion for the minimality of ®-
Lagrangian surfaces L" C M* in terms of a certain differential 1-form on L. In
§4 we introduce a lower bound for the second variation of the volume functional on
minimal ®-Lagrangian surfaces L in an Hermitian manifold M " In particular,
we obtain the following theorem.

THEOREM. A minimal ®-Lagrangian submanifold of an Hermitian manifold M*

is stable if the first Chern form Q on M 2 is nonpositive (that is, Q(X, JX)<0 for

any vector X € T(M™)).

We note that in the case of an Hermitian manifold with positive first Chern form
there are examples of unstable minimal Lagrangian manifolds.

In §5 we introduce the construction of the generalized Maslov index, proposed by
V. V. Trofimov. We then prove the triviality of the generalized Maslov-Trofimov
index of any minimal ®-Lagrangian surface in an Hermitian manifold M.

The author expresses his deep gratitude to A. T. Fomenko for his unfailing support
and useful discussions. The author is grateful to V. V. Trofimov for communicating
his new construction of the generalized Maslov index.

§2. Quasiregular calibrations and local minimality
of submanifolds of a Riemannian manifold

DEerINITION 2.1. A differential n-form ¢ on a Riemannian manifold is called a
calibration if its comass is not greater than 1. A submanifold N" ¢ M™ is called a
p-submanifold if for all points x € N we have

(TN =|T,NI,
where || | denotes the norm of the mass (for the details see [9]).

REMARK 2.1. (i) If we require the closure of the form ¢ in Definition 2.1, then ¢
is a calibration in the usual sense. The method of calibrations was developed by Dao
Trong Thi [2] and Harvey and Lawson [9] for the study of globally minimal surfaces
in Riemannian manifolds. In [4] Fomenko and the author developed this method
for the study of minimal ®-Lagrangian submanifolds of Hermitian manifolds.

(ii) It is easy to see that any submanifold N” c M"™ is locally a -submanifold
with respect to some local calibration ¢ on M . In particular, for ¢ we can choose
a simple differential n-form. The existence of a global calibration ¢ with respect to
which N is a p-submanifold follows from the next proposition.

PrOPOSITION 2.1. Let {U;} be a locally finite covering on a manifold M and
{h)} the family of functions of a partition of unity with respect to {U,}; that is,
supph, C U,, Y h(x)=1 ¥Yx € M, and h; 20 Vi. Assume also that on each
domain U, there is given a calibration ¢,. Then ¢ =3 h,¢, isa calibration on M .
Let N" ¢ M" be a submanifold with the property that NN U, is a ¢;-submanifold
forany i. Then N is a p-submanifold.

Prookr. Clearly,
o " <Y I lle " <Y h(x)=1,

so ¢ is a calibration. The second part of the proposition is obvious.
We mention the simplest property of ¢-submanifolds.
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PROPOSITION 2.2. Let N" be a g-submanifold of M™ and (v, ..., v,) an (ori-
ented) orthonormal basis in T N ". Let w be any vector in T .M orthogonal to all
the v;. Then the following relations hold.

(i) (o(v,/\---/\v")? 1,

(i) e(w,v,,...,0,...,v,)=0 forany i=1,...,n.

Proor. Equality (i) follows directly from the definition:
PV A AV ) =|v A AY =1L

Equality (ii) follows from the fact that ¢ attains a maximum on the multivector
v, A---Av, among unit simple vectors v{ A »/\v; eEG the Grassmann manifold
of n-planesin R™ ~ T . M").

Henceforth we shall consider only a special class of calibrations.

DEFINITION 2.2, Let ¢ be a calibration on M™ . We denote by G, the set of

m,n (

n-planes /" € T_.M™ such that ¢( ") = ||/]|. We say that a calibration is regular
if all the sets G ¢ are diffeomorphic; that is, the bundle (G¢(M ), M,G 0,p),
where p is the natural projection onto the base M, is locally trivial. We shall say
that a calibrated ¢ is quasiregular if ¢ can be represented as a sum ) h,¢,, as in
Proposition 2.1, and all the calibrations ¢, are regular.

PROPOSITION 2.3. Let ¢ be a quasiregular calibration on a Riemannian manifold
M™  andlet N" ¢ M™ be a p-submanifold. Then, for any normal vector field X on

N’
d
I(N, )
vol(N,) :=o</N,(9>

1=0 dt

4
dt

where the family N, is the image of N under the action of the one-parameter subgroup
of diffeomorphisms generated by the vector field X .

Proor. We denote the mean curvature of N by H. Then

d
(A) 7 ’=0v01(N,) = /N(—H, X) +/0N(X vol) = /N(——H, X),
d
dt =/ L X = [ (X Jdo).
© &L ([r) =[x sa0+ [ 05 dor= [ sam

Since dp =d(h,¢,) =dh; Ao, + hdp,, we have
X ldp=(X_ddh)np, —dh,A(X do,)+h(X _1dop).
Since ¢,|, = vol|, , we obtain
(X Jddo)ly =dh(X)vol+h(X 1dp,)
(the term dh, A (X _¢,) is equal to zero by Proposition 2.3(ii)). Finally we have

X ddp =Y h(X ldy). (2.1)

Taking (A), (B), and (2.1) into account, we derive Proposition 2.3 from the fol-
lowing lemma.
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LEMMA 2.1. For any point x € (NNV}),
(-H, X)=(X ddo)(v,,...,v,),
where {v;} is an oriented orthonormal basis in T N .

PrOOF OF THE LEMMA. For convenience we redenote ¢, by ¢ and (NN V)
by N. We also choose n oriented orthonormal vector fields Uy, ..., U, ON some
neighborhood N,(x) of the fixed point x. Since the multivector v, (y)A---Av,(y) €
Gy((o) for any point y € N,(x), these fields v; determine a section p: N,(x) —

(~?¢(M ), where éw(M) denotes the principal bundle over Gw(M ) with structural
group SO, . We consider the following commutative diagram:

N, — G, (M)

ql i
(N, x I™™") = M_(N,) — M

€

On this diagram ¢ is the identity embedding of N, into some neighborhood
M N,) = N, x I™™" and j is the natural projection from the bundle (~}¢(M) onto

4 &
the base M . By means of the covering homotopy theorem we conclude that there
is a section p : M (N,) — Gw(M ) such that p = p-q. Consequently, there is an

extension V, of the vector fields v, from N, to M (N,) such that

(i) (v, Vj) =9,;,and
(i) oV, V)= 1.
We now calculate the value of (X_dg¢)(v , ..., v,) at the point x:
(X ddo)(v,, ..., v,)
=Y ) 0K vy Oy e, 0) = X (@Y, e, V)

i=1

D DR G VAT AT D GRS R S /)

1<i<y<n
n

+) (=D'p(X, v, Dy, v,
1=1

The first and third terms are equal to zero by Proposition 2.2. The second terms are
also equal to zero by (ii). Finally we obtain

n

Z(wl)‘w([)(, U 1s s Dysn s 0,

(X ddo)(v,,...,v,)

i=1
- Z([Xv U;]» U,‘) = Z("‘VXU,- + VU'X, ”U’.)

YAV X, v)=(-H, X),

i

as required.

CoOROLLARY 2.1. Let ¢ be a quasiregular calibration on a Riemannian manifold
M™, and let N" ¢ M™ be a minimal g-submanifold. Then, for any normal vector
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field X on N",

L1 volvy > L
T ar

PROOF. We put V(f) = vol(N,) and F(¢) = Jy @. Then

(a) ¥(0) = F(0), and
(b) V'(0) = F'(0) = 0.

The first identity is satisfied because N isa ¢-submanifold. The second is satisfied
by Proposition 2.3. Since ¥V (r) > F(t) for all ¢, we obtain V"(0) > F"(0). This
completes the proof.

The class of minimal ®-Lagrangian submanifolds is quite wide. Harvey and Law-
son [9] constructed a set of examples of minimal Lagrangian submanifolds in R*" .
Fomenko and the author [4] constructed examples of such surfaces in Hermitian
manifolds. Bryant [8] proved the local existence of such surfaces in the case of
Kéhler-Einstein manifolds.

§3. A canonical almost-Hermitian connection and a criterion
for minimality of ®-Lagrangian surfaces

In this section we construct a canonical almost-Hermitian connection on an almost-
Hermitian manifold. Then, by using the method of calibrations developed in §2, we
prove a criterion for minimality of ®-Lagrangian surfaces in an arbitrary almost-
Hermitian manifold.

We first recall the basic definitions. A principal bundle U (M) over an almost-

Hermitian manifold M consists of all unitary frames {e,, Je,, ..., e_, Je,} with
structural group L', . We assume that ' = (ei)'+\/:T(Je,)' are canonical complex
I-forms on U(M). Also, let (a);) be a connection form on U(M) and T its
curvature tensor. We write out the Cartan structural equations [3];

i ! J i k -7/ k -i 7l =k
() d =-w N0 +T,6'70 + IR0 NG +T0 A6,
i / k !
(I a’wj =W AW, +Q/,
where €2 is the curvature tensor of the given connection.

THEOREM 3.1. (i) On the bundle U(M) there is a unique connection w;. Such
that its torsion tensor has zero components T;’I;, called the canonical connection.

(it} The complex structure J s integrable if and only if all the components T;f,;
of the torsion tensor of the canonical connection are equal to zero. ,

(iii) The fundamental 2-form ® is closed if and only if all the components T;k
of the torsion tensor of the canonical connection are equal to zero and the following
relations are satisfied:

' k .
Tj'-,‘.+ T%;ﬁ- T;/—.-_-O Jorany i, j, k.

The following well-known assertion [3] about the Kahler property of the manifold
M follows immediately from Theorem 3.1.

-—_-———-___t
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ASSERTION 3.1. An almost-Hermitian manifold M " is a Kahler manifold if and
only if there is an almost-Hermitian connection on it with zero torsion tensor.

We now state a criterion for the minimality of ®-Lagrangian submanifolds L

of almost-Hermitian manifolds M?" in terms of the canonical connection form in
UM).

THEOREM 3.2, Let L be an arbitrary ®-Lagrangian submanifold of M  and let
Uy, ..., U, becertain (oriented) orthonormal (local) vectce fields on L. Let p: L —
U(M) be a local section defined as follows:

P(x) = (v,(x), Jv,(x), ..., v,(x), Ju,(x).
Then L is minimal if and only if the induced form

P Ow=- (VY o +21m (3 T58"))
is identically zero on L.

We can get rid of the local character of Theorem 3.2 by considering the Gauss-
ian map p: L — Lag(M) [4]. We recall that Lag(M) denotes the bundle of ®-

Lagrangian planes on M " and p assigns to each point x € L its tangent plane
T L. Clearly, U(M) is the principal bundle over Lag(M) with structural group O,
and natural projection j:

Jo, Jv, v, Ju) =0 A A

We also have p = j-p. Direct calculations show that the form ¥ is annihilated on

the fibers j"(l) , | € Lag(M), and it is invariant under the action of the group O, .
Thus, we have the following result.

ProrosiTION 3.1. The form

_ - i =k
7=- (VI o +2m (3 7,8"))
is induced by some form y on Lag(M): ¥ = j (w).
We can thus restate Theorem 3.2 as follows.

THEOREM 3.2 . 4 ®-Lagrangian submanifold L of an almost-Hermitian manifold
M™" is minimal if and only if the induced 1-form p*(w) is identically zero on L.

REMARK 3.1. When M"" is Hermitian we can write out a simple explicit formula
. hd
for w by means of local complex coordinates on M~" [4]. We recall that v =

Jdf +df , where f is a function lifted from M 10 Lag(M) and @ is a function
on Lag(.M) with period 2rx.

Let us assume that M”" is an Hermitian manifold; then from part (ii) of The-
orem 3.1 it follows that ¥ = —Z\/——lw;. Therefore the first Chern form Q =
(\/:T/Zn)d(a)f) = (~1/2n)dV¥ is identically zero on minimal ¢-Lagrangian sub-
manifolds L C A" . Hence we obtain the following result.

CorOLLARY 3.1. Let L be a manifold ®-Lagrangian submanifold of an Hermitian
manifold M~" . Then the restriction of the first Chern form to L is equal to zero.

REMARK 3.2. Corollary 3.1 was first established by Bryant [8] for the case of a
Kahler manifold M.

S S N
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In the general case the differential 4% is not a horizontal form. Scrupulous cal-
culation, taking account of the second structural equation II, shows that

dV = = mQ+2Um{{T; + Twy A D + (Rl - T4 T5)6° A 8"

+(T5T), + ToT?, - T AT

ip ¢ ks gk T
+ THTH6" A+ TEO AT)} (3.1)

(here R;'/‘J are the components of the curvature form Q;) .
From (3.1) and parts (ii) and (iii) of Theorem 3.1 we immediately have the fol-
lowing proposition.

ProposITION 3.2. Let M™™ be an almost-Kihler manifold. Then the form dy

is horizontal if and only if the complex structure J is integrable; that is, M™" is a
Kdhler manifold.

Almost all the assertions of Theorem 3.1 are well known (see [6], Chapter IV,
§112). As for (iii), according to Lichnerowicz it holds only in the integrable case
(then one of the two conditions in (iii) is satisfied automatically). Without vouching
for novelty, we say by way of an addition to Lichnerowicz a few words about (i11) in
the general case.

Let us write out the condition for the form @ to be closed. Let ¢ be a local
section of M — U(M). Let 8 denote the induced forms o(6'). Then we have

2W=V-TY 6'AT, 2d®=V-13 (d6'AT -6 AdB). (3.2)

Substituting in (3.2) the formulas for 40 and 46 (the first structural equation (1)
and its dual version

d0' = -@, AT + T, 0 AT + T8’ n6"),

we conclude that d® = 0 if and only if Tj’k = 0 and the following condition is
simultaneously satisfied for any i, j, and k:

T+ T+ T = 0.
This proves the theorem.

We now consider ®-Lagrangian submanifolds L of an almost-Hermitian manifold
M We first recall that a form ¢ € A"R™ is said to be specially Lagrangian if ¢
has the form ¢ = Re(e”’a’:l A---Ad:z,). where {z} isa unitary basis in C" = R*"
[9]. A differential form on an almost-Hermitian manifold M>" is called an SL-form
if for any point x € M the restriction of ¢ to .M s specially Lagrangian [4].
Below we construct in a neighborhood of any ®-Lagrangian submanifold a family of
quasiregular calibrations of type SL.

Let us proceed with the proof of Theorem 3.2. Let 2 be a domain in L on which
there is defined a local section p: L — U(M). Consider all possible extensions of 7]
to some section p: M (Z) — U(M), where / (&) is a normal neighborhood of

Z in M¥". We put
F, ={p;=Re{p (0" A--AO")}}.

The next proposition is obvious.

———t
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ProposiTION 3.3. (i) The family &, consists of regular calibrations, and the sub-
manifold & = (M (Z)NL) isa 9g-submanifold for each P, EF,.

(ii) The restriction of the form Gy =Imp*(8' A--- A ") to L is equal to zero for
any ¢ps; €7, .

(iii) Ler ga; be another SL-calibration on M (D) defined by means of another
section p': D — U(M). Then for any x € & we have Ps(x) = det({v,, vj'.)) , where
{v;} and {vj'.} are the orthonormal frames in T L corresponding to the sections p
and 7' (see Theorem 3.2).

By means of Proposition 3.3(i) and Lemma 2.1 we deduce Theorem 3.2 from the
identity

(X Jdpg)l, (v, ..., v,) =5 (7)(JX), (3.3)

where v, A---Awv, is an oriented unit n-vector in T L. ’

For this we calculate the differential dp; =Re d@'A---A 6"). Here and later we
will omit the symbol 5* for convenience. Then

dp; = Re (Z(-l)”'e' /\-~-/\d9[/\~-/\0">.

Taking account of the first structural equation (I), we obtain

dp; = Re ((Zw:) ANO A NG
+ (-1 <Z?'j4,‘:§j/\§k/\91/\-~~/I_\-~/\9")). (3.4)
Since the form wf takes purely imaginary values, we have
Re((-—wa)/\H'/\m/\e")=WAIm(8'/\~~/\0"). (3.5)
Direct calculation shows that for any vector X and any ; # / we have
(X JR(TZE AT A6 A A - AG")], =0,
We finally obtain
(X Jdpg)l, = X (J(-V-T o' Alm(6' A 76"
- Re(Y 758 A6 /\wA?)"'/\m/\@")))fL. (3.6)
LEMMA 3.1. Suppose that ¢, is an SL-form, where 0, =Re(0' A---AO"). Let
@y denote the form Im(8' A---AB"). Then, Jor any 1-form y,
WAPy=-JwAg,,

here the operator J acts on the cotangent bundle T* M*" by means of an almost-
Hermitian metric as follows:
Jw(v)=w(J v) = y(-Jv).
PROOF OF THE LEMMA. The form y + V=1Jy has degree (1,0), so (v +

V=TJw)AG A 70" =0. Consequently, the form Im((y +v/—=TJy)A8' A---NB")
is equal to zero, and so Lemma 3.1 follows.
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Using Lemma 3.1, we can obtain

Z(—ReZT{,—(—?kAO’/\-~/\§"/\~~/\6">(Xl,vl,...,vn)
i k
=Z< 2Re§: ) (X)=2Im (ZT—» )(JX), (3.7)

where {v,...,v,} is an orthonormal basis in T L.
From (3. 6) and (3.7) by means of Lemma 3.1 we immediately obtain (3.3).
Thus (3.3) is true. This proves Theorem 3.2.

§4. A lower bound for the second variation of the volume functional
on minimal ®-Lagrangian submanifolds of Hermitian manifolds

The aim of this section is to prove the following theorem.

THEOREM 4.1. Let L © M*" be an orientable minimal ®-Lagrangian submanifold
of an Hermitian manifold M™", and X a normal vector field with compact support

on L. Then
XX(/VOI) 2»21:/Q(X,JX),
L L

where Q is the first Chern form on M*".

To this end we consider the family of quasiregular calibrations ¥ (L) correspond-
ing to the functions of a partition of unity with respect to the covering {Z;} C L:

._9'(L)={¢=Zh¢,(p e, }

By Proposition 3.3, L isa ¢-submanifold for each ¢ € F(L). Let X(p) denote
the Lie derivative of the tensor ¢ in the direction X . Let us calculate the second
variation

d:
dt 1=0

(Z‘/L.h'w') Z/X_id (h o)) Z/X_JX (h9).

Since
X(dhp,)) = X(dh)Aop, +dh A X(p)+ h X(dy,)+ X(h)do,,
we have
X JX(d(hp)) = (X JX(dh)e, - X(dh) A (X Jdo,)+ X(ddh) A X(p)
—dh A(X 1 X(p)+h (X ] X(do,)
+X(h)(X Ldp,). (4.1)
Substituting ¥, dh, =0 = (X _l¢)|, =(X _ldp,)|, in the right-hand side of (4.1),
we obtain
X I X(dhp))=(X Jdh)AX(p)-dh AX JX(p)+h (X 1X(dp,).

Making the substitution X(¢,) = (X Id¢)+d(X Jp,) and integrating in parts, we
obtain

/(X_ldh,)/\ /a’ (X Jdh)AX(p)=0.
L
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We also have

d?.
= B (/L E,:h,.(pi) = Z/L dh, A (X 1 X(9) +h(X 1 X(dp)). (4.2)

We split the rest of the proof into three steps.
Step 1. Let us calculate the integral

/L h(X JX(dp)).

From (3.4), (3.5), and Theorem 3.1(ii) we have dg, = y, AP, . Therefore

X X(d(D,)IL = ((X . X('//,')) /\5; - X('/’,')

AX )+ (X Jy) AX@) =y ANX JX@B)),.
Since 7|, =0=y,|,, by Lemma 3.1 we obtain
X dX(do)l, = (=X(w)AX A7)+ w,(X)X(@) “
= ((X ddy,) +d(y,(X)), JX)p, + w(X)X(@ )|, (4.3)

LEMMA 4.1. For each domain D, there is a calibration ¢; € ¥, such that y(X)

is identically zero on the minimal ®-Lagrangian submanifold L . '

ProOF. We first choose coordinates on some neighborhood M, (Z,) ~ R x R x
R" so that (a) (0,0, y)€ L, and (b) d/dt],_,(t, 0, y)|X| = X.

Consider an arbitrary section j: M,(Z,) — U(M) that extends the Gaussian map
p: 2, — LagM):pl, =J-D. Suppose that j is the required section (that is, the
calibration ¢; corresf)onding to it satisfies w(X) = 0). We form the equation for
b

{(A) plt,z,y)=p(t, z,y)8(t, z,¥),
(B) y/(ﬁ,(0,0,y)Gt):O,

where g belongs to U, the structural group, which acts on the fibers ) e
Lag(.M) by right shifts: (v A---Av,)-&§ = (V- gA- AV, g). Clearly, g(0,0,y)=e.
From (A) and (B) we see that w(X) =0 is equivalent to the condition

0=w(p,(0.0,y)81) - V-11r(g(0, 0, y)). (4.4)

We put g(t, =, v) = exp(—tw(p,(0, 0, y)ot)h,) , where ho is the diagonal element
(V=T1.0,...,0) €u,. Then we can verify immediately that (4.4) is satisfied. Hence
the calibration ¢, corresponding to the section p: M (Z;) — U(M) that we have
constructed is the required one. This proves the lemma.

Conclusion of Step 1. Suppose that the calibrations ¢, are chosen as in Lemma 1.
Then from (4.3) it follows immediately that

X JX(dp)v,, ..., v,) = (X ldy)J X = -22Q(X , J X). (4.5)

n
Here v, A---Awv, is an oriented unit n-vector in T,L.
Step 2. In this step we assert that the calibrations ¢, chosen as in Lemma 4.1,
satisfy the following identity:

Z/l dh A (X 1 X(p,)) =0. (4.6)

Let us fix a calibration ¢, and a point X, € Z,. Let {9y, ..., 9.} be the set
of all calibrations from the chosen family such that ¢,(x,) # 0, thatis, x, € &,
i=1.....k. Then (4.6) follows from the next lemma.
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LEMMA 4.2, For any fixed point x, € L,

k
> (dh A (X JX(p)) =0. (4.7
P
PROOF OF LEMMA 4.2. Since the ¢, are SL-forms, we can write 9= Re(e' "”o)
where @, is a complex form of degree (n,0) and a; is a real funcuon in some
neighborhood &,(x). By Proposition 3.3(iii) and the fact that L is orientable we

may assume that a;(y) = 0 for any point y € Z,(x)NL and any j=0,...,k.
Then at y we have
X(p,) = Re(X(e'"’wo)) = Re X (w;) — X(a;) Im . (4.8)

At any point x € Z,(x,), on the one hand, we have
dy; = Re(dw, + +V=Tda;Awg) = Yy A Gy —da, AGy = (¥, ~da,) AT,
and on the other hand we have d(p =Y, AP, Therefore (v, -y, +da JAP,; =0.
It is easy to verify that the latter equahty holds if and only if v, =¥ - d
Consequently, at the point y € Z,(x) N L we have
X(aj)=(daj, X)=l//j(X)—'(,{/0(X)=O. (49)

From (4.8) and (4.9) it follows immediately that
k k
Y (dh, A (X dX(9) = Y (dh; A (X JRe X(wy,))) = 0. (4.10)
=0 i=0
Lemma 4.2 follows immediately from (4.10), and hence (4.6) follows.
Step 3. From (4.2), (4.5), (4.6), and (4.10) it follows immediately that

2
iﬁ" (/[ Z’h%) =/L-2nQ(X.JX). (4.11)
=0 “t

Then Theorem 4.1 follows immediately from (4.11) and Corollary 2.1.

The form € is said to be negative (positive) if the associated symmetric bilinear
form Q,, Q,(X,Y) = QX,JY), is negative (positive). In the case of Kihler
manifolds M°" the fact that the first Chern form is positive (negative) is equivalent
10 the fact that the Ricci tensor is positive (negative) on M*"

j .

COROLLARY 4.1. A minimal ®-Lagrangian submanifold L of an Hermitian man-
ifold M 2 s stable if the first Chern form on M " is nonpositive.

The class of Kahler manifolds with nonpositive first Chern form is quitc broad.
In particular, it contains C", bounded homogeneous domains @ ¢ C", and all
complex submanifolds of a Kihler manifold M with zero curvature form [3]. On
the other hand, if the first Chern form is positive, then M may have unstable
minimal ®-Lagrangian submanifolds. For example, M?" =CP" and L =RP".

CoRroLLARY 4.2. Let i denote the lower bound of the elgenvalues of the Hessian

of the volume functional on L. We put c, = mfxe_w{co , where c,(x) is the least
eigenvalue of the symmetric bilinear form —Q (X)}. Then 1y 2 2nc,.

REMARK 4.1. The mequahly in Corollary 4.2 is best possible. For example, con-
sider a (real) torus 7" and its complexification T Then L = T" is a minimal
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Lagrangian submanifold of Tc" , and in this case 4, = ¢, = 0. Another example is

L=RP", M* =CP", and in this case Ay = 2mcy = -} . In these examples we use
the classical formula for the second variation to calculate the value of 4;:

XX ( /L vol) - /L (=V2X + R(X) - A(X), X)

(for the details see [10] and [11]). In particular, for the pairs (L, M) under con-
sideration there is a vector field X on L such that the inequality in Theorem 3.1
becomes an equality.
§5. The generalized Maslov-Trofimov class
of a minimal ®-Lagrangian surface

We first give the construction of the generalized Maslov class proposed by Trofi-
mov. Let H denote the holonomy group of an almost-Hermitian connection on
M™. Let H, C H be the subgroup generated by parallel displacements along loops
on a ¢-Lagrangian surface L C M*" . Then we can map L into A‘*/HO , where ”
AT~ U, /SO, is the Lagrangian Grassmannian, by means of actions of the sub-
group H,.

THEOREM 5.1, Let L" be a minimal ®-Lagrangian submanifold of an Hermitian
manifold M*"

(1) The subgroup H, is contained in the group SU .
(ii) The composition detj: L — A“’/H0 — S' takes L into a point on s'.

COROLLARY S.1. Let [a] be the generating element of the cohomology group
H'(S'.Z). Then the induced cohomology class j" det’[a] is annihilated on L.

REMARK S.1. In the case M™" =~ C" the class j" det’[2a] is the Maslov index of
the Lagrangian surface L. Thus, we again obtain the theorem on the triviality of the
Maslov index in this case [4].

ProOOF OF THEOREM 5.1. We observe that the restriction of the first Chern form
to L is equal to zero. We now give the infinitesimal version of part (i) of Theorem

5.1.

PrOPOSITION 5.1, Let L bea submamfold of an Hermitian manifold M?™, and
H, the subgroup of lhe holonomy group H( M generated by parallel dzsp[acements
alang loops in L. Then the algebra [H, belongs to the algebra su, if and only if the
restriction of the first Chern form to L zs annihilated.

This proposition generalizes Theorem 4.6 of [3], Chapter IX, for the special case
when L = M™" and M~ is a Kihler manifold. It is proved in the same way as in

(3].

Continuation of the proof of Theorem 5.1. Clearly, Theorem 5.1 has the following
equivalent formulation.

THeOREM S5.1”. For any pair (v,y,) and any path u(y,y,) C L joining the
points y and y,. there is an element g € SU, C U, that acts on the tangent space

T\.OMI" such that
T.L=(T, L)-u(y,,y) 8,

where U(y,, v) denotes the parallel displacement along the part u(y, y,).
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PrOOF OF THEOREM 5.1 . Consider an arbitrary path u, C Ly =Yy, U =V.
Let 5: L — U(M) bea (local) section. Then by Theorem 3.2 we have ¥(p(u,)) = 0.
Suppose that %, is the horizontal lift of the path u, in the bundle U(M) with initial
condition , = p(uy) . Then we can write

'ﬁ,r-i)'(u[)vg,, gel,, g,=e.

Obviously, the g, must satisfy the equation

(i) = ad(g,w(B(#,)) + g g,

where w is the Hermitian (canonical) connection form on the principal bundle
U(M). Therefore the path %, is horizontal if and only if

(@) = 0 =ad(g] w(@E(@)) + & &
which is equivalent to
g8 =w(@,). (5.1)
Since W(p(i,)) = 0, we have w(p(u,)) € su,. Since the group SU, is simply-
connected, it follows from (5.1) that g, € SU, for any ¢. This means that

SIS

T‘,L & = j(ﬁ(“\) ) gl) = J(-ﬁl) = T»"(}L Uy, .V()) '
or 1
T L= T‘bL Uy, V,) -8 - Where g € SU, (5.2)

(here j is the natural projection U(.M) — Lag(M): see Proposition 3.1).
Theorem 5.1 follows immediately from (5.2).
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