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Introduction.

The aim of this paper is to develop a method of relative calibra-
tions for studying stability of minimal surfaces in Riemannian mani-
folds. The idea of calibrations was originated by Federer [9] . Then
it was exploited by Dao Trong Thi [13] » Harvey and Lawson D_Oj and
others [5, llJ, for the proof of global minimality of surfaces in Rie-
mannian manifolds., The well-known Stock's theorem gives us a close
connection between the traditional calibrations - the closed differen-
tial forms of comass 1 and the globally (homologically) minimal sur-
faces. As a matter of fact, the method of calibrations has a deeper
Justification: the linear functional S‘{, » Which is the integral fN‘P
where Y’k is a calibration, minimizes the volume functional voa.k.
Choosing Y such that f‘?k approximates up to a second term the func-—
tional vol, on a given minimal surface Nk we can estimatﬁ from below
the second variation of the functional vo:!.k on surface N© in M. This
approach does require a closeness of the form ¥ and the condition of
its comass 1.

The plan of the paper is as follows. In §l we develop the method of
relative calibrations. Then in §2 we apply the developed method to
obtain a lower estimate of the second variation of volume functional
on minimal & -Lagrangian surfaces in Hermitisn manifolds. In par-
ticular we prove the following result.

Theorem. A minimal @ -Lagrangian submanifold in Hermitian mani-
fold M211 is stable if the first Chern form L on M2n is non-posi-
tive (i.e. 12 (X, JX) O for any tangent vector X € T(Mzn) D).

Note that there exist unstable minimal (P-Lagrangian submani -
folds in Hermitian manifolds Men with the positive first Chern form.

In §3 we investigate the stability of closed subgroups in semi-
Simple Lie groups. In particular we have the following theorems.
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Theorem A. The representation d_é s SU2 — G, where G is a semi-
simple compact Lie group of the classical type, is stable if and only
if it is two-dimensional into G = SUn or Spn, it is the sum of a
two-dimensional representation @, +(§2 or a three-dimensional re=-
presentation @3 for G = SOn.'

Theorem B. The canonically embedded subgroup SUn_—>SUm (corres-
pondingly subma.nifoldSLn(C)/SUn-vSLm(C)/SUm)is stable with respect to
the Riemannian structure corresponding to the Killing form. The ca-
nonically imbedded primitive Pontryagin cycles Pl' ces Py — SU, are .
stable minimal surfaces.

The author expresses her deep gratitude to A.T.Fomenko for his
valuable discussions.

1. Quasi regular calibrations snd relative calibrations.

We denote by Gn(Mm)' the Grassmannian fibre bundle whose fibre con-
sists of oriented n-planes & = ™. Using the Riemannian metric on
M one can identify Gn(Mm) with the bundle whose fiber consists of
unit simple tangent n-vectors. Thus every differential n-form ‘P on
M defines a function, denoted also by P on Gn(Mm).

Definition 1.1. A pair ( @7, C (M) ) for which @? is a dif-
ferential n-form on M and C P (M) is a locally trivial fibre sub-
bundle of Gn(Mm) will be called a relative calibration if the
following conditions hold.

a) \Pn takes the value 1 on C “P<M)

(B) the set C \p(M) is a critical set of the function \.Pn and be-
sides for every x €0 -\p(M) the value up(x) is local maximum on
C vy (i.e.the quadratic form Hess\p |, 1S negative semidefinite
on TXG n M).

Not always do we succeed in constructing globally a calibration on
the entire manifold M. We often have to sew together local calibra-
tions using the partition of unity. It is easy to prove the follow-
ing proposition.

Proposition 1.1. Let {Ui} be a locally finite covering of a ma-
nifold M and {hi} be the partition of unity: supp hi < Ui s
h, 2 0, hi(x) =1 Vx €M. Suppose that on every domain Uy
there exists a relative calibration (‘Pin,c ‘Pi(Ui)),We extend KPi and
¢ 4 from U; to M as follows: for all j # i we set \Pi | U:j = 0,
¢ 1(Uy = G,(Uy). Then the padr ( @ = Thy Py, Cp =RC¢s)
satisfies the conditions (A) and (B).
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Definition 1.2. A pair ( Y, C \p) constructed as in Proposition
1l.1. is said to be a quasi regular relative calibration. A submanifold
N <, M will be called Y - submanifold if for all x € N" we have
inclusion T Nn €Cy .

Example of P - submanifolds. From Definition 1.2 it immediate-
ly follows that N is Y - submanifold if and only if for every i
the submanifold (N© (] Ui) is a \pi- submanifold. Clearly one can
always choose (locally) (P, such that for every x e ¥ U; the
set C (x) consists of the unique element associated with the tan-
gent space 'JEKN‘n

We note simplest properties of \p—submanifolds.

Proposition 1.2. Let N° be a P —submanifold in M and (vq,...
vn) is an oriented orthonormal basis in Tx N2, Assume w be a vec-
tor in TxM orthogonal to all Vs Then the following equalities hold

1) plrya oo Av) =1

(i1) Lp(w AVYy eees A;’.\i'\ ces "Vn) = 0 for every i = 1,n.
Proof. The equality (i) follows from Definition 1.2. The equality
(ii) is implied from the fact, that P gets a critical value at the

polyvector vy o v .

n .
Proposition 1.3. Let Y be a quasi regular relative calibration on

Riemannian manifold M" and N® < M* be a P -submanifold. Then
for any normal vector field X on N we have the following equality

c)Nt(P>

g, ‘ vol (N,) = & |
=0 Wlg=0

where Nt is the image of N under the action of the one~parameter
group of diffeomorphisms generated by the vector field X.

Proof., By H we denote the mean curvature of manifold N. We have
then the following identities.

4 vol(Nt) =J <—H,X> + J X dvol) = f(l-H,X >, (@
dtl +=0 N oN N

4 | (th&p)=j xlay) + j'(xJ\p)= J(XJd\P)(II)
at ' +=0 N ON N

Since 4@ = a(h; P;) =dn A P, + hd P, we get

XJay =@Jan) AP, =dn, A P +h(xdayy)
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And because of kPil N = vol x Ve obtain

XJdyY |g=8a&) vol +h (XJ4aY,)

(the term dh; A x4 Y i) equals zero by Proposition 1.2.(ii))
Finally we have

Xlday = Zhi(x..\d‘\P 1)

Taking (I), (II),(1.1) into account we will infer Proposition 1.3
from the following lemma. |

Lemma 1.1. The following equality is satisfied at all points
x €WV

’\/—H, X> = (X_J d_\.Pi) ( Vl’oo.)vn)’

where {vi} is an oriented orthonormal basis in TXN .

Proof. For the sake of convenience we redenote kpi by P and
(y nvi) by N. Further we choose n orthonormal vector fields on
some neighbourhood N(x) of the fixed point x. Because the polyvector
vl(y) A eee Avn(y) is in C @ (y) for all ye€N ¢ (x) thise vector
fields v; define the section P : Ny — C @(M), where C (M) is
the principal fibre bundle on C o (M) with structural group S0,.
We consider the commutative diagram

N "y o QD)

q J

N. xI 2o

¢ Mg(Na)———HM

i

In this diagram q is the identical embedding of Ng into some
neighbourhood Mg (N, ) = N ¢ xI™™@ and j is the natural pro-
jection of the f£ibre bundle C \P<M) into the base M. By virtue of
the covering homotopy Eheorem we conclude that there exists a section

p:M ¢(Wg) — C (M) satisfying P = p - q. Consequently,
there is an extension Vi of vector fields, vy from N ¢ into
M (r ¢ ) such that

(%) <vi, Vj > = Jij ,
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(o) PV, wouy, V) =1 .
We now compute the value (X _| 4 P ) (vl,..., vn) at x.

®Ja9)(ry,env) = T DM CPE vy, T e, )

i=1

-x(up(vl,...,vn)) + l<i<jZEn(-l)i+jLP< [vi,vj} 1Ky eeasViees

PaN n \i -
o2 e Vj’aoo,vn)"" ?___1 (-1) \Pc LI,Vi],..., Vi,..., Vn) °
The first and third terms are zeros by Proposition 1.2. The second
terms are also zeros by means of the identity (s=).

Finally we get

E1d ) (vyyeun,vpy) = Z B ooyt W [x,v, 5] "“’V:L""’Vn)

Zi ([x,v,] vy Y = 2.

. (- Vo
Zi <vvix’ Vi >

1

+ VviX, Vi>

{-H,x

Q.E.D.

Theorem 1.1.Let ¥ be a quasi regular calibration on Riemannian ma-
nifold M" and N*C I be a minimal ‘P-submenifold. Then for any
normal vector field X with a compact support on N® the following in-
equality holds

2
4 vol (L,) > & (! ‘]D )
a | £=0 v 2 32 | =0 Ly .

Proof.Since the vector field X has the compact support we can assume
that for every t €(- &, « ) the submanifold l\It lies in a finite
union of domains Ul"“’Uk' On every intersection N N U Nl g Ve
define two sections Po b Ni g — Gy (U ) and P:L,t : N:. 5 —
Cc Lpl(Ul) The section p0 £ Mle restrlct:.on on Nl £ of the section
Py ¢ Nt — G (M), Xy »——)T Nt' the section Pl . is some extension
of the section Pi o = Port (such an extension exists by the cover-
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ing homotopy theorem, see the proof of Lemma 1.1.). Since Pi‘ t(x) is
a critical point with the negative semidefinite Hessian we héve

Vim0 = Py (G + 1§ (6)) Q2(%) and :4(0) SO,

where Q(t) is the distance between the points p, (x) and P, .(x).
] 9
Since \Pi(Pi,t(x)) =1, we get

[ Doy Paop st = | 14 Lnnc g o g3 -
t I\It

T(E) + J ) hiTi‘ea(t)
Ny

F(t)
N

Clearly, F(t) = and V(%) = vol(N.). Finally,we obtain
t /
N
t

2
(- (B(E) - V(8 )

& 2
2 | a@lt,o‘z BT (P () P2(8)

21, (0) (9'(0)*) < 0.

NJ
|

The proof is complete .

Corollary 1l.1. If a form \p is closed and N* is a minimal kp -
submanifold, then N is a stable submanifold.

Proof. The required inequality follows immediately from Theorem
1.1.

g2

2
g =
a? | o " 7 2 Lo (N§; LR

2. Lower estimate for the second variation of the volume
functional on ®-minimal Lagrangian submanifolds.

Recall that the fundamental 2-form é on a Hermitian manifold
22, T, <,>) is defined as: @ (X,¥) = <X,J¥ > . A submanifold
It c ME]1 is said to be minimal @ -Lagrangian if it is minimal with
respect to the metrics < ,» and the restriction of the form P
on L vanishes. This section is devoted to the proof of the following
result.
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Theorem 2.1. Let L < ,M2n be a minimal @-—Lagrangian submani-
fold in Hermitian manifold Vi and X be a smooth normal vector field
with the compact support on L then the following inequality holds

xx( jL vol) » =2 JC LJ_QCX,JX)

where {1 is the first Chern form on M°%, '

We choose a covering fDi} on some neighbourhood of the sub-
manifold I C M such that every domain {Di} is diffeomorphic to a
ball B™ < R™; Further we define on every intersection I’i =L lei
a section P; from I; into the fibre bundle U(Di) whose fibre con-
sists of unitary bases, as follows: Pi(x:) = (vl(x), J'vl(x),...,
vn(x), Jvn(x)) where vl,.'..vn are certain orthonormal fields on Iy
and J is a complex structure operator. We consider all possible ex-
tensions /ﬁi of the section P, from L; to M (Li) where M (Li) is
some normal neighbourhood of Iy in Di' We assume

A~ = T * (ol
s {\Pe =Re® ¥ (&' A @ A ... ATD)

1

Here OF are the canonical complex l-forms on the bundle U(Di).

Proposition 2,1. (i)The family FLiconsists of relative calibrations
and furthermore L; is a \P/é-sub_manirold for every Yy €Fp .
(i1i}. The restriction of the form Y3 = In P i(elA... A on L
vanishes on L. '

(iii). For every x e'Li and every Y , Y € F; the forms P (x)
and VY (x) are coincident. ' - L .

Proof. We set C @ 3§ =4V & Gn(Di) : kP’e“ (v) = l} . Then the
pair (¥5,Cy;) is & calibration [10] and Cpy = SU,/SO,. Following
[10] we call P73 a special Lagrangian (SL) form.Because of the work of
Harvey and Lawson [10] we can easily deduce all the statements in
Proposition 2.1.

Consider the following family of quasi regular calibrations

FL"{KP = Lo Py Y {"FLi}-

Clearly L is a P -submanifold for every Y € FL‘ We now compute
the second variation along the vector field X

& ( Zi JL,G By P 4) = Zi JI. X 1a@m 9 ) =

a¥ ]t=o
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= Zi 51. X 1 x@ah 94 .

We have X . x(ath; Y,) ) =

(X 4%(@hy)) Py - X(@@hy) A (X 1 Py) + (X Jan) AXC P,

A A A XCYP D) + B (X AX@ P)) + X))@ 4 a Py) . (2.1)

Substituting 2 dh, =0=(X 1Y), = (X Jd P ), into the
right part of (2.1) we get

X _JX(d(hi \pi)) = (X dan;) AX( \P;) = dhy A (X Jx( \pi)) +
+ hi(X Jxca &pi)).

Applying the identity X( \P;) =X 1d P; + &X J \P;) and using the
rule of integration by parts we obtain

j p X Jan) AX(C\Py) = -V(L @ ddn)d) A JdY) =0.

Hence it follows that
2
d , -
2 e ¢ JLtZ\hi Pi)= Ly jLi oy A 1XCY) +
+h, (X 1x@@ P . (2.2)

We divide the estimate of the right part of (2.2) into three steps.
Step 1. We compute the integral

JL by (X | x(@ P3) )

We need the following lemmas whose proof can be carried out by direct
calculation.

Lemma 2.1. For every SL-form Y35 &€ Fp  the following identity
holds at all points x € M ¢ (I;) +

a ¢ =P (-Zwi)AmB AL A
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where (u)j: ) is the 1-form of the Hermitian connection on the fibre
bundle ? U(D,).

Lemna 2.2. Let g be a SL-form, o = Re(8'a... A6™. By P
we denote the form I,m(e1 Aeee A G). Dhen for any l-form P we
have the following equality

\}}/\&Pe=—J’\})Ak?e

where the operator J acts on the cotangent bundle ’I"M2n as follows:

T Y = Y7 v).

Pal k -y
Put Pt (- [ wk )= V,. Then 4 Y; = Y3 A P; by Lemma 2.1.

Consequently,we obtain
X 1X@ 9y = @ IXCY ) A Py =XV AP

FE AV AXICP) =P AR TP,
Since ‘\_Pi’L =0 = \Pi‘L
sition 2.1. and the second follows from Proposition 1.3, Lemma 2.1
and from the assumption of minimality of L) we get the following equa-
1lity by applying Lemma 2.2

(the first equality follows from Propo-

XX P = (@ Layy) +al py(m), T P, +y; P, @.5)

Lemma 2.3. For every L; there exists a calibration ‘PiéFLi such that
the function \}/i(X) is identically equal to zero on minimal

CP -Lagrangian submanifold L.

Proof, First,we choose a coordinate system on some neigh-

1.n
bourhood M ¢ (Li) ~ R 4 R% ];Rsuchthat the following conditions are
satisfied

8.) (O)O, y) (S

b) (d4/4+%) ft‘ (6, o0, ) IXi =2X.
=0

Then the equation of the section 3 for which the corresponding SI-
form P3 satisfies the condition \Y(X) = O, gets the following
form

A) B, z, 3) = Pt z, 7). g(t, z, y)/

(B) V(& (o, 0, 3) .3%) =0
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where P is some fixed section Mi(I'i) LU(Di) constructed as in
the beginning of this section and g is in the structural group U,

Clearly, g(o, o0, y) = e. From (A), (B) we conclude that the condition
V() = 0 is equivalent to the following equation

0= \pcPt<o, 0, 7 ) + [T (1) tr (gelo, 0, 7D . @.4)

Let g(t,z,7) = exp(-t P (P lo,0,5) O%) h)), where h, is the dia-
gonal element ( (:—‘, Oy eeey 0) € u,. One can verify d:.rectly that
g(t,z,y) is a solution of the equatlon (2.4). Hence it follows that
the calibrat:.on‘?corresponding to the constructed section P is the re-
quired one. The proof is complete.
Continuation of Step 1. Suppose that the calibrations V’i are chosen
as in Lemma 2.3. for every i. From (2.2) we obtain the following equa-

lity

X 4x(a \Pi)IL=(XJd W) X = -2 e, 7). (2.5)
Indeed, d Y; =-d( Lwi)=-270 , (L is the first Chemn
form. ‘

Step 2. We claim that the calibrations chosen as in Lemma 2.3
satisfy the following equation '

L jL an, A XJX PN =0 . 2.6)

We £ix the calibration f, and the point x, &€ L, . Let {“Po’ \Pl, ceey
“Ps } be the set of such calibrat:.ons from the chosen family that
\Pl(x ) =0, 1i.e. x, €L; forall 1= 1, s. Then the identity is

implied from the foll ow:.ng assertlon.

Lemma 2.3. For every point X, € L one has

s -
35 (amy A AXC P =0
i=o

Proof. Since \Pj are SL-forms we can write \p; = Re(e W)
where Wy is some C-valuable n-form of degree (n,0), and 0(3 is a
real functlon on scme neighbourhood D (x ) = U N U . By Proposi-
tion 2.1 (111) we can assume that ol (y) = O for every y €Dy (X yNL
and all § = o, s. Then we have

(VY = Re(x(e*™ W )) = Re X(wW,) - X( P mw, . 2.7
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At any point y € D£<xo)’ on the one hand, the following equality is
satisfied.

—
Re(dwo + =1 a Ry A wo)

d\Pj

Yo AY, -=da g A \PO='( Yo -ddj)/\ @d.

On the other hand, we have 4 \py = \yj /\\p therefore (‘¥

\P + d o j) A \p = 0. It is easy to verlfy that the last equa—
tlon is equivalent to the equation \P LVO J . Consequently
at any point y < Da(x)n L we get :

x( o(j) =4 otj(x) = \Pj(x) - Y, x)=0 . (2.8)
Combining (2.8) and (2.7) we obtain

Z: _(an Al 2y = Z;o dn; A (X ReX(w)) = 0. (2.9)
Q.E.D.
Step 3. Applying (2.2), (2.5), (2.6) and Lemma 2.4 we get

& _
v I JLchi P = -2l (x|, (2.10)

Then we infer Theorem 2.1 from (2.10) and Theorem 1l.1.

A form () is said to be negative (resp. positive) if the asso-
ciated symmetric bilinear form .Q.J, NSt J(X,Y) = {1 (X,JY), is nega-
tive (resp. positive). In the case of Kzhler manifold Mzn, positivi-

ty (resp. negativity) of the first Chern form implies positivity
(resp. negativity) of the Ricci tensor and vice versa.

Corollary 2.1. A minimal (? -Lagrangian submanifold L & Vo is
stable if the first Chern form on MZn is non-positive.

The class of Kahler manifolds with the non-positive first Chern
form is large. In particular, it contains Cn, the bounded homogene-
ous domain o < Cn and all the complex submanifolds of arbitrary
Kshler manifold M211 of zero curvature [4]. The Bryant's theorem r_8]
states that all Kahler-Einstein manifolds (among them there are mani-.
folds of non-positive first Chern form and manifolds of an opposite
type) contain local minimal J - Lagrangien submenifolds. Minimal
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@—Lagrangian submanifolds in Hermitian manifolds M°P possess a
trivial characteristic Maslov' class (this was proved by A.T.Fomenko
and the author for the case MPR = R2D ]: 6 ] and by the author for the
general case| I3],

Remark. The inequality in Theorem 2.1 is sharp. For example, con-
sider the imbedding of a real torus T into its complexification Tg'
Then T" is a minimal Lagrangian submanifold in ’I.‘Ic1 and there exists a
normal vector field X on L such that the inequality in Theorem 2.1
turns into the equality. In the same way one considers the cano-
nical imbedding R P* < ¢ P-.

5. Stable subgroups in semisimple Lie groups.

Let @ ¢t H -G be a representation of a semi-simple group H in-
to a semisimple group G. We shall use our method
for finding out the representations Q such that subgroups @(H) are
stable in group G. (Naturally we consider the Riemannian metrics on
G corresponding to the Killing form on 1G = g. It is well-known that
any semisimple subgroup H C G is totally geodesic, therefore it is
a minimal submanifold). We are interested in the case of compact
groups H and G. One can apply the Poincare duality theorem of the ca-.
se of non-compact spaces Hfo Most proofs of the mentioned below theo-
rens are only sketched or not given. The complete proofs and further
aprlications of the method will appear in next papers.

In fact, we can think thai pair ( \Pn, o] P ) is determined by the
form ¢ B, Every locally maximal level C  of the function (¥ on
G (M) provided ¥ takes constent value C > O on C ¢ , gives us
ths gauge ( Qn, o} ZP‘ ), where P = c-l'\P D (we assume the requi-
rement of regularity of the pair ( @ 3¢ .\? ) to be satisfied). With
the help of the following proposition we can recognize the \P—sub-
manifolds.

Proposition 3.1. Let VireeesVps Vo1t e oo ¥y be an orthonormal ba-
sis in the Euclidean space R® and Vi ceey the dual basis in

ALR®, we shall identify the tangent space ’I‘vl_._.. an(Rm) with
the linear span of the vectors vy (i=l-,-_n, J=n+l,m) acting on form

P as follows: Via'< P =v.* A (vy 4P)vy A L AV

d
(1) The point vy A...Av, is a critical point of the
function P=a, v A cel AV, + aLj_l.”J._‘n Vi A e AT

if and only if the intersection of any index set (il,...,in) and the




257

set (1,...,n) contains no more than (n-2) elements.

(ii) Assume V]A+.. AV, to be a critical point of some form

and (vl A see N vn) = 1, Then the symmetric bilinear form
(Hess kp) vy N v, is defined as follows

Hess <Vij’ Vi3 ) = =1 )

Hess (vi,j,vkl) = vkl(vij( LP)) .

We now return to the semisimple compact Lie groups. Consider the
simplest case, when deg \() =3, \P is a bi-invariant form on group
G. Clearly, \P 1is defined by its restriction on the algebra g = 1G.

Theorem 3.1. The form (X,Y,2) = (X, [Y,2] >. is a Ad,-inva-
riant 3-form on g. A point Vi AV, /\v5 is a critical point of Y
on G5(g) if and only if the span (vl, Vs v5) forms a Lie subalgebra.
Hence, \P—submanifolds in G are either totally geodesic 3-spheres
or totally geodesic real three-dimensional projective spaces.

Proof. The first assertion is trivial. By Proposition 3.1 the
point v, v-j is a critical poix;_t_if and only if the following
relations are satisfied for every i = 4,N, where N = dim G.

vy O vy [Vor vz]1>=0 ,
Vo3 C ) (v [Vir v51H=0
V3i( P = (v]_ / [VZ’ v; J>=0

Clearly these relations hold if and only if [vl, v2] ’ [_vz, v3j
D’3’ Vl] are in span (vy, vy, v5) C g. The second assertion is pro-
ved. The third follows from the second.

Any 3-dimensional totally geodesic non=flat submanifold in semi-
simple Lie group G is determined by a representation 7!5 : SU2 — G.

Proposition 3.2. vy A ¥, AVz = Q(sug) is a critical point rea-
lizing locally maximal value of the form P(X,Y,2) =X, [Y,2])de-
fined on the algebra g if and only if § is a .two-dimensional re-
presentation for g = Sun or spn and the sum of two-dimensional repre-
sentation (@J @;L for g = S‘On.

Thus one can see that the critical points realizing a locally ma-
ximal value of the function LP on GB(g), where g is a simple Lie
algebra, realize absolutely maximal value of the considered func-
tion Y . In [7] Brother showed that the canonical embedding SO
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—> S0, is stable; his statement about the stability of SO3 —7U, is
not true. Hence we have the following

Proposition 3.3. The irreducible representation CPE of the group
SU is stable in SU , the representations + @2 and @ of
SU2 are stable in SOn, the representation (SU ) is stable in Spn

The above list of representations of the group SU2 really ex-
hausts all its stable representations. To prove the instability of
other representations we need the following lemma

Lemma 3. . Let @ be a representation of SU’2 in a group G,
and Xo, X, X_ be a standard basis of the subalgebra C@(s )C_

P (X X =X [Xp X =X, [XL X0 =X, [X, ] =
lX =)X_| . By 27l we denote the length of,the circle S(Xo) =
exp t X 0 Further,we suppose that there exist orthonormel vectors V,
W in the orthogonal supplement of @ (Suz) in g such that the fol-
lowing relations hold

e v x5 =<{nw], x5
\<[V’W3 ) X0> ‘ 5

[ X0 | 41

C =

/i

N

then the subgroup @(SUz) is uastable in G.

Proof. We shall construct an explicit variation, decreasing the
volume of @ (SP2> in G. The variation field has the following
type X(x) = a(x) V+ b (x) W, where V,W = the left continuation of
the vectors V, W € g on the sub-group @(SU ). Before construct-
ing the function a(x) and b(x) on CP(SU ) we consider the Hopf's
fibrations: 3 st (x) 5 5 SI (X ) 2

p:S - S or p :RPY —— 2%, 3
where the base 82 is provided with the standard Riemannian metr:.cs,
for which the projection p is a Riemannian immersion. Fix some point
Yo & SZ. Clearly,there exists a section q: sJ\y‘ . Then the functions
a(x) and b(x) can be chosen as follows. Fo¥ every x €& D -1 (yo) we

put

a (x) =2 (p (x)) cos (x, a (» (x)),

b (x) =% (p (x)) sin (x, q (p %)) .

Here the bracket (x, q (p (x)) denotes the oriented (by action of the
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-1/2 1/2 2k-1 €S oK1
2k (k+1) k 6 if k is even
(Xl’ os e 312k_l) <—1)k+l/21mz ié Trcx(l) L 'Xczk_l))
| Sk

if k is odd.

We now introduce some notation concernm_g the elements of gl ). By
J we denote the element {=1' EJJ’ by 13 _ the element B..y by 1§ ~
the element { - E i by iJ the element (13 t . 31 f£“ by i =

the element (13 - ji /N2, by h, the element J—l diag (-1,...,

+ -
Prqpos1tlon 3.4, The (2n-1)-vector Pon-1 =Vn(n+1) (hn/\ln Aln

e Aln-1)nt A (n-1)n7) is a critical point realizing locally ma-

ximal positive value of the function ezn'l on the Grassmannian
Gspy l(su ). '

Proof. We choose the basis in the tangent space TP, l(Gzn 1 (su »
as in Proposition 3.1., i.e. the vectors ij- Ty kl- (J'n, ik, l < n)
act on the lihear function 6°27L as follows: 1j- kl-(O) =¥
(ijtJ e) ( 1) It is easy to verify that ean—l(P l) = 1 and the
point Py, 5 1s critical. To compute the matrix Hess 62n‘1 ( S 1) it
suffices to calculate the wvalues kl- A k'l'+ A (it J' | 13 g 8)
(P e l) We use the following rules:
—

a) Closeness principle: Tr(llal X 1232 XeooX lnan) # 0 if and only if
Jy = lpsye 1y = . Consequently if Tr(llal Xeoo X lnjn)# O then
each index ikoccursaneven nunber of times and the next vectors have

at least one common index.
b) Symmetry principle: the form 2L is invariant with respect to
permutation € (i,3) of the indices i and J.
¢) Antisymmetry rule: Hess.(ijlkl, i'j'J k'1' ) = -Hess (i'j'J k1,
ijJJdkr1r) if (LjJk1) # (Argrdkriv).
d) Sign concordance condition: if g?n-1 (iljl A eee ”‘i2n-132n—1)
# 0, then the number of indices with the sign (-) equals n (mod 2).
We exhibit a part of the matrix Hessg 2n- 1( n-1) in tables 1,2 where
d==(2(n-1))"t, The remaining terms of the matrlx Hess can be easily
calculated by using rules a), b), ¢), &) and tables 1,2.

A straightforward computation shows that the matrix Hess 92n 1
is negative semi-definite and its null-index equals the dimension of

the orbit SU,(P,, ;) on the Grassmannian G,y _;(su,).
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group st (Xo)) arc, joining q(p(x)) and x in p-I(x), £(y) is a
function on Sa, depending on the distance Q (y,yo) and besides

£ (yo) = 0. Clearly, the functions a(x) and b(x) continue on the en-
tire §° (RPB). Applying the second variation formula for minimal or-
bits [7] (in the considered situation the subgroup @ (SU2) acts on
G by the left multiplication)

§2(x) = fuda‘uz +1a0 U2 = ([V, #] , add -bda S .

Psu,) |
We easily get (using Brother's technique | 7] )
JF'y = J1-e) P+ fas 12 LG
52(1) |
Analysing the Euler-Lagrangian equation for (3.1) one can show that
if ¢l » 5/4 there exists a function f on 82, £ (y,) = O, such
that the integral (3.1) is less than zero. The proof is completed.
It is easy to verify that all irreducible representations of di=-
mension k ) 4 of the group SU,, the representation LDBCSUZ) s
SO3 —> SUn, as well as its reducible representations different from
the one mentioned in Proposition 3.3 satisfy the assumption in Lem-
ma 3.1. Consequently,they are unstable.
Theorem 3.2. A representation C@ : ST, —> G 1is stable if and
only if Q = @2 for G =80, = >+ D, or CPsfor
G = SO, and finally P, forg = 8D,
Any representation @ H — G, where G is a semisimple ILie
group, is determined by the family P.: H —> Gy, Where G; are
the simple components of the group G. One can easily prove the fol-

lowing theorem.

Thecrem 3.3. (i) Let the subgroup ¢ (SU ) be diffeomorphic
to sphere S> , Then ¢ (SU ) is stable in G if and only if
there exists index i +that @i(SU;L) is stable in Gi and for
all j #1 we have P (SU, )= e.

(ii) Let the subgroup @ (SU, ) be diffeomorphic to projective
space RPB. Then QJ(SUQ~ ) is stable in G iff for all i the
subgroup P (SU‘g ) is stable in Gy

Thus, Theorems 3.2 and 3.3. gix—re us a classification of the stable
simple compact three-dimensional groups of semi-simple compact Lie
groups of a classical type.

We now deal with the calibrations( ,Cy ) where \p is bi-inva-.
riant form of a high degree on the group SUn. It is well-known that
the exterior algebra of a bi-invariant form on SUn possesses the ge-
nerators 65, 95 see0y Gzn-l. Here the restriction of the form
5L on the algebra su, has the following type
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Theorem 3.4. The canonically imbedded subgroups SUn < SUﬁ and the
Pontrjagin primitive cycles Pan-l < SUﬁ are stable in the group SUﬁ.
Proof. Let ¥ = ot Avee PRI g 5 easy to verify that the
polyvector 56; is a critical point of \ and the matrix Hess
at su, 1is decomposed into a direct sum of the matrix of type
-I (m—n) (m-n-1) (n2-1) 2od (m-n) mafg;ces H;, one of them is equiva-
lent to the matrix Hess at su, on the Grassmanian G_2

gsun—l)' Using the Poincarsgilduality one remarks that the ?as% one
is equivalent to Hess 6 at the point P2n+l’ therefore it is
negative semidefinite. Then we define a calibration ( ¥V, Cy ) as
follows : Cy(e) = {AdG(sun)} , C v (g) = g Cy (e). Then (V¥ , C y )
is a regular relative calibration on SUm and SU, is ¥ -submanifold.
Hence it is (strongly) stable in SUﬁ. The same is true for the Pont-
rjagin cycles. Note that one can repeat these constructions in the
case of non-compact symmetric spaces. In particular we obtain the fol-
lowing result.

Proposition 3.5. Canonically imbedded symmetric subspace Sln(C)/
SU, are stable minimal submanifolds in the space Slm(C)/SUm.

Table I,

In* 127 1~ (12¥2n* J12 [ 20¥01-3 [307 32~ | 30 132"
In* 12~ -1 2 & 2 oL - o
1n~ 127 2 -1 2o - o —d
ont J1-2 2o 24 -1 0 < -
on*J1-3 0( - o 0 -1 - P
m T | -« o —o -1 2
3~ [ 3F a -l - o 2a -1
Table 2.

In"j12" | 10”1127 | 2n7J 12 |20 41-5 [Znt U%7 | 30 (32—
1n*( 12" -1 2 d 24 o« - - &
1nJ12” -2 o -1 24 oL - -
Pn] -2 2o 24 -1 0 o o«
Pn_H-3 o d 0 -1 - & -«
mt 1%t | -« - - | -1 2
Zn” 13" | -« -o -d -2 o -1
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