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1. INTRODUCTION 

INVARIANT AND 

A SYMPLECTIC structure o on a manifold M provides a one-to-one correspondence between 
closed l-forms and infinitesimal automorphisms of (~,~), i.e. vector fields X satisfying 
_Yxw = 0. An infinitesimal automorphism X is called a Hamiltonian vector field, if it 
corresponds to an exact l-form, A symplectomorphism rp on M is called exact, if it is the 
time-one map of a time-dependent Hamiltonian vector field. In fact, one can find a periodic 
Hamiltonian function such that o, is the time-one map of the Hamiltonian system. For each 
symplectomorphism cp isotopic to the identity through symplectomo~hisms, one can 
assign a “cohomology class” Cal(rp), which is called the Calabi invariant of cp. Banyaga [3] 
showed that rp is exact if and only if Cal(p) = 0. The Arnold conjecture states that the 
number of fixed points of an exact symplectomorphism on a compact symplectic manifold 
can be estimated below by the sum of the Betti numbers of M provided that all the fixed 
points are non-degenerate. Arnol’d came to this conjecture by analysing the case that 9 is 
close to the identity (see Cl]). If cp is the time-one map of a time-independent Hamiltonian 
vector field corresponding to a Morse function f which is C2-small, the fixed points 
coincides with the critical points of fand the validity of the conjecture follows directly from 
Morse theory. 

There are many partial results to the Arnol’d conjecture. Great progress was made by 
Floer, who combined the variational approach (see [4]) and Gromov’s theory of pseudo- 
holomorphic curves to prove the Arnol’d conjecture for monotone symplectic manifolds [S]. 
He developed an analogue of Morse theory for the action functional on the loop space and 
this led to the notion of Floer homology. The Arnold conjecture is derived from the fact that 
the Floer homology group is isomorphic to the ordinary homology group of M. Recently, 
Hofer and Salamon ES] defined Floer homology groups for a wider class of symplectic 
manifolds (which are called weakly monotone symplectic manifolds). An almost complex 
structure J on M is calibrated by o, if 

(5>9) = w(& JV) (1.1) 

defines a Riemannian metric on M. Such a J is unique up to homotopy and we denote by 
c1 = cl(M) the first Chern class of the almost complex manifold (M, f). A symplectic 
manifold (M, co) is called monotone, if c1 is a positive multiple of o on n2(M). The condition 
of weak monotonicity [S] implies the non-existence of J-holomorphic spheres with negative 
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Chern number for a generic J. Hofer and Salamon computed the Floer homology and 

verified the Arnol’d conjecture in the case that (M, u) is either monotone, or cl (Q(M)) = 0, 
or the minimal Chern number is at least half of the dimension of M. Later, the second 
author defined the “modified Fleer homology groups” and verified the conjecture for 
weakly monotone symplectic manifolds [lo]. However we do not know whether the Floer 
homology groups defined by Hofer and Salamon and the modified Floer homology groups 
coincide or not. 

In this note, we consider an analogue of the Arnol’d conjecture for non-exact symplec- 
tomorphisms isotopic to the identity through symplectomorphisms. In the case of non- 
exact symplectomorphisms, the fixed point set may be empty. For example, an irrational 
rotation on an even-dimensional torus with the standard symplectic structure preserves the 
symplectic form, and has empty fixed point set. For this reason, we have to consider 
Novikov homology instead of ordinary homology. The aim of this note is to show the 
following theorem. 

MAINTHEOREM. Let (M, w) be a closed symplectic manifold of dimension 2n which satis$es 

the following condition 

Cl In*(M) = ~%2(M), 1 z 0 

and if A < 0, the minimal Chern number N satisfies N > n - 3. Suppose rp is a symplectomor- 

phism on (M, w) which is isotopic to the identity through symplectomorphisms. If all thejxed 

points of cp are non-degenerate, then the number ofJixed points of cp is at least the sum of the 

Betti numbers of the Novikov homology over Zz associated to the Calabi invariant of cp. 

It is well-known that Novikov homology groups are isomorphic for almost all cohomol- 
ogy class in H’(M;R) and the rank of these groups is minimal in; the class of Novikov 
homology groups associated to all the cohomology class in H’(M;R) (see Appendix C). 
Hence we get an estimate of the number of fixed points in terms of Novikov homology for 
generic l-forms. To prove the Main Theorem, we reduce the problem to one concerning the 
l-periodic solutions of a periodic Hamiltonian system and define Floer homology in this 
setting. The argument in [S, 81 shows that the Floer homology groups are isomorphic under 
the deformations preserving the Calabi invariant. However, in order to compute the Floer 
homology, we also have to consider deformations which change the Calabi invariant. To 
apply the weak compactness argument, it is necessary to estimate of the energy functional 
for solutions of the “chain homomorphism” equation. This is done for specific deformations 
with the help of a variant of the Palais-Smale condition (Section 5). 

This note also contains three Appendices. The first one concerns the classification of 
loops in a symplectic manifold under symplectomorphisms. We prove that two embedded 
contractible loops are congruent under a time-one map of a time-dependent Hamiltonian 
flow if and only if their Poincare integral invariants coincide, The second contains a proof of 
a fact which is needed in the computation of the Floer homology groups (see also [14]). The 
third is a note on Novikov homology theory. Since it seems difficult to find a reference 
containing proofs, we give proofs for the sake of completeness. 

2. THE CALABI INVARIANT AND A VARIATIONAL APPROACH 

Given a symplectic form w on M, there is an isomorphism 0 from the space of vector 
fields to the space of differential forms on M: 

qV)(w) = -o(V, w). (2.1) 
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Let g1 be an element of the identity component BiflU M of the symplectomorphism group 
and {gt} a path connecting the identity element and gl. We define a vector field B,(gJ by 

w?t)(4 = 
a ( > -g gt (gt-- ‘4 * 

Clearly, the cP(D,(gJ) are closed differential forms. Recall that g1 is said to be an exact 
symplectomorphism if all the Q(Q(gJ) are exact l-forms. TheJlux homomorphism @ from the 
universal cover -to H’(M,R) is defined as follows (see [3]): 

This homomorphism was first considereeabi and we call the image Q(J) the Calabi 

invariant Cal(g) of an element fi = gi E Diflz M. Passing to the group m the Calabi 
invariant of a symplectomorphism on M is an element of the quotient H’(M, R)/T, where 
F is the image of the subgroup q(Diflz M) which is identified with the kernel of the 
projection from -to Diffi M) under the homomorphism a. It is known ([3], see also 
Lemma 2.1) that F is a discrete subgroup in H’(M,R) if and only if the subgroup of exact 
symplectomorphisms is closed in Difli M. Kiihlerian manifolds, or more generally, any 
symplectic manifold M such that the multiplication by w”- ’ induces an isomorphism from 
H’(M,R) to H2”-‘(M,R), are such examples [3]. 

DEFORMATION LEMMA 2.1. Let [g] EH’(M, R) be the Culabi invariant of an element gI. 

Then there exists a smooth path { gt} in Di#E M, joining the identity element Id and gl, and 

u periodic Hamiltonian Ht on M such that @(D,(g,)) = 8 + dHi,for all t. 

Proof: First, we show that we can choose path gt connecting the identity element and g1 
such that each 8, = @(D,(g,)) has cohomology class [0] and & = el. Put 

s 

1 

V(x) = D&)(x) dt . 
0 

Let G,(x) be the one-parameter subgroup of symplectomorphisms generated by the vector 
field V(x): G, = exp tV. Then the Calabi invariant for the path G_,ogt is zero. It is known 
that there exists a smooth path pt in the subgroup of exact symplectomorphisms, Diff_ M, 

such that PO = Id and pl = G-,*gl (see [3]). By reparametrizing the parameter t, we may 
assume that pt is constant around 0 and 1. Now let us consider the path g; = G, * pr, so we 
have gb = Id and g; = gl. We obtain 

@(D,(G,“~J) = Q((G,) *(D,(P,)) + Q(V) . (2.2) 

From (2.2) we obtain that the form cD(D,(g;)) = 8, lies in the same cohomology class [e] for 
all t. Let pr be as above. Then Q(D,(p,)) is the differential dH, of a smooth function H, on M. 

Now, the periodicity condition e. = fI1 is equivalent to the following: 

dH,, + O(V) = G;(dH,) + Q(V). (2.3) 

Since pt is constant around 0 and 1, dHo = dHI = 0, i.e. Ho and HI are constant functions. 
Hence (2.3) holds. Consequently, we have that HI = Ho + a, where a is some constant. Now 
put Hi = H, + t,b(t), where $(O) = 0, $(l) = - a and I/(O) = +‘(l) = 0. Then the path gr 
associated to 8, = 8 + dHi satisfies the condition of Deformation Lemma. 0 

With the help of our Deformation Lemma we now reduce the problem of finding fixed 
points of a symplectomorphism g to a variational problem on the loop space PM. Suppose 
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that g is given by the following equation: 

90 = Zd, 91=9, @(ZUst)) = 6 

where 8, satisfy the condition in Deformation Lemma. Clearly, the fixed points of g are in 
one-to-one correspondence with the l-periodic solutions of the following differential equa- 
tion 

w = X,(4 x(t)) (2.4) 

where X0 = Cp- ’ (6). (It is easy to see that O- ’ (0) = .ZVP, where P, is a local primitive of the 
closed l-form 0, i.e. 8 = dPe holds locally.) The set Y(fZ,) of l-periodic solutions of (2.4) 
coincide with the critical set (i.e. the zero set) of the following closed l-form d&, on .YA4: 

d&b, 5) = s 4k 5) + a4o)tt). (2.4’) 

The “(minus) gradient flow” for the multi-valued functional J& is defined by the following 
equation. 

(2.5) 

where u = U(S, t) is a mapping R x S’ --t M. For a solution u of (2.5) we define its energy as 
follows. 

As in the case of exact symplectomorphisms, the space of solutions of (2.5) with bounded 
energy is the space of connecting orbits, that is, u : R x S’ + M such that lim,, f co U(S, t) = 
x *(t) where x *(t) are periodic solutions of (2.4). 

We will restrict ourselves to the component of contractible loops on M. For the sake of 
simplicity, henceforth, we also denote this space by LZM. We construct an associated 
covering space _,@a such that the action functional d0 on this cover is single-valued. 
Consider the following commutative diagram: 

Here I8 denotes the covering space of M associated to the period homomorphism of 8, 
Z0 : n,(M) + R. This means that the covering transformation group is isomorphic to the 
quotient group 

I1 = rcl(M)/ker le. 

Furthermore, e denotes the evaluation map x(t)~x(O) and j denotes the projection 
from the covering space @M of S?M associated to the action of homomorphisms 
$,,, &: 7c2(M) + R defined by evaluation of cl and o respectively. This means that the 
covering transformation group is isomorphic to the quotient group 

I-, = R(M) 
ker 4, fl ker 4~~ ’ 



SYMPLECTIC FIXED POINTS 159 

An element of gfi is represented by an equivalence class of pairs (2, fi), where 5 is a loop in 
a and u” is a disk in @ bounding 2. A pair (2, u”) is equivalent to (J, 6) if and only if 5Z = y” and 

the values of &, and & are zero on u #(-u), where u = rr(ti), v = rc(U”) (see [8]).Hence, the 
covering transformation group of 8ti + JZ’~V is the direct sum F = F1 @ F,: 

(~10 YZ)C% u”3 = CY~ ‘2, AZ #yi *u"l , (2.7) 

where A2 is any representative of y2 in Q(M). (Geometrically, u is a disk bounded by 
x E YM. By the homotopy lifting property, there exists a unique disk ii E $ bounded by 1. 
The second homotopy groups of M and fi are same, so we consider g2 as a sphere in G and 
# denotes the connected sum of 2-spheres with the bounding disk (see [8])). To summarise; 
we have the following Lemma. 

LEMMA 2.2. The group r is commutative. In particular, 

for y, y’ E r. 

(y 0 y’)Crn, ii] = (y’ 0 Y) C% u'l 

Since the l-forms 8,, t ES~, satisfy the condition in Deformation Lemma there exists 
a periodic Hamiltonian fi, on ti such that d&, = ~‘8,. Clearly, the time-dependent 
Hamiltonian flow on A? generated by E?, is the pull-back of the original symplectic flow on 
M. In partieular, the set of contractible periodic solutions B(fi,) is the set 7r-‘(~(&)). 
Furthermore, @(A) = j”- ‘(A,) is the critical set of the following functional 

dfi([~,ti]) = - 
s s 

1 
u”*w + fi(t,S(t)) dt. (2.8) 

D 0 

We now consider the space of connecting orbits 6: R x S’ + a on _5?fi satisfying the 
lifted equation: 

(2.9.1) 

with boundary conditions 

s tr& qs, t) = [a ‘(t), 6 ‘1 (2.9.2) 
_ 

and 

[z+,u’-#fi] = [x”,ii+]. (2.9.3) 

The paths in Y&i are in one-to-one correspondence with the paths on the covering space 
sit? modulo the action of T, (see condition (2.9.3)). Consequently, for these connecting 
orbits we have the following energy identity (cf. [8, 143): 

E(fi(s,t)) = 
s 

03 1 ai22 
SI I 

as dt ds = ~&([a-,a-]) - s&([Z+,iZ+]). (2.10) 
-0D 0 

3. TRANSVERSALITY AND COMPACTNESS 

From now on, we will deal with a weekly monotone symplectic manifold M, i.e. 
M satisfies o(A) I 0 for any A EX~(M) with 3 - n I c,(A) < 0 [8]. We also use a generic 
almost complex structure J calibrated by w. The weak monotonicity condition yields the 
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non-existence of J-holomorphic spheres of negative Chern number. Moreover, we denote 
by &I,&; J) the set of points x EM for which there exists a non-constant ~-holomo~hi~ 
sphere D : S* -+ M with cl(v) 5 k, o(u) 5 c and x ~tr(S’). The set MO(co; J) is then a subset 
of M of codimension 4 and the set Ml(oo;J) has codimension 2 [S]. 

The transversality and compactness theorems in this section can be obtained by the 
same arguments in [8]. 

Given any smooth periodic i-from 8, = B + &I, we denote by “%Q(@,) the set of all 
periodic l-forms 8 + dH;’ with /lH; - EZt /I e < 6, where the norm // h/le is defined as follows: 

Here &k > 0 is a sufficiently rapidly decreasing sequence [6]. 

THEOREM 3.1. There is a dense subset O. c 4?&(0,) such that the following holdsfor 6, E Oo. 

(i) every periodic solution x E,P(Q is non-degenerate; 

(ii) x(t)#M,(oo;J)f or euery x E P(@,) and every t E R. 

This is obtained by applying the Sard-Smale theorem to certain Banach manifolds. More 
precisely, for the proof of(i) we consider the Hilbert manifold B of contractible W’*’ loops 
X: S’ --+ M and the bundle & -P @ whose fibre at x EB is the Hilbert space of Lz-vector 
fields along x. Define a section 9 : D x ~~(tl,) --) 8 by 

9(x, B + dH,) = 2 - Xe+&t, x). 

The differential dg(x, 8 + dHf) is surjective [S]. Hence $c intersects the zero section of 
t transversally. Thus, the set 

B = {fx, et) EW x qJ(e) I FF(X, e;) = 0) 

is a separable infinite-~mensional Banach manifold. A periodic form 8; = 8 + dHi ~~~(~~) 

is a regular value of the projection B + @(e,) onto the second factor if and only if every 
periodic solution x E 9(0;) is non-degenerate. By the Sard-Smale theorem the set 

0’ E C(6,) is generic in the sense of Baire. 
To prove (ii) we consider the evaluation map 

e :(w#&(A;f)xGXS2)XS1 xi?-, M X M:([E,z], t,~,e~)~(~(Z),~(t)) 

where J&A;J) denotes the moduli space of simple J-holomorphic spheres realizing 
a homology class A E H,(M, 2) and G is the automorphism group PGL2(C). It is shown 
that the evaluation map e,:B --, M :(x,0&-+x(t), is a submersion for every t E: S’ [83. 
Therefore, the map e is transversal to the diagonal AM in M x M. Hence the space 

N = ((cu,zI,~,(x,~,))Iu(z) = xw,wu f 91 

is an infinite-dimensional Banach submanifold of (Js(A; J) x oS2) x S’ x B of codimension 
2n. The projection 

is a Fredholm map of Fredholm index 2c,(A) - 3. Applying the Sard-Smale theorem we 
get that the set O(A) of regular values of the above projection is of the second category in 
the sense of Baire. Denote by O. the intersection of 0’ with nA,@(A), where I is the 
countable set of integral (and spherical) 2-homology classes A in M for which cl(A) I 1. 
Then O. is the desired set for Theorem 3.1, 0 
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By the previous theorem there exists a periodic l-form 8, = 8 + dH, in a prescribed 

cohomology class [0] such that all contractible l-periodic solution of (2.4) are non- 
degenerate and do not intersect the set MI (cc, J). Choose disjoint compact neighborhoods 

Ul,...,LJ, c S’ x M of the graphs of the finitely many contractible l-periodic solutions of 

(2.4). We denote by %(0,) the set of all periodic l-forms 8, = 8 + dH; with [ILL; - H,II, < 6 
and Hi = H, on Uj for j = 1, . . . , m. If 6 > 0 is sufficiently small then there are no 

contractible l-periodic solutions of (2.4) outside the set V, for 0; E c(&). For an element 
[n, 2i] E @(E?), we assign an integer p([X, t’i]), which is called the Conley-Zehnder index 

C8,141. 

THEOREM 3.2. There is a generic set O1 c Va(O,) containing 8, such that the following 

holds for 0; E 0 I : 

(i) the space A( [R-, zi-1, [Z’, ii+]; t9;, J) of solutions of(2.9.1), (2.9.2) and (2.9.3) with 
[n *, ii * ] E 9(&) is a jnite dimensional manifold of dimension p( [Z-, 17-l) - p( [Z’, I?]); 

(ii) u(s, t) 4 A( a; J) f or every u E A( [Z-, ii-], [Z’, ii+]; t9;, J) with p( [X-, C-1) - 

p([l+,u”+])l2undeuery(s,t)~RxS’. 

The proof of Theorem 3.2 is also obtained by applying the Sard-Smale theorem to 
certain Banach manifolds [a]. For the proof of (i) we consider for p > 2 the Banach 
manifold W of W’** maps u : R x S’ + M, whose limits are periodic solutions x * of (2.4). Let 
d -+ g be the bundle whose fibre at u E W is the Banach space of L*-vector fields along u. 
Define a section 4”:W x Va(O,) + d as follows 

The linearization of p(u,e;) coincides with that of the similar operator in [8]. Further 
arguments in [8] can be repeated word-for-word here. 

In the following we consider the lifted Hamiltonian system on it?. Note that the 
eq. (2.9.1) is invariant under translations in the s-variable. We denote the quotient space by 
.&?([K,ti-1, [I+,C+];fi,J)/R. 

THEOREM 3.3. Suppose that J and 8, are regular (in the sense of Theorem 3.1 and 

Theorem 3.2). Then A([Z-,I?-], [Z’,f’];E?, J)/R is compact, if p([z?-,a-]) - 
,U([Z’,u”‘]) = 1. .&([:-,ti-], [Z?‘, u”+]; H, J)/R is compact up to splitting into two elements 

in A( [a-, G-1, [Z, v”]; E?, J)/R and A( [Z, v’], [1+, I?+]; fi, J)/R, if p( [Z-, C-1) - 
p([x”‘, C’]) = 2. 

Remark 3.4. For the proof of Theorem 3.3 (in the case of an exact Hamiltonian) Hofer 
and Salamon use the uniform lower bound of the energy for holomorphic spheres and 
connecting orbits. They prove the existence of such bounds by bubbling analysis (Gromov’s 
compactness theorem). Alternatively, we can use the (explicit) lower estimate for the volume 
of (globally) minimal cycles in a compact Riemannian manifold [9] to estimate the energy of 
holomorphic spheres. Using Cauchy’s integral inequality one can obtain lower bounds for 
the energy of connecting orbits in terms of distances between periodic solutions. More 
precisely, we define a distance p(x(t), y(t)) between loops x(t) and y(t) by 

inf{ s”ml: /%~dtdslu:Rxf++M, l&p(S,t)=X(t), Jhht&,t)=y(t)]. 
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Clearly p@(t), y(t)) 2 r,’ d&(x(t), y(t)) dt 2 min, d&(x(t), y(t)), where “dist” denotes the 
Riemannian distance on M. If the CO-distance max, dist (x(t), y(t)) is less than or equal to 
the injectivity radius RM of M, then p(x(t),y(t)) I max,dist(x(t),y(t)). Given a finite 
number of periodic solutions xi(t) of (2.4) let h denote the minimum of the distance between 

xi(t) and xi(t), i # j. 

LEMMA 3.5. Given a positive E < min{RY, h/2} there exists a number C(E) > 0 depending 

on 8, such that 

E(u) 2 c(e)(h - 2~) 

for any connecting orbit u on M satisfying (2.3, whose limits as s tends to f co are dierent 

periodic solutions of (2.4). 

Proof Let Bi(s) be the neighborhood of xi(t) which consists of loops whose distance 
p from xi(t) is less than or equal to E. Let B(E) = IJBi(E). By the Palais-Smale condition (see 
Lemma 5.1) there exists C(E) > 0 such that the following inequality holds outside of B(s) 

II a(t) - x&(t)) II L* 2 CW. (3.1) 

Suppose u is a connecting orbit from xi(t) to Xj(t). Since s2mm~(~, .) (in the CO-sense) are 
periodic solutions xi(t) and Xj(t), we obtain: 

_ 

CLAIM 3.6. There exist numbers R- and R’ such that 

(i) u(R-, t) E Bi(E) and U(S, t) 4 Bi(E)fOr all s > R-, 

(ii) u(R+, t) E Bj(E) and U(S, t) 4 Bj(E)for all s < R+. 

We observe that 

E(u)~~~:S:l~l2dids=~~~(J~~,ii(s,i)-x,.(u(s,t))l’dt)2ds. 

Applying Cauchy’s inequality we get 

E(u) 2 
1 R+ 

(s J 

1 

R+-R- R- 
1 ti(s, t) - XB,(u(s, t))12 dt ds 

o > 

2 

. 

Taking (3.1) and Claim 3.6 into account we get 

Once again applying Cauchy’s inequality, we get 

EMS;+ filsl dt ds 2 c(E)( p(xi(t), xi(t)) - 2s). 0 

4. FLOER HOMOLOGY 

In this section we define Floer homology of fixed points of a symplectomorphism 
isotopic to the identity and prove its invariance under exact deformations. As a result, if two 
symplectomorphisms have the same Calabi invariant then the associated Floer homology 
groups are isomorphic. We will work on the covering space _@a. 
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In this paper [14], Salamon and Zehnder used the Conley-Zehnder index (which they 
also call the Maslov index) of a non-degenerate contractible periodic solution as a natural 
grading for the Floer complex. Recall that the Conley-Zehnder index of a contractible 
periodic solution x(t) bounding a disk u depends only on the trivialization of the induced 
complex bundle U* TM and the linearized flow along x(t). Therefore, the Conley-Zehnder 
index of a periodic solution [_?, u”] E gh? is II-invariant, that is p( [5?, ii]) = p(g. [n, G]) for 
any g E 11, where I1 is the covering transformation group of a. This Conley-Zehnder 
index satisfies the following identities (cf. [8, 143). 

p([I,A#G]) - ~([&a]) = - 2c,(A) for A E n,(M) (4.1) 

dim J([n-,a-], [z’,iP];I?,J) = p([K,G-1) - p([z’,G’]). (4.2) 

The Conley-Zehnder index p(x(t)) of a periodic solution x(t) is well-defined modulo 2N, 
where N is the minimal Chern number. However, we will write p(x(t)) = k E Z if there is 
a bounding disk U, such that ~([x, u,]) = k. 

Denote by @;,(E?) the subset of all periodic solutions [x”, ti] with ,~([a, u’]) = k. Consider 
the chain complex whose kth chain group &(E?) consists of all the formal sums ~<t~,~,. 

C% 4, cc u”l g %W), &ii, E z2 3 such that the set {[j&t?] I<Ci,e, # 0, ~~&([n,ti]) > c} is 
finite fo.r all c E R. 

Let I, be the following subgroup of I,, 

and define I’ to be I, @ I, c I. 
Denote by AO,w the completion of the group ring of I’ over the field Z2 with respect to 

the weight homomorphism ‘PO,,, = Z0 @ - & : r’ + R, i.e. the set of all the formal sums 
C~,.84,suchthat~,~Z,,andtheset{A~T’I~,#O,Y’,,,(A)>c}isfiniteforallc~R. 
In fact, Ae,o is a commutative algebra over Z2 without zero divisors. 

Remark 4.1. If M satisfies the condition of the Main Theorem, then I, is trivial and 
Ag,o E A@, where A0 is the Novikov ring associated to the closed l-form 8 (see Appendix C). 
It is easy to see that in this case the ambiguity of the Conley-Zehnder index of a periodic 
solution x(t) can be controlled. More precisely, if p(x(t)) = k(mod 2N) then there exists 
a bounding disk uX, which is unique up to the connected sum of an element of ker &,, such 
that p([x(t),uJ) = k. 

The algebra Ae,,, acts on @(E?) in the following way: 

We easily deduce the following lemma. 

LEMMA 4.2. The chain group C,(H) is a torsion-free module over the algebra &,a. The 
rank of this module is the number of contractible l-periodic solutions x E 9(0,) with Con- 
ley-Zehnder index p(x) = k. 

For a generator [g, G] in C,(g), we define the boundary operator & as follows: 

UC% a = e([~ cF;=k_ In2(CEy 4, CR fil)K 51 (4.3) 

where n2([I, 121, [y’, v’]) denotes the modulo-2 reduction of the number of elements in the 
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space A([n,fi], [ j,v”];fi, J)/R. The weak compactness argument gives that ak is well- 
defined. To show that a,([$ zi]) E Ck_ r we can use a compactness argument as in the proof 
of Lemma 5.5 below or combine the weak-compactness result with Lemma 3.5. In fact, write 

a,([a, c]) = Cg,,,er,Sp,i [Zi, u'i], where Si, i = { 1, . . . , K}, is an arbitrarily chosen lift to @ of 
a periodic solution xi E P(0,) and rii is an arbitrarily chosen bounding disk of z*. We need to 
show that for any given c and i the set S, = { gp,i 1 dB(g,i[fi, ii]) > c} is finite. Taking into 
account the energy identity (2.10) and Lemma 3.5 we get that the set of distances 
p(x(t),g *xi(t)) for g E S, is bounded. Hence for each i, there is only a finite number of g E I1 
such that the coefficient of [g * Xi, iii] in ak [z?, u”]) is not zero and dg( [ g * xi(t), II]) > c. If I0 is 
trivial (e.g. M satisfies the condition in Main Theorem), then we are done. If not, we use 
Gromov’s compactness theorem to show that there is only finite number of homotopy types 
of connecting orbits between x(t) and xi(t) with bounded energy. 

Since ak is invariant under the action of I’, we extend & as a &.,-linear map from C@) 
to Ck _ 1 (I?). Using a gluing argument and the weak compactness argument, we also deduce 
that a2 = 0. The homology groups 

HFk(M,w,f3,,J;Z2) = $ 
k+l 

are called the Floer homology groups of the quadruple (M, co, 8,, J) with coefficients in Z2. 
Obviously, they are a graded Ae,w- modules. The following theorem shows that the Floer 

homology groups are invariant under exact deformations. 

THEOREM 4.3. For generic pairs (of, J”), (of, JB) such that 0; = @ + df,, there exists 

a natural AOS,-module homomorphism 

HFB9”: HF (e;, J”) + HF (of, JB) . . 

which preserves the grading by the Conley-Zehnder index. Zf (&‘, Jy) is any other such pair 
then 

HFYfl o HF@“’ = HF Y=, HF”” = Id. 

In particular, HFaa is a &,,-module isomorphism. 

Proof The proof of Theorem 4.3 is carried out in the same way as in [S, 81 (see also the 
Section 5 below). Namely, we construct a chain homomorphism with the help of the “chain 
homomorphism equation” which is a s-dependent analogue of the connecting orbit equa- 
tion (2.9.1), (2.9.2), (2.9.3). Let 8,,, denote a generic path connecting 0; and @ in the fixed 
cohomology class. More precisely, there is a two-parameter family of functions H,,, on M, 

such that 

e,,t = 0: + dH,, 

and for a sufficiently large R, 

H,,=O fors< -R 

H,,,=f, fors>R. 

To construct a chain homomorphism @*@ : C.(@, J”) + C.(#, JB), we consider the follow- 
ing equation 

= o (4.4) 

Here, the key problem is to control the energy of solutions tip*a(s, t) “connecting” two 
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periodic solutions [Z’,u’“] and [z?,G@]. Let E? be a Hamiltonian function on a such that 
dfi = z*e;. Then p = H” + TIDE, satisfies dfi’ = Gwen. Let [z?,u-] E @(a) and 
[J, u’] E @(fit). We then have the following inequality: 

for a solution u of (4.4) with lim,,_, u(s, t) = z(Z) E Y(&), lim,,, u(s, t) = n(y”) E 9(@) 
and [y’, U- #u] = [J, u’]. Hence we have the weak-compactness of A($,J; 8, + dH,,,, J,) 
and the argument in [8] yields Theorem 4.3. 0 

5. A VARIANT OF THE PALAIS-SMALE CONDITION AND CONTINUATION 

To compute the Floer homology groups we need to use deformations which change the 
Calabi invariant. There are two difficulties which arise in proving the chain homomorphism 
between the Floer homologies associated to different Calabi invariants: the first is to control 
the energy of solutions of the “chain homomorphism equation”, and the second to make 
sure that the chain homomorphism preserves the “finiteness condition” which arises in the 
definition of the chain complexes. We overcome the first one by using a variant of the 
Palais-Smale condition. We have to restrict ourselves to the case of symplectic manifolds 
satisfying the condition in Main Theorem in order to avoid the second difficulty. We start 
by proving a variant of the Palais-Smale condition as follows: 

LEMMA 5.1. Let xj: S’ + M be a sequence of contractible W1P2-loops in M. Zf 

1) ij - X,,(Xj) llL2 tends to 0 asj + + a~, then there exists a subsequence, which we also denote 

by ‘(xj}, such that xj converges to a contractible periodic solution x, in the CO-sense. 

Proof Without loss of generality, M is assumed to be embedded in RN0 for some 
sufficiently large No and Xj E W’*‘(S’, RN”) such that Im(xj) c M. Since M is compact and 
limj _+ m 11 i,(t) - X,,(xj(t)) I[Lz = 0, there exists a constant C > 0 such that IIXjllwl.2 < C. By 
the Rellich lemma, Xj converges to x, in the C”-topology for 0 I a < l/2, and x, is the 
weak-limit of Xj in W192(S’,RNo). In particular, x, is in W’*‘(S1,RNa). 

Since Xj converges to x, in the Co-topology, X,,(Xj) also converges to X0,(x,) in the 
Co-topology. Thus it is easy to see that 

s 

1 

(xco(~),W)) dt = - 

0 s 

lCM~mWMt)) dt 

0 

for any cp E C03(S1,RNo), i.e. a,(t) - X0,(x,(t)) = 0 in L2(S1,RNo). By the regularity argu- 
ment, x, satisfies i,(t) - X0,(x,(t)) = 0 in the classical sense. Contractible loops Xj 
converges to x, in the Co-topology, therefore x, is a contractible loop. 0 

For a generic periodic time-dependent symplectic vector field X0,, the set of periodic 
solutions is finite. Let x1, . . . , x1 be all the contractible periodic solutions and U1, . . . , Ul 

tubular neighborhoods of the graphs of Xj in M x S ‘. The following lemma is a direct 
consequence of Lemma 5.1. 

LEMMA 5.2. There exists c > 0 such that 1) i - X,, I/ Lo > c for any contractible loop x in 
M whose graph is not contained in any of the Uis. 

Let q be a closed l-form on M, and p: M x S’ -P M the projection to the second factor. 
Since each Xj is contractible, the restriction of p*q to Uj is exact. Hence we can find 
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a periodic family {Q} of closed l-forms on M which are cohomologous to q and vanish on 
Uj for all j. Let {e,} be a regular periodic family of closed l-forms on M (see Theorems 3.1 
and 3.2). Using a perturbation of qr we may also assume that 8, + E * qt is regular. Then we 
can show the following theorem. 

THEOREM 5.3. Suppose that M satisfies the condition of the Main Theorem. For a periodic 

family {Q} in the cohomology class n = Cal(&), there exists h > 0 such that 

HF,(g,, J) = HF,(g, + E * n1, J’) 

for E < h. Moreover the above isomorphism is &,-linear. 

To construct a chain homomorphism, we consider the following equation: 

(5.1) 

with 

and 

(J,,g,,,) = (J,g,) for s < - R 

(J,, e,,) = (J’, 8, + EQ) for s > R 

4, = 8, + 4+)a.n,. 

Here C&(S) is a monotone increasing smooth function on [ -R, R] which vanishes near -R 
and equals 1 near R. 

Define the energy by 

If a solution u of (5.1) has finite energy, then lim,, fao u(s, t) exists and 

z- = lim U(S, t) E 9ye,) 
s+-al 

Z+ = ;it u(s, t) E 9(e, + EV,) 
(5.2) 

Using a perturbation of J, we assume that the path (J,, g,,,) is regular (in the sense of 
Section 3), and moreover, we may assume that J’ is sufficiently close to J so that 
1 J, - J I(x) < 6 for all s, x for some small 6 > 0 to be specified later. The following lemma 
contains a key estimate needed in our compactness argument. 

LEMMA 5.4. Let E be a real number such that 1s. n,[ < c/3 for all t. For a solution fi of 

(5.1) satisfying (5.2) and the boundary condition [z”+,u-, #I’?] = [z”‘,u’], we have 

E(G) 5 3(zd~,([z”-,u-3) - &&([i+,u+])), where I?, is a Hamiltonian function on a such 
that dE?, = n*g,. 

Proof: Since the formal L2-gradient of JZ&, is J(afi/at - X0,), we have 

If u, = K 0 i& : S’ + M factors through Uj + M for some j, then X,, = 0 along us, and hence 
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If not, we have 

Since u satisfies (5.1) we get from (5.4) 

Our assumption that I+(s). EQ[ I c/3 yields 

IJ,-Jl. s-x& -lJ,-Jl J,g+$(s).EQ 56 (l+S)% + /3 
lau I- .I l ( lJsl c)* W) 

Applying the Cauchy inequality to jt I%1 dt, we obtain from (5.5) and (5.6) 

(5.7) 

Our assumptions and Lemma 5.2 imply II ih/ds /IL2 2 2c/3. Now it is easy to verify the 
following inequality 

I/://,* (ll~llL. - ;) >O. 
Therefore, for 6 small enough (e.g. 6 = l/100), we obtain 

(1 - 4!4l;, - /$l + ~)c/31 2 44;; (5.8) 

Combining (5.3) (5.7) and (5.8) yields the desired estimate. 0 

Once we have the uniform bound of the energy functional, the weak-compactness 
property holds. In particular, _M(Z-, ?; e,,,,J,) is a finite set if ~~~(2~) = P~~+~~~(Z+). We 
define a chain homomorphism 4 : C,(e,, J) + C,(O, + EQ, J’) as follows: 

where m,(Z, y”) denotes the modulo-2 reduction of the cardinality of _,#?(I, 9; 8,, f, J,). Now we 
show that 4(Z) E C,(p:). 

LEMMA 5.5. For each c andjxed periodic solution y’ E B(&) there is only ajnite number 
of elements g E r, such that the coefJicient ofg-jj in 4(Z) is not zero and .&;(g*jj) > c. 

Proof The same argument as in the proof of Lemma 5.4 gives that 
J&(P) I &R(F) - E(u”)/3, where E?: is a Hamiltonian function for z’(f3, + EQ). In other 
words, ~&‘g: is also a Liapunov function for the “flow” defined by eq. (5.1). This inequality 
implies that if g satisfies the condition of Lemma 5.5 then the energy of a solution u of (5.1), 
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whose lift to jt? joins x” and g - j, is uniformly bounded by some c’. Assume the contrary, i.e. 
there exists an infinite number of g1 E l-i satisfying the condition in Lemma 5.5. Then there 
exists an infinite number of solutions r& of (5.1) on fi such that lim,, _ m iii = 2, 
lim,,, u”i = g{*y” and E(ui) < c’. By the compactness result, there exists a limit a,. Let gm be 
an element in r, such that lim,,, u”, = go0 * y”. Note that all Et, 6, have R as one of the ends. 
Then the other end of t&, when E is sufficient large, is also g, * jt We arrive at a contradic- 
tion, 0 

It is easy to see that 4 is invariant under the action of rl. By Lemma 5.5 we can extend 
r$ as a chain homomorphism of A~-modules C,(B) and C,(&. The same argument now 
shows that Q, is a &-linear isomorphism. This completes the proof of Theorem 5.3. 0 

6. FLOER HOMOLOGY AND NOVIKOV HOMOLOGY 

First of all, we recall some fundamental facts about Novikov homology. Let X be 
a closed manifold and q a closed l-form on X. Denote by n; : 2 + X the covering space 
associated to the homomorphism I, : q(X) -+ R. Then there exists a functionf: 2 + R such 
that x*q = df, For a generic Riemannian metric g on X, the gradient flow of fwith respect 
to x’g is of Morse-Smale type and the Novikov complex Cp(q,g) is defined in the same 
way as the Morse complex (cf. Appendix C). The complex Cp(q, g) is a graded module over 
the Novikov ring A,,. The homology group Nov,(q,g) of C]l’o”(q,g) is called the Novikov 
homology associated to q. In this note we consider only Novikov rings over Z2. 

Fact 6.1: Nov,(q, g) does not depend on the choice of Riemanniun metric g for which the 
gradient flow off is of Morse-Sma~e type. 

Fact 6.2: Noo,(q) = Nov,(n,g) depends only on the projective class of the cohomology 
class of n, i.e. 

Nov,(q) r Nov.(#) iffy] = n[q’] in Hl(X;R) for some 1# 0. 

The following Fact 6.3 tells us that the Novikov homology can be computed from the 
Morse complex c,(h) of n*h : _f + R. 

Fact 6.3: Nov*(q) = H&?,(h) @I A,,). 

The goal of this section is to show the following result. 

THEOREM 6.4. Let (M,w) be a symplectic manifold of dimension 2n satisfying the condi- 
tion of the Main Theorem. For a generic periodic family (0,) of closed l-forms in a fixed 
cohomology class [n] there exists a natural isomorphism of graded A,-modules 

Proo$ For generic pairs ((&},P) and ({@},P) with the same Calabi invariant, 

fqe:, J*) s HK(et, J=) 

by Theorem 5.1. In other words, the Floer homology does not depend on the choice of 
a generic pair ((e,), J) with prescribed Calabi invariant q. We denote this homology by 
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HF.(q). Theorem 5.4 implies that 

HF.(q) g HF,((l + &)a~) for IsI c A(V). 

Let h be a Morse function on M. We consider the action functional J/,, : .@A + R. Note 
that this is the pull-back of the action functional on _@M. We shall define a chain complex 

C,(n’h,J). The chain group consists of Ca c1,03[x”, fi], where the sum is taken over pairs 
[n, u”] E ga such that 2 is a critical point of rc’h and the set { [_?, u’] ( cci,51 # 0 and 
JQ [g, G]) > c> is finite for all c. We choose h to be a sufficiently C*-small function such that 
the l-periodic solution x(t) are precisely the critical points of h. Moreover we may assume 
that the critical points of h and the gradient trajectories with Hessian index difference 1 do 
not intersect the J-holomorphic spheres with Chern number less than or equal to 1. The 
following lemma shows that the boundary operator a depends only on the gradient 
trajectories of h. 

LEMMA 6.5 [ 10, Corollary 4.61. Let (M, co) be a closed symplectic manifold of dimension 
2n which satis$es the condition in the Main Theorem or clln2(M, = 0. Suppose h is a Morse 

function on M. Then there exists a number 7 > 0 such that ifu is a solution of(2.9.1), (2.9.2) and 

(2.9.3) corresponding to the (time-independent) Hamiltonian zh and ,u(u) I 1, then u is 

independent oft. 

We also have that the linearization of the operator (2.9.1) is non-degenerate at the 
gradient trajectories of h (see Appendix B). The boundary operator a is defined exactly same 
as in (4.3). We denote the resulting homology group by HF,(n’h, J). Then as in the proof of 
Theorem 5.4, the fact that .G$ is a Liapunov function for (5.1) yields that 

HF,(h,J) r HF,(s*n,J’) for IsI < h(0). 

Therefore HF,(q) s HF,([dh]). Now recall the relation between the Conley-Zehnder index 
of the pair [x = x(t), u,], where u, is an element in r,, and the Morse index ind&) of h at x: 
p([x(t), u,]) = ind,(x) - n [14,8]. Therefore the set of all x(t) with Conley-Zehnder index 
k coincides with the set of all critical points x = x(t) of Morse indexj = k (mod 2N). Taking 
Fact 6.3 into account, Lemma 6.5 implies that the Floer complex C,(dh, J) is isomorphic to 
the Novikov complex Cp(dh). 

Theorem 6.4 implies our Main Theorem. 

1. AN EXAMPLE 

By Theorem C.4 the Euler number of the Novikov homology of a free Abelian covering 
G is the same as that of the original manifold M. Hence, our theorem also implies the 
Lefschetz fixed point formula for symplectomorphisms which are symplectically isotopic to 
the identity. Here we will give a non-trivial example of symplectic manifolds satisfying the 
condition of the Main Theorem such that the sum of the Betti numbers of the Novikov 
homology corresponding to any free Abelian covering of M is strictly greater than the Euler 
number of M. By Theorem C.2 it suffices to consider the maximal free Abelian covering 
fiofM. 

The following example of 3-folds with non-vanishing odd Betti number was pointed out 
to us by Keiji Oguiso. Let Xk be the hypersurface in CP4 defined by the equation 

@I + . . . + xi = O}.Denote by h the generator of H2(CP4; Z). A direct calculation 

yields 
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CLAIM 7.1. The first Chern class of Xk satisfies c1 = (5 - k)hIx,. If k 2 3 the Betti 
number b3(Xk) is non-zero. 

Let C, denote a Riemannian surface of genus g # 0. We have az(Z,) = 0 and any 
non-degenerate 2-form o, on C, is a symplectic form. 

CLAIM 7.2. The product manifold (X, x I&, wx @ 08), k # 5, is a symplectic manifold 
which satis$es the condition in Main Theorem. Further suppose that k 2 3 and g 2 2. Then the 

sum of the Betti numbers of the maximal free Abelian covering of Xk x C, is strictly greater 

than the Euler number of Xk x C,. 

ProoJ: The first statement is trivial. The maximal free Abelian covering of X x Ze is 
X x ge, where E9 denotes the maximal free Abelian covering of Ze. Using Theorem C.4 it is 
easy to see that the Betti numbers of 2, are 0,2g - 2,0. With the help of Claim 7.1 and 
Theorem C.3 we obtain the second statement in Claim 7.2. In particular, if k = 3 we have 
the Euler number of X3 x C, = 12(g - 1) while the sum of its Betti numbers equals 
28(g - l), if k = 4 we have the Euler number of X, x & = 112(g - 1) while the sum of its 
Betti numbers equals 128(g - 1). 0 

Thus, if k 2 3, k # 5, and g 2 2, the number of the fixed points of a symplectomorphism 
f E D5ffo,(X, x C,) is strictly greater than the Euler number of Xk x Ze, provided that all the 
fixed points are non-degenerate. In particular, if k = 3 (or k = 4, resp.) this number is at 
least 28(g - 1) (or 128(g - l), resp.). 

8. CONCLUDING REMARKS 

l If c Ilnl(Mj = 0 the Novikov ring A,,,, changes when the cohomology class 8 changes. 

That is the main obstruction to the control of the “finiteness condition”, and therefore, to 
the construction of “chain homomorphisms” and computation of the corresponding Floer 
homology groups. However, if the Calabi invariant is small enough we still have the 
following theorem. 

THEOREM 8.1. Let (M, o) be a closed symplectic manifold and cIIn2(M, = 0. There exists 
E > 0 such that zf 1 [O] 1 < E then 

He(g) z Nov,(@ O,,,&,o. 

Consequently, the sum of ranks of HF.(g) equals of Nov.(g). 

Here we suppose that M is equipped with some Riemannian metric and that the norm 
I[e] 1 is defined as the infimum of the norms of l-forms 8 in the cohomology class [t?]. 

Proof of Theorem 8.1. By Theorem 4.3 (invariance under exact deformations) it suffices 
to show that for each regular periodic l-form 8, on M there exists a positive number r such 
that HF.(z .0,, J) z Not@) I$&.+!~,~. First we choose a C2-small Morse function which 
satisfies the condition of Lemma 6.5. We lift this function h to the covering space fi corres- 
ponding to the form 8. As in Section 6 we define the Floer complex C.(&, J) for the lifted 
function K. Further we choose r small enough so that the energy estimate for the “chain 
homomorphism” solution u between HF.(&J) and HF.@ -8, .I’) holds (see Lemma 5.4). 
Finally we compare the Floer homology HF.(z) with the Novikov homology Nov.(B). As in 
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the proof of Theorem 6.4, we have 

Remark 8.2. If the dimension of a symplectic manifold (M, o) is less than or equal to 6, 
then M is automatically weakly monotone and the conclusion of the Main Theorem holds 
without the assumption on the minimal Chern number. 
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APPENDIX A: ON POINCARtiS INVARIANT FOR SYMPLECTOMORPHISMS 

In this section, for symplectic manifolds of dimension greater than or equal to four we prove the 
converse of the PoincarC theorem, namely, if two embedded loops on a symplectic manifold M have 
the same Poincark invariant then there exists an exact Hamiltonian flow on M which sends one loop 
to the other. 

Originally the Poincark theorem was stated for the symplectic manifold R2” and then for the 
cotangent bundle T’M with the canonical l-form o! = p dq and the canonical symplectic form o = dcc 
[l]. In the general case of an arbitrary symplectic manifold M we replace the Poincark integral by the 
action functional d defined on an appropriate covering space of the space EL?(M) of contractible 
embedded loops. We define this covering space Eg(M) to be the quotient of the space of pairs 
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Fe, ;;;l$ = y ) by the equivalence relation defined by homotopy equivalence of the bounding disk u. 

d([y, u]) = s u*oJ * (AlI 

Descending to the base space, the action functional is only defined modulo the group w([xs(M)]). 
However, the differential of the action functional is well-defined on the loop space: 

d4y)W) = 4X PI = - WWr3) 642) 

where (0 is defined in (2.1). From (A2) we immediately obtain the following well-known theorem. 

THEOREM A.l. Any Hamiltonianflowf, on M preserves the generalized Poincare invariant, namely 
the action functional on the covering space EL?(M) of the space of embedded contractible loops EY(M) 

d( [Y, ul) = N-_L(r),_L(~)l) * 

Note that if the symplectic form o on M is exact, that is o = da, then 

-ehul) = a. 
s 

643) 
Y 

THEOREM A.2. Let (M, w) be a symplectic manifold of dimension 2m 2 4. Suppose that two embed- 
ded contractible loops [yO,uo] and [yl,ul] have the same Poincare invariant. Then there exists 
a Hamiltonianj7owf, such that f. = Id and fi(YO) = Y1. 

Proof: This follows from the following two propositions. 

PROPOSITION A.3. Every level surface d-‘(a) c EL?(M) is path-connected. 

PROPOSITION A.4. Suppose a path [y_uJ, s f [O, 11, of embedded loops lies on a level surface 
&-‘(a). Then there exists a Hamiltonian flow f, such that fs(YO) = Ys. 

Proof of Proposition A.3. It is easy to see that the space EL??(M) is path-connected. Suppose that 
[us, u,] is a path in E_@(M) which joins two points of [yo,uO] and [yi,ui] with the same Poincare 
invariant. Our aim now is to find a deformation of the path [ys,us] to a new path with the same 
endpoints and constant Poincart invariant. 

Fix two distinct points p E Y. and q E Y1. Yet (r : [0, i] -+ M be an embedding with a(O) = p and 
a( 1) = q, By Darboux’s theorem there exists a tubular neighborhood N, of c( [0, 11) in M such that N, 
is symplectomorphic to [0, l] x Dim-l in R2" with the standard symplectic structure for some E > 0 
(here D~“‘-i is the a-ball in R2m-'). Th us we can find a smooth family of embeddings 
$s : oz(.$ x [0, 1) + N, such that the following condition holds. 

For all s and r the restriction 4s to D:(E) = (D2(s), T) is a symplectic embedding (here the disk D2(s) 
of radius E carries the standard symplectic structure). 

Let x(s) be a smooth function on [0, l] with x(O) = x(1) = 0 and 0 < x(s) I 1 for s E (0,l). Now we 
can find a finite number of points pi, . . . , t, E [0, l] and construct an embedding a,: S’ x [0, 1) + N, 
with the following properties. 

(la) For each s, the image @,(S’) = Q(S’,s) is a connected sum of n circles 

#,(S,‘,.,) #&(Sf,,,) # *.. ###a,,) 

where Sf, .s is the boundary of Df,(x(s) * E), 
(lb) Oo(S’) = p, (I+(S’) = q. 
(2) For each s, we have &(@,(S’)) = J o,CsL)a> l&(y.) - .&(yo)l. Here a is an l-form on N, such 

that WIN, = da. 

Here the condition 2m 2 4 makes sure that the connected sum of circles 0,( St, ,,) can be chosen as 
embedded loops in M. Note that each circle Sj, ,s bounds a disk Dfi( x(s). E). Therefore, for each s, the 
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connected sum (9,(S’) bounds a disk, which is a boundary connected sum of the disks ~,(D~,(x(s) * E)) 
for i = 1, . . . , n. More precisely, the map Cp can be extended to Dz x [O, 11, which is also denoted by a,. 
Now we consider a new path [y:,uh] which is the connected sum [y. #U$(Sl),u, #@@)]. The 
conditions (lb) and (2) imply that 

(3) Crb,4Jl= CYo,UoI, CrL41 = CY19U11, 
(4) for each s we have d(y:) 2 d(y,) = &(yl). 

Once again we apply the construction of connected sum to the path [y:,u:] with the path 
[0:(Si),@:(D2)] which satisfies the opposite condition to (2). Namely we have 

(2’) JOK(S1)) 5 - Id(&) - d(rb)l * 

Clearly, the path [ye, u:] also joins [yo, uo] and [yl, ur]. By our construction it is easy to find 
a positive function tf(s) on [O,l], 0 5 q(s) 5 1, such that the path [$‘,u:l’] = [y:#~~(~(s)*S’), 
u: #@:(q(s)* D’)] has the properties required in Proposition A.3. Geometrically, q(s)* D2 is a bound- 
ary connected sum of shrunken disks D,2i(q(s). E) for i = 1, . . . , n’. q 

Proof of Proposition A.4. Let 4. be a l-parameter family of embeddings of S1 into M with the 
same PoincarC invariant. Differentiating with respect to s, we get a l-parameter family V, of vector 
fields along 4,. It is sufficient to show that K, which is defined on ys = #J,(S) can be extended to 
a Hamiltonian vector field on M. Using the isomorphism. @ (cf. (2.1)), we get a cross section @( I$ of 
T’MI,_. We shall extend this section to a closed l-form on a tubular neighborhood N(y,). Since 
symplectic manifolds are orientable, N(y,) is diffeomorphic to S’ x D2”- ’ in such a way that S’ x (0) 
corresponds to ys. Let {x1, . . . , xZm- 1} be coordinate functions on Dzm- ‘. Then there exist functions 
a(t), bl(t), . . . , b,,,,_,(t) on S’ such that 

zm-1 

~( V,) = a(t) dt + C b,(t) dXi. 

i=l 

Put 

ii(t, Xi) = a(t) + 2 ’ X( * 

It is easy to see that 

Zm-1 

q = Z(t,Xi) dt + C b,(t) dxi 
i=l 

is the desired extension as a closed l-form. Since the embedded loops yt have the same Poincart 
invariant, (A2) implies that @( 6) is an exact l-form on ys. Note that S’ x (0) is a deformation retract 
of S’ x DZm- l, hence g is also an exact l-form, i.e. q = dh for some function h. 

For a cut-off function cp which equals 1 near S’ x (01, the Hamiltonian vector field of cp - h 
coincides with V on yt and vanishes near the boundary of the tubular neighborhood. Therefore it 
naturally extends to a Hamiltonian vector field c which vanishes outside of the tubular neighbor- 
hood. This completes the proof of Proposition A.4. 0 

Remark AS. The same argument may be used to generalize Theorem A.2 to embedded loops with 
non-trivial homotopy class by the same line of argument. We can also show the case that M = R2 with 
the standard symplectic structure. 

APPENDIX B: NON-DEGENERACY OF THE LINEARIZED OPERATOR FOR TIME INDEPENDENT 

HAMILTONIANS 

In this appendix, we shall show the surjectivity of the linearized operator at gradient trajectories 
(see also [14]). Let f be a C2-small Morse function on a symplectic manifold M such that the 
Conley-Zehnder indices at critical points with trivial bounding disks coincide with the indices of the 
Hessian off: We also fix a metric for which the gradient flow of fis of Morse-Smale type and which is 
compatible with an almost complex structure calibrated by o. 
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Let y : R + M be a trajectory of the gradient flow joining two critical points p and q. Denote by 

uy : R x S’ -+ M the mapping defined by u(s, t) = y(s). The linearization operator OaJ,H of a,, H at uy is 
given by 

a,& = V;5 + JVgt + HWf)T (Bl) 

where Hess(f)S = V,Vf: Since the Hamiltonianfand the connecting orbit uy are t-independent, we 

have a symmetry in the t-variable. Hence DC? ;,H decomposes into Fredholm operators 

pck’: vk + w, 

where W’*‘(u;TM) = $ k&c and L*(u;?“M) = @ ksZwk are decompositions as S’-modules ac- 
cording to weights. From (Bl), PC’){ = V&l + ( -k + Hess(f))& 

For k = 0, PC’) is surjective and more&er we have index PC’) = dim ker PC’) = index Hess,(f) - 
index Hess,(f), since the gradient flow of f is of Morse-Smale type. (P(O) coincides with the 
linearization operator for the gradient flow of a Morse function [13,15].) 

From now on, we assume that f is C*-small such that IIHess(f)li < 6 < 1 for some 6 > 0. Let 

(<&tl>>(s) = J;(5(s,Grl(sJ)) at. 
For k > 0, the solution < of Pck)t = 0 satisfies 

= 2<<k - Hess(f)t,S)) 

>u - 4115112. 

Hence 115 [I* grows exponentially as s tends to + co, unless [ = 0. Since r is square integrable, we get 
{ = 0, i e ker Pck) = 0 for k > 0. The same conclusion holds for k < 0. Therefore we get index . . 

O&H = dim ker PC’) - C, ,,dim coker Pck). On the other hand, index D8J,H = dim ker P(O), hence Pck) 

is surjective for all k, i.e. D8J,H is surjective. 

APPENDIX C: A NOTE ON NOVIKOV HOMOLOGY THEORY’ 

In this appendix, we shall give simple proofs of some fundamental iacts on the Novikov homology 
theory, which seem to be folklore to specialists (see also [ll, 121). Floer [7] interpreted the Morse 
complex in terms of gradient trajectories for generic Morse functions. Details were carried out by 
Matthias Schwarz [15] (see also [13]). For a closed l-form ye on M, there is a smallest Abelian 
covering space on which the pull-back of q is exact. We denote this covering space by K : Ii? -+ M. Let 
f be a function on a such that 71.~ = df: For a generic Riemannian metric on M, the gradient flow of 
f with respect to the pull-back metric is of Morse-Smale type. An element of the kth Novikov chain 
group of q is Ca$, where the index of Hessian of fat P is k and (2 1 a, # 0 and f(Z) > c} is a finite set 
for all c. The Novikov ring A, is defined as the completion of the group ring of the covering 
transformation group of n: G -+ M with respect to the weight homomorphism I,. The argument in 
Lemma 3.5 implies that there are at most finitely many trajectories joining two critical points 2, J and 
we can define the boundary operator, which is linear over the Novikov ring, exactly same as (4.3). The 
Novikov chain group, and hence the Novikov homology groups, are finitely generated modules over 
the Novikov ring. Note that the Novikov complexes of q and 1~, with the same Riemannian metric, 
are same if 1 # 0. The argument in Theorem 4.3 gives Facts 6.1 and 6.2. 

We shall prove Fact 6.3. Our argument is a finite-dimensional analogue of the proof of a critical 
points pi of h. Since M is compact, there exists a number E > 0 such that the norm of the gradient 
vector field Vh satisfies 11 Vh II > E outside of IJ Ui. Since each Ui is contractible, we can find a closed 
l-form q’ which is cohomologous to q and vanishes identically on u Ui. Then we can find 1 > 0 such 
that 11 Iz.rf# 11 < 43, where $# is the vector field associated to 4’ with respect to the given Riemannian 
metric. From now on q denotes 1.~ defined as above. This implies that f and f+ 7c.h are both 
Liapunov functions for the gradient flow of fand for the gradient flow of f+ n’h. Note that the 
critical point sets of fand f+ n’h coincide. We can define chain homomorphisms between the Morse 

1 This appendix was written in collaboration with Li Tu QuBc Thang. 
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complex of fand f+ n’h by using the following ordinary differential equation. 

z + V{f+ ~*u(Y(4) = 0 
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(Cl) 

where h, is a l-parameter family of functions on M such that 

h, = 0, for s < -R and h,= h, for s< R 

for some R > 0. The energy of a solution y of (Cl) is defined by 

E(Y) = 
j 

m dy2ds 
I I _,ds ’ 

The set of solutions of (Cl) with bounded energy coincides with the set of solutions of (Cl) such that 

lim y(s) = f and lim y(s) = J 
S’_-m S’rn 

(C2) 

for some critical points Z-,9 of 5 Moreover, we can estimate the energy in terms of x”, jj as follows: 

E(Y) < 3(!-(Z) -f(9)) 

and 

S(Y) < 3((f+ n*h)(:) - (f+ n*h)(9)). 

The bound on energy implies the weak compactness of the set of solutions and no bubbling 
phenomenon occurs. We define 4(n) = Cm2(%,j+9, where m,(?,J) denotes the modulo-2 reduction 
of the number of solutions of (Cl) satisfying the asymptotic condition (C2). To get a chain homomor- 
phism from $, we have to show that 4 preserves the finiteness condition with respect to f+ n’h. 
However this can be derived in the same way as in Lemma 3.5. We can also define a chain 
homomorphism in the other direction and they are inverses each other on homology groups. 

We define the rank of a module L over a commutative algebra A with unit to be the dimension of 
the vector space L @ F(A) over the field of fractions F(A) of A. The rank of the Novikov homology is 
defined to be the rank of it over the Novikov ring. Now we shall show the following: 

THEOREM C.l. Let 5 and r’ be closed l-forms on M whose corresponding Abelian coverings are 
same. Then ranks of the Novikov homology of 5 and the Novikov homology of 5’ are same. 

THEOREM C.2. Let 5 and 5’ be closed l-forms such that 5’ vanishes on the kernel of 5. Then the rank 
of Nov.(r) is less than or equal to the rank of Nov,(t’). 

Proof of Theorem Cl. Let fi + M be the Abelian covering of M corresponding to the l-form 5. 
Let h be a Morse function on M and c.(h) = C.(n’h) the Morse complex of x*h. Let A be the group 
ring of the covering transformation group and Ar the Novikov ring of 5. Then Fact 6.3 implies that 
Not$S) z H.(C”.(h) @,,A,). Since A, is flat over A (see [2, Chap. lo]), we get Nov.(S) 1 
H,(C.(h)) @,,A, (in fact, Sikorav has shown that As is faithfully flat [ll]). Now we have rank,< 
Non& 5) = rankpchc, H.(c.(h)) @,J(AJ = rank,tl,,,{H.(c.(h)) &F(A)} @F(h) WA& = rankFtAj 

H.(C.(h)) a,, F(A). Therefore the rank of the Novikov homology depends only on the covering space 
fi, i.e. the ranks of Nov.(r) and Nov.(S’) are same. 0 

Proof of Theorem C.2. Let d -+ M and M --t M be the covering spaces corresponding to 5 and 5’ 
with covering transformation groups Ii and I,, respectively. Let tl, . , tk and t;, . , tj (1~ k) be 
generators of Ii and I,, respectively, such that ti is the image of ti by the quotient homomorphism 
Ii -+ I,. Let A, and A, be the group rings of Ii and I,, respectively. Then there is a natural 
homomorphism 4: Ai + A2 which maps ti to 1 for I+ 1 I i I k. We may assume that I = k - 1. By 

Theorem C.l and Fact 6.3, it is enough to show that rank ,,1 H.(c.(h)) I rank,,* H.(c.(h) @,,,A2). 

CLAIM. The natural map H.(c.(h)) @,,,A, -+ H.(C.(h) BlhlA2) is injective. Therefore we get 

rankF(1\21 {H.(~*(h) 8,4)}0,Q’(A,)2 ra&(,+) {H.(cJh)) 8,,,&} O,JW). 
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This Claim follows from the observation that &(6,(h)) 18 A2 = B.(c,(h) @ AZ), where E.(e) 
denotes the submodule of boundary cycles. 

In order to complete the proof of Theorem C.2, it is sufficient to show that 

rankftnlj H.(C,(h)) @I~J(A~)z rank,.,, Zf.(&h)). 

Put R = F(At)[tkfl. Write L = H.(&(h)). Then R is a principal ideal domain and has the same 
fractional field as Ai. Hence for the A,-module L, we have rank,,, L = rank, L @,+,R. Since R is 
a principal ideal domain, we have L aA R 2 RP, gives that {L @I,,, R} @aF(A?) 2 (F(Az))p. Hence 
we get rankFc,,,, L @,,,F(A2) 2 rankA L and the desired inequality. 0 

We have Kiinneth’s formula in Novikov homology theory. 

THEOREM C.3. Let MI and M2 be closed manifolds and 5 and r~ closed l-forms on MI and M2 
respectively. If the kernel of the weight homomorphismfor nit + rrzn is the direct sum of the kernels ofthe 
weight homomorphism for r and n, we have 

Nov*(M1 X MZ ;rtit + n;tl) = (Nov*(M, ; r) 8~2 Nov*(Mz; VI) @h<~h,‘~i<+ni~. 

ProoJ We denote by r1 and r, the group ring of the covering transformation groups correspond- 
ing to { and r~, The Ktinneth formula for the corresponding covering spaces gives 

H.(c.(rtihi + n;h,)) z H.(C”,(Kih,)) 8 H*(C.(n;h,)) 

where hI and h2 are Morse functions on MI and M,, respectively. Since the kernel of the weight 
homomorphism for nit + II;~ is the direct sum of the kernels of the weight homomorphisms for 5 and 
q, the Novikov ring for nil + n;q is the completion of the tensor product of the Novikov rings for 
r and q. Note that Nov.(M, x M2; nit + 71;~) is isomorphic to H.(C.(nih, + n;h2))@z2trlmr11 
A n:r+n:,,. Combining these facts, we get that Nov.(M, x Mz; nil + x;n) is isomorphic to the comple- 
tion of the tensor product of 

Nov.(M,X) = H.(~.(h,)) @‘zztrlrA< 

and 

Nov.(M~;q) z H.(@tz)) %rrzjA,, 

with respect to the weight homomorphism for rtil + n;?, i.e. 

{Nov.(M,;S) @ Nov.(M,;q)} @)r\<ol\,An:<++, 0 

Since the Euler number of the homology equals the alternating sum of ranks of the complex, we get 

THEOREM C.4. The Euler number of the Novikov homology, i.e. the alternating sum of the ranks of 
the Novikov homology groups, equals to the Euler number of the ordinary homology of M. 


