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Three different approaches for 3-way analyses, namely, Procrustes rotation, parallel fac-

tor analysis (PARAFAC) and matrix-augmented principal component analysis, have been

compared considering a four-seasons study on soil pollution. Each sampling season com-

prised 92 roadsoil samples and 12 analytical variables (heavy metals, loss on ignition, pH

and humidity). Results show that the three chemometric techniques lead to essentially the

same conclusions. Hence, Procrustes rotation, a mathematical technique scarcely applied in

analytical chemistry, revealed as a useful tool for 3-way data analysis with potential advan-

tages, including its conceptual simplicity and straightforward interpretation of the results. A

novel application of the consensus vectors allowed definition of “consensus scores” so that
Heavy metals

Procrustes rotation

Matrix-augmented principal

component analysis

visualization of the samples and temporal patterns can be made. Results also suggested that

the trilinearity assumption imbedded in PARAFAC is essentially fulfilled when studying the

temporal evolution of an environmental system where no new pollution sources appear

during the course of the study.

has recently been pointed out [4,5].
Parallel factor analysis

1. Introduction

Despite not being so visible for current citizens as air and
water pollution, soil contamination is an important topic
in today enviromental protection and remediation. Not only
industries affect the soil where they are active (see e.g. [1]
for an example) but also traffic, heating, etc. The latter are
examples of diffuse pollution which affect the surroundings
of any city. In addition to well-known smog-related events,
increasing amount of suspended particles into the air, noise,
CO , combustion-related hydrocarbons and heavy metals are
2

of major concern. They can deposit onto the soils directly (e.g.
from car exhausts) or more indirectly with rainfall, dust, depo-
sition of other particles, etc.
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These effects are particularly important where gardens and
parks are used for leisure and kids play. Heavy metals can be
ingested either by soil dust inhalation and through the food
chain, as a result of their uptake by plants. Some studies have
shown that a potentially significant source of lead intake is
childrens’ play-grounds in urban communities through hand
to mouth contact, which is typical for children aged 1–3 years
[2]. Accordingly, heavy metals monitoring in soils is an ongo-
ing topic in environmental studies [3] even though extraction
procedures and method validation can be cumbersome, as it
Intimately intertwined to environmental monitoring is the
data treatment issue. Many public bodies develop monitor-
ing programs with sampling seasons extended over time.
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his raises the question on how to treat such data. Today
owerful chemometric tools are available to handle these so-
alled N-way data sets, many of them extensively described
nd exemplified in the classical text from Smilde and Co.
6]. These methods, despite being conceptually complex,
epresent a solution to many environmental efforts car-
ied out nowadays. Although an extensive review is out of
he scope of this paper, some recent studies can be cited:
erbicides and some of their derivatives in US water reser-
oirs, using MA-PCA (matrix-augmented principal component
nalysis) and multivariate curve resolution [7] were ascer-
ained; physicochemical parameters in rivers with different
nthropogenic inputs [8] using PARAFAC, MA-PCA and factor
nalysis; residues of oil spills in soils by PARAFAC (parallel
actor analysis) [1]; changes on water quality with time, loca-

ion and season in 4-way data sets analyzed by PARAFAC
nd Tucker 3 [9]; heavy metals in an industrialized Ger-
an area by Tucker 3 methods generalized to 4-way data

3].

ig. 1 – General location of the two areas under study and sampl
venue.
6 0 3 ( 2 0 0 7 ) 20–29 21

2. Experimental

2.1. Samples

Four samplings (one per each annual season) were scheduled
on a medium-size city (A Coruña, Galicia, NW Spain, aprox.
500,000 inhabitants in the metropolitan area), to assess the
levels of nine heavy metals (Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb and
Zn) on public gardens, surroundings of the main road access-
ing the city (aprox. 100,000 vehicles per day) and a highway
(see Fig. 1). In addition, three typical physicochemical parame-
ters (humidity, pH and loss on ignition – LOI) were determined.
Each sampling was performed on 92 sampling points, where
composite samples were taken (0–5 cm in depth) with plas-

ticware. In the Spanish AP9 highway several roadside soils
and perpendicular transects were considered on the way from
Coruña to Santiago de Compostela (approx. 56 km): samples 1,
6–10, and 15–18 were collected at roadsides; samples 2–5 and

ing points: (A) AP9 highway and (B) city gardens and main
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11–14 are from uncultivated transects, and samples 19–26 are
from transects with cultivated fields (see inset ‘a’ in Fig. 1).
Within the city, samples 27–36 were from the roadside bor-
der of the main avenue (samples 30 and 31 are two transects
on uncultivated fields) and samples 37–92 from gardens (slots,
gardens, parks, etc.), see inset ‘b’ in Fig. 1.

2.2. Analytical procedure

Samples were air-dried, ground and sieved through a 2 mm
mesh sieve. An aliquot of this fraction was used to determine
humidity by heating it at 105 ◦C until constant weight, pH
(1:2.5 in Milli-Q water, Millipore Corp.) and organic material
as loss on ignition (450 ◦C for 6 h). The remaining part of the
<2 mm fraction was heated at 60 ◦C for 48 h and sieved again
to <0.2 mm. This fraction was used to measure the metals.
0.3000 g aliquots were extracted with HNO3(c) (Merck, Supra-
pur) using teflon closed vessels and microwave heating. Metals
were determined by flame- (Cu, Cr, Fe, Mn, Pb and Zn) and
graphite-furnace-atomic absorption spectrometry (Cd, Co, Cr
and Ni) in a 2380 Perkin-Elmer FAAS, and a 4100 Perkin-Elmer
Graphite Furnace devices, respectively. Trueness was checked
using the BCR-CRM 141 (calcareous loam soil) and BCR-CRM
277 (estuarine sediment) certified reference materials. More
details can be found elsewhere [10,11].

2.3. 3-Way chemometric methods

2.3.1. Matrix-augmented principal component analysis
Developed by Tauler et al. [7] matrix-augmented PCA (MA-
PCA) constitutes a straightforward extention of traditional
PCA. The 3-way data set which is initially a data cube (sam-
ples –‘rows’- × analytical variables –‘columns’- × samplings
–‘tubes or slices’ – [6]) is reordered into an extended matrix.
This is called ‘unfolding’ of the slices, which can be done
in different ways. In many cases it is preferable to unfold
column-wise, i.e. maintaining the variables in columns. In
our study this implies transforming a 93 × 12 × 4 data set
(samples × variables × samplings, n × p × m) into a (93·4) × 12
or 372 × 12 matrix. Then traditional PCA yields sample-related
(scores) and variable-related (loadings) information. It is clear
that some information is lost during the matrix augmentation,
for instance, the correlation between the variables is not taken
into account [12]. The nice idea put forward by Taluer and co-
workers was to refold the scores matrix again after the PCA.
Thus, the augmented matrix can be decomposed as Xaug

(n·m×p) =
Saug

(n·m×k) · L′
(k×p) + Eaug

(n·m×p), where Xaug is the augmented data
matrix, Saug is the augmented scores matrix and L′ is the (k × p)
loadings matrix (the prime (′) denoting transposed) describ-
ing the composition of the k principal components (pollution
sources); n = number of samples, m = number of samplings
(slices), k = number of components and E = error matrix of
residuals due to only considering k components. Clearly, the
augmented scores matrix mixes information about location
and time evolution. Refolding each augmented scores vec-

tor, e.g. saug

(n·m×1) (see Refs. [7,8] for more details) to R(n×m), and
averaging row-wise and column-wise leads to two vectors
r1(n×1) and r2(1×m). These contain the location- and time-
related information, respectively. Repeating this process for
a 6 0 3 ( 2 0 0 7 ) 20–29

each augmented scores vector, information can be obtained
on how each “pollution source” influences (on average) each
sampling site/sample (r1) and its average evolution on time
(r2). MA-PCA has empirically been shown to give comparable
results to standard PARAFAC [8].

2.3.2. Procrustes rotation
Generalized Procrustes rotation (PR) is a multivariate tech-
nique developed in the 1970s to simultaneously compare
several data sets. It is based on traditional singular value
decomposition (svd) to decompose a matrix into principal
components, X(n×p) = A(n×k) · B(k×k) · L′

(k×p) + E(n×p) (the scores
matrix S = A·B). Although quite successful in biometrics, foren-
sics and psychology, it has scarcely been applied in analytical
chemistry. This is surprising because of its simple, user-
oriented and straightforward fundamentals. As for the other
techniques presented here, not all mathematical details are
given, just some brief conceptual ideas. Interested readers
are encouraged to consult the selected references. Procrustes
rotation has been extensively developed and explained by
Krzanowski [13] and resumed elsewhere [14,15].

The main idea of PR is to compare two or more spaces
where the same variables are measured. It is advisable to
compare principal components scores subspaces to avoid
unstructured and random variation in the original data that
may blur the general patterns, to reduce data dimensional-
ity and because the main patterns within the datasets can be
compared directly. Only the most important PCs shall be used
in a PR comparison. Their number can be determined by sev-
eral established tests [16], Malinowski’s test [17], Wold’s F-test
[18] or the Wm statistic [19].

Generalized Procrustes rotation aims to compare m scores
subspaces (m = 1, . . ., m) by calculating a new set of factors
or consensus vectors, v, that resemble all scores subspaces.
Their dimension is (1xp), since they are defined in the origi-
nal p-dimensional data space. Accordingly, a first consensus
vector, v1, has to be defined that is close to the first princi-
pal component of all M subspaces. Since a reasonable way
to define “closeness” is by the cosine squared of the angle
between the consensus vector and the other principal com-
ponent,

∑M

m=1 cos2 ˛k,m is maximized for each k (cardinality
of the principal components). Krzanowski proved [13] that
the eigenvector v1 corresponding to the largest eigenvalue of
W = ∑M

m=1L′
mLm fulfills those conditions. Lm being the (k × p)

loadings matrix for data set m.
The vector v1 can be thought of as an average factor of all m

first principal component scores. The deviation of this average
factor from the first PC of a given set m is given by the angle
˛1,m = cos−1{(v1

′Lm
′Lmv1)1/2}. Analogously, v2 is the consensus

vector that corresponds to the second-largest eigenvalue of
W. v1 and v2 are orthogonal, which may simplify the chemi-
cal interpretation of the consensus vector. �2,m is a measure of
the difference of the second consensus vector from the second
PC of set m. The process continues until k consensus vectors
are obtained. Although not specifically developed for 3-way
analysis, experience with PR applications in different fields

[20–22] impelled us to compare its results with other more
well-established 3-way techniques. In addition, like MA-PCA,
PR can handle not-so-unfrequent situations when a sample
was not analyzed in a given season (this is not a missing data
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ituation, rather all information of a sample is missing on a
articular season); i.e. the slices do not have the same num-
er of samples (rows). PR’s main drawback is that, so far, it can
nly be applied to 3-way data.

In this paper, a novel application to visualize sample
atterns after the calculation of the consensus vectors is pre-
ented. To the best of the authors’ knowledge, this represents
novel application of PR. Once matrix V (containing the con-

ensus vectors) is calculated, ‘consensus scores’ are derived
or each original space (‘slice’ or sampling season) as C = X·V
nd, visualized as a ‘consensus scatterplot’. More graphics can
e derived: (i) a comparison of the original scores plots and
he consensus scores for each season; and (ii) a simultaneous
omparison of all consensus scatterplots. Since conclusions
rawn from those graphs may have a subjective contribu-
ion, a natural way to organize and resume such wealth of
nformation is to take averages, in the same way as done in

A-PCA. Hence, for each consensus vector, ‘season-averaged
onsensus scores’ and ‘site-averaged consensus scores’ can be
erived.

.3.3. Parallel factor analysis
arallel factor analysis, PARAFAC (also called trilinear decom-
osition [23,6]) can be introduced as a generalization of
ingular value decomposition to include the third way. In our
mpirical experience, results of PARAFAC are almost the same
s those obtained with PR and it remains to be mathemat-
cally shown how results of these methods differ. Here, we

ill present only an empirical comparison. Below is a brief
escription of PARAFAC. For more details, readers are higly
ncouraged to refer to Smilde et al. [6].
In the same manner as a 2-way matrix (e.g. samples
variables) is decomposed using svd, X(n×p) = A(n×k) · B(k×k) ·

′
(k×p) + E(n×p) and, then, rearranged into two sets of vectors

scores and loadings matrices) X(n×p) = S(n×k) · L′
(k×p) + E(n×p),

ig. 2 – PC1-PC2 scores subspace for the autumn data. Highway (�
6 0 3 ( 2 0 0 7 ) 20–29 23

a 3-way data array can be decomposed into three matrices
X- (n×p×m) = A(n×k) · B(p×k) · C(m×k) + E(n×p×m). The indexes have
the same meaning as above (samples, variables, sampling sea-
sons, respectively) and underscore (X- ) is used to denote 3-way
data matrices. It has been stated that, in many cases, PARAFAC
is not simple to use although the results may be easy to inter-
pret and typically lead to directly relevant conclusions [12].
PARAFAC decomposition yields three matrices. One is analo-
gous to the traditional scores matrix and two are analogous
to the current loadings matrix. Nevertheless, mathematically
the differentiation is arbitrary and most authors consider the
three matrices as weights. As for PR, PARAFAC requires that
all ‘slices’ (seasons) are decomposed into the same number
of components. This means that the same two matrices (e.g.
A and B) will be used to model each slice (sampling season)
albeit with weights given by matrix C (each slice/season will
have its own set of weights) [6]. These weights resemble very
much the consensus vectors obtained by PR (although there is
a mathematical ambiguity in PARAFAC weights [6]).

It is worth comparing how many parameters (weights
or scores and loadings) are required to fit a model by
each technique. Let us assume that k factors are used to
describe the dataset. If we perform independent PCAs on each
dataset (Procrustes rotation), we fit m*(k*n+k*p) parameters;
in our case (the indexes have the same meanings as above)
4*(2*93+2*12)=840, with k = 2. In MA-PCA, the number of fitted
parameters is k*(m*n)+k*p, or 2*(4*93)+2*12=768. In PARAFAC,
they are k*n+k*p+k*m, or 2*(93+12+4)=218. Hence, the more
complex the model, the less degrees of freedom and the more
constrained is the solution (e.g. trilinearity requirements in
PARAFAC). Hopefully, the more constrained solution is, the

simpler to interpret. Thus, it is interesting to assess whether
more constrained PARAFAC yields as good interpretations as
PR and MA-PCA. This in turn indicates the validity of the
underlying trilinearity assumption of PARAFAC when applied

), highway transects (�), main avenue (©), city gardens (�).
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Fig. 3 – Matrix-augmented PCA. Temporary averaged

temporal scores’ (Fig. 4) reveal that fall and winter (seasons 1
and 2) are very similar while spring (season 3) and, in partic-
ular, summer (season 4) differ.
24 a n a l y t i c a c h i m i c a

to the environmental datasets collected over time (in our case,
without any new known pollution events/sources).

3. Results and discussion

Preliminary studies revealed that three samples behaved sys-
tematically different from the bulk. They were considered
outliers and discarded. Two of them were located at the road-
side border of the highway and, despite that part suffered
only ca. 10,000 vehicles per day (vpd), they showed very high
concentrations of Cu, Cr, Pb and Zn. Close study of the area
revealed that the surface of the soil was very compact, with-
out repair or gardening works and, so, the metals accumulated
onto the surface. Something similar occurred for the other
sample, although this corresponded to a city slot without gar-
dening works.

Separate principal components analysis (PCA) for each
sampling season (results not detailed) showed that two com-
ponents (PCs) accounted for approx. 80% of all variance
and that two main patterns were present. PC1 differentiated
between two major groups of samples: city gardens and high-
way. PC2 subdivided each major group into two subgroups:
highway transects (located several meters off the road) and
highway roadsoils, on the one hand, and between the city
gardens and the main avenue of the city, on the other hand.
Results for the first sampling season (autumn) are resumed
in Fig. 2 as an example (see [15] for details). All calculations
are based on column-wise autoscaled data because of the dif-
ferent units of the analytical variables. In MA-PCA data were
scaled after catenating (augmenting) the data matrices. To
simplify readability, the terms ‘scores’ and ‘loadings’ will be
used instead of sample-related weights and variable-related
weights, respectively.

3.1. Results with MA-PCA

Results from the column-wise augmented MA-PCA studies
are shown in Figs. 3–5. Fig. 3 presents the ‘temporally aver-
aged geographical scores’ (i.e., the average behaviour of the
samples in the four sampling seasons) for the first extracted
factor, which explains 36% of the initial variance, the sec-
ond factor explains 20.1%. This is much less than the approx.
80% explained by the first two PCs in the individual analyses,
due to the more constrained solution. Still, the most rele-
vant information is satisfactorily extracted. MA-PC1 clearly
differentiates the highway, including transects, from the city
gardens and main avenue. Loadings associated to this factor
(Table 1) hold a clear opposition between Fe and Co (related to
the natural origin of the soils) versus Zn, Cd, Cu and Pb, which
clearly are linked to roadtraffic (Pb from gasolines, Zn and Cd
from lubricants, tyres, coachwork and galvanized parts of the
vehicle, and Cu from the coachwork and brake lining) [24]. It is
worth noting that MA-PCA reveal this difference with just one
factor but the invidual seasonal PCAs required two factors.

Moreover, city gardens’ MA-PC1 scores depend on the met-

als accumulated over time. Negative MA-PC1 scores signify
new/recently opened gardens (see Fig. 3), slots with frequent
gardening, reposition of flowers, addition of fertilizers, etc.,
and the inner part of a main city park (highway samples have
geographical scores for the first factor.

also negative MA-PC1 weights). The ‘geographically averaged
Fig. 4 – Matrix-augmented PCA, geographically averaged
temporal scores for (a) PC1 and (b) PC2.
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ig. 5 – Matrix-augmented PCA, PC1 vs. PC2 temporary aver
ransects (�), main avenue (©), city gardens (�).

MA-PCA does not provide more information on this issue
nd we resourced to individual PCAs to assess each particular
ehaviour. Thus, it was found that autum is the season with
he most obvious differences between the four types of sam-
les (highway, highway transects, gardens, and main avenue).
he rainy Galician winter reduced the differences between the
ubgroups to the point that they became mixed, although the
wo main groups remained separated. In spring, the two main
locks of samples are well differentiated and, additionally,
he two subgroups of highway soils became clearly differ-
nt, which can be explained by the agricultural activities and
limatologic conditions. In summer, the two main blocks of

amples can also be differentiated, as well as the highway
nd its transects, but not the city gardens and main avenue.
ndeed, the latter has a different behaviour from the spring
eason since some samples reduced their metallic contents

Table 1 – Comparison of loadings (analytical variable-way) for e

MA-PCA

Factor 1 Factor 2 Consensu

Cd 0.35 −0.31 −0.4
Co −0.40 −0.29 0.1
Cu 0.29 −0.35 −0.4
Cr −0.28 −0.42 0.0
Fe −0.42 −0.20 0.2
Mn −0.26 −0.12 0.1
Ni −0.24 −0.42 −0.0
Pb 0.29 −0.41 −0.4
Zn 0.35 −0.30 −0.4
Humidity −0.04 0.06 0.0
LOI −0.07 0.12 0.1
pH 0.22 −0.03 −0.2
geographical scores (TAGS). Highway (�), highway

(particularly Cu and Pb) while several city gardens elevated
them. This can be due to a reduction in traffic density along
the main avenue during summer.

The MA-PC2 is loaded by Ni, Cr and Pb (with negative load-
ings, see Table 1). The Ni and Cr status in soils is highly
dependent on their contents on the parent rocks. However,
their concentrations in surface soils (as the ones considered
in this work) also reflect soil-forming processes and pollution
(here, mainly roadtraffic) [25]. Hence, to interpret the data the
other metals acompanying them into the factors had to be
studied (in a ‘source apportionment’ way). This way the MA-
PC2 should be related to roadtraffic because of its association

to Pb. Fig. 5 shows that positive or close-to-zero scores are
obtained for highway transects, new gardens, main avenue
transects and samples from the inner park. Highest negative
loadings correspond to samples with (on average) highest con-

ach methodology

Procrustes rotation PARAFAC

s vector 1 Consensus vector 2 Factor 1

6 −0.08 −0.35
7 −0.47 0.39
3 −0.14 −0.29
0 −0.52 0.27
4 −0.39 0.41
6 −0.21 0.26
3 −0.48 0.23
5 −0.19 −0.29
6 −0.06 −0.35
9 0.01 0.08
2 0.05 0.09
1 0.07 −0.23
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altogether. Fig. 8 shows that the main sample patterns were
recovered by the PR vectors (as expected thanks to the low
angles they formed with the original factors). It should be
stressed that the samples are not expected to overlap because
Fig. 6 – Site-averaged consensus scores for Procrustes
rotation consensus vector 1.

tents of Ni and Cr (30–70 mg kg−1 for both), and medium-high
Pb (300–600 mg kg−1) contents. MA-PC2 evolved from autum to
summer, like MA-PC1 (see Fig. 4). Fig. 5 agrees very well with PR
and PARAFAC (see below). Only limitation is that city gardens
and main avenue are not clearly differentiated on average.

3.2. Results from Procrustes rotation

Since two principal components were sufficient to describe
each season, two components were considered also in PR.
Table 1 shows that the first consensus vector is related to road
traffic (Pb, Zn, Cd and Cu) whereas the second is linked to the
parent soil (Co and Fe, and Cr and Ni).

Fig. 6 presents the site-averaged consensus scores for the
first consensus vector. They are very similar to the MA-
PC1 ones (see Fig. 3) and discriminate quite clearly between
the highway (including transects) and the city gardens and
the main avenue. Thus, the samples become differentiated
according to their levels on roadtraffic-related metals. In gen-
eral, levels are higher within the city and the main avenue.
Exceptions are the two main avenue transects, new gardens
and inner samples from parks (as visualized for MA-PCA
above). The averaged temporal consensus vector (Fig. 7a)
shows a pattern which resembles very well that from MA-
PCA (Fig. 4a). This pattern is quite stable from autum to spring
although there are some changes in summer. They may be
explained by reduced traffic density on the main avenue (no
transportation to schools, University, industries, etc., which
proportionally reduced depositions on roadsoils) and by the
continuous increase of traffic-related metals in some gardens
at the city center that still support a high traffic density (in
addition to the typical dry summer weather). The PR angles
between the first consensus vector and the first PCs from
each independent seasonal study were only 6.79◦, 7.15◦, 3.04◦
and 7.45◦ (autumn, winter, spring and summer, respectively),
meaning that the seasonal behaviours indeed are very similar.

The second consensus vector reflects the soils’ natural
background (see Table 1) as is strongly related to Co, Fe, Cr and
a 6 0 3 ( 2 0 0 7 ) 20–29

Ni. The fact that Cr and Ni are not associated here to typical
traffic-related metals suggests that although roadtraffic can
be an important anthropogenic source, the main differences
between the samples are due to their parent material (char-
acterized mainly by Fe and Co). The PR angles formed by the
second consensus vector and the second PCs from the inde-
pendent seasonal studies were 24.21◦, 17.12◦, 16.92◦ and 12.89◦

(autumn, winter, spring and summer, respectively). Despite
they are still small, these are clearly larger than the PC1 angles,
reflecting higher seasonal variations. This reflected also in the
‘season-averaged consensus scores’ (Fig. 7b).

It seems that the two PR consensus vectors divided the
information condensed on the first MA-PCA factor, into a
‘natural’ (leaded by Co and Fe) and an ‘anthropogenic’ (traffic-
related, leaded by Pb, Zn and Cd) factors.

Each seasonal data set (slice in the 3-way data cube) can
be projected onto the consensus vectors to get “consensus
scores”. These can be used to assess whether the consensus
vectors retrieved the main sample patterns, for instance by
plotting traditional PC1-PC2 scores and PR consensus scores
Fig. 7 – Procrustes rotation season-averaged consensus
scores for consensus vector (a) 1 and (b) 2.
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ig. 8 – Comparison among the independent PCA scores (+)
eason (slice in the data cube).
he subspaces are different. Only the general appearance and
ample distribution should be compared. We found that the
atterns are essentially identical within each season. Among
he different seasons, changes are found only along the second

ig. 9 – Procrustes rotation site-averaged consensus scores, cons
�), main avenue (©), city gardens (�).
the Procrustes consensus scores (©) for each sampling
factors. They are not large but sufficient to mix the high-
way samples with the highway transects, and the avenue
with some city gardens (during winter and spring). Now, the
‘PR site-averaged consensus scores’ can be calculated and

ensus 1 vs. consensus 2. Highway (�), highway transects
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Fig. 10 – PARAFAC mode 1 (sample-related) weights.

r

Clarendon Press, Oxford (UK), 2000.
depicted (Fig. 9). Here, it can be observed that results are essen-
tially the same as those from MA-PCA (Fig. 5) and no further
details are required (the numbers of several overlapping sam-
ples were omitted for clarity).

3.3. Results from PARAFAC

With PARAFAC one factor was sufficient to decompose the
3-way data matrix. The sample-related weights are shown
in Fig. 10. They show the same pattern as those from the
two analyses above (Figs. 3 and 6). Hence, a clear difference
between the highway area, the city gardens and main avenue
is found. The new gardens and inner part of the main park are
discriminated from the rest of the city gardens (lowest weights
on the right-hand side of the figure). The two transects from
the main avenue have lower weights than the other samples
from the main avenue. Remaining samples behave in the same
way as in the studies above. The analytical variables-related
weights revealed a clear opposition between traffic-related
metals (Cd, Zn, Pb and Cu) and the soil-related metals (Co and
Fe, plus some participation of Cr, Mn and Ni), see Table 1. The
season-related weights decrease the importance of this factor
steadily from the 1st (fall) to the 4th (summer) season, as in
the analyses above (Figs. 4 and 7) and it is not displayed again.
These findings are consistent with the studies above.

4. Conclusions

Results presented in this paper demonstrate that the three

techniques employed here lead to essentially the same con-
clusions along the sample-, variable- and season-related ways.
This strongly suggests that in absence of new and unexpected
pollution events the trilinear assumption behind PARAFAC is
a 6 0 3 ( 2 0 0 7 ) 20–29

satisfied in environmental studies that focus on temporal evo-
lution.

Besides, the results showed that Procrustes rotation is a
good option to address 3-way datasets. The consensus vectors
yield conclusions that can be compared to those derived from
matrix-augmented PCA and PARAFAC. Procrustes rotation can
be used to calculate geographical- and temporal-averaged
scores, much in the same way as in MA-PCA. This allows
for insightful representations where the sample patterns can
be viewed and compared (either between slices or with the
individual PCAs). Different from the other methods is that
Procrustes rotation measures the similarity (expressed as an
angle) between the calculated consensus factor and the cor-
responding factor in each slice. These Procrustes rotation
similarity angles can reveal in a snapshot in which season/s
the sample patterns changed. On the contrary, PARAFAC and
MA-PCA require detailed studies of each slice to ascertain the
differences on the site-averaged scores patterns.

Another difference is that Procrustes rotation revealed two
important pollution patterns while MA-PCA and PARAFAC
condensed them in a single factor. This might be attributed to
the fact that Procrustes rotation holds more degrees of free-
dom and, therefore, the information can be divided in different
factors, which would be an advantage to interpret complex
systems.
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[5] C. Micó, L. Recatalá, M. Peris, J. Sánchez, Spectros. Europe 19

(1) (2007) 23.
[6] A. Smilde, R. Bro, P. Geladi, Multi-Way Analysis, Willey,

United Kingdom, 2004.
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