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Abstract

Most analytical chemists are well acquainted with collecting multivariate data and analyzing them by basic tools provided in standard

chemometric software. But sometimes this is not enough to extract the desired information. Two typical cases are when data sets need to be

compared or when a subset of the measured variables shall be ranked. Both these cases can be addressed by so-called Procrustes rotation and

its generalized forms. Procrustes rotation is conceptually a rather simple procedure, and it is available in some chemometric software. In this

tutorial, we present the basics of Procrustes rotation, we exemplify its application on some selected examples and, finally, we review the

literature. The goal is to make this very powerful technique more popular and accessible to the broader chemometric community.

D 2004 Elsevier B.V. All rights reserved.
Keywords: Procrustes rotation; Trilinear decomposition; Variable selection; Spectral analysis; Environmental; Analysis; Chemometrics

1. Introduction mathematical and statistical tools to extract useful informa-
A major goal in Science is to unravel information in

measured data that answers the questions that have been

raised. Often the problem studied and the questions asked

are less well defined. Data related to quality control,

environmental analysis, studies of new materials, clinical

analyses and the like are particularly difficult to analyze

because they are multivariate and it is hard to decide on the

relative importance of the measured variables. Even when

the overall problem is defined, for example, evaluating the

consequences of an oil spill such as that in Galicia,

Northwest of Spain, last year, it is not clear what samples

should be taken and what parameters should be measured to

obtain the best reflection of the catastrophe and its con-

sequences. Even when the problem is clearly defined, it may

be unclear what objectives should be reached. Therefore, a

very large number of samples is often taken and as many

analytical parameters as possible are measured, in the hope

that the very large amount of data collected should hold the

information requested. This strategy leads to the problem of

later selecting which of the measured variables reflect the

features of interest and which should be excluded. The
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tion in multivariate data are termed ‘‘chemometrics’’. In this

tutorial, we focus on two problems that are of general

interest in chemometrics, and that are efficiently addressed

by Procrustes rotation methods.

The first problem is the selection of variables. In general

when characterizing samples the first time, we measure a

large number of variables, many of which may not be very

informative. In fact, some may even be unrelated to the

problem of interest, and blur the picture instead of making it

clearer. Such variables should be removed in analysis and

from further measurements. Also less informative variables

may be removed for cost and time saving reasons. In cases

where measurement time is important, such as on-line

monitoring, one may need to remove most of the variables,

keeping only the few most informative ones. For these

purposes, we need methods to decide how many variables

to keep and which ones. Procrustes rotation is a very

efficient method to select variables.

The second problem is to find correlations among data

sets. It can be wines assessed against a range of descriptors

by experts, environmental samples collected at different

places and time, spectroscopic measurements on related

samples, etc. In these cases, the goal is to find correlations

in the measured data. This problem is also efficiently

addressed by Procrustes rotation.
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It was Hurley and Cattell [1] who first coined the name

‘‘Procrustes Analysis’’ for a set of techniques to compare

different sets of principal components. They named the

technique after the Damastes innkeeper (Polyphemon, in

some legends) in Greek mythology who insisted that travel-

lers staying the night should fit his bed exactly. During their

sleep, he either stretched them or chopped off their limbs to

ensure they fit the bed. ‘‘Procrustes’’ has became an adjective

meaning ‘‘hammering in order to elongate (stretch)’’. From

early applications in Factor Analysis, Procrustes rotation was

opened up to more general multivariate usage by Schöne-

mann and Carroll [2] and by Gower [3].

In this tutorial, we describe the basic principles of Pro-

crustes rotation and exemplify it with three case studies. One

is an environmental study where 12 different characteristics

were measured on 95 sampling points during four sampling

seasons. The goals of the analysis are to select a minimum

number of variables to describe the main observations and to

compare the results of the four sampling seasons. The second

example is characterization of the binding of a fluorescent

dye to DNA. Here, goals are to determine the number of

different complexes formed, their relative amounts, and also

the spectral characteristics of the bound dye in the different

complexes. The third example is a set of six test samples, each

one characterized by two-dimensional fluorescence excita-

tion/emission measurements. Here goals are to determine the

spectra and concentrations of the sample components without

having access to standards.

Procrustes rotation is usually performed on the principal

components that describe the data instead of on the data

itself. We therefore start by describing the principal com-

ponent analysis (PCA) that precedes Procrustes rotation.
2. Principal component analysis

Suppose that p variables have been observed on n

individuals to yield multivariate data sets that each being

arranged in a data matrix X with n rows (the samples) and p

columns (the variables). Insight into many multivariate

techniques is helped by geometric visualisation of the data

as n points in a space of p dimensions (see note below). This

geometrical model of the data matrix is a basis for inspect-

ing the data, in order to uncover any patterns or anomalies

that might be present. However, it first needs some simpli-

fication in order for it to be of practical use. In particular, we

generally need a reduction in dimensionality, so that the

points may be more readily plotted and inspected. Such a

reduction can usually be achieved without excessive loss of

information by principal component analysis (PCA).

A note of caution is in order here as there is some

confusion in literature concerning the use of the word

‘‘dimension’’ in chemometrics. In many classical works, data

arrays of (n� p) are considered as n points in a p dimensional

space, hence, the data are said to be p-dimensional. The term

dimension, however, is also used for the dimensionality of the
array. An (n� p) array is two-dimensional (also termed two-

way data), while an (n� p�m) array is three-dimensional

(three-way data). In this tutorial, we adhere to the traditional

nomenclature and refer to an (n� p) space as p-dimensional,

describing (n� p) arrays as bilinear (two-way) and (n� p�
m) arrays as trilinear (three-way).

Correlations among the different measured variables

usually cause most points to lie within a subspace that

occupies fewer than p dimensions, with rather few points,

outliers, lying outside this subspace. Therefore, in most

multivariate data sets, the bulk of the information will lie

in a subspace of relatively low dimensionality, while resid-

ual noise will be scattered through the rest of the space. The

first task is to identify the subspace that contains the

significant features [4–6].

Of conceptual importance in PCA classification is the fact

that only the configuration of points is fixed while the

coordinate axes are of rather arbitrary positions. They can

be translated or rotated with the points being kept at their

positions. To identify the signal subspace, we first move the

axis to the centroid of the points, and then rotate them into a

position such that the first few contain the greatest spread of

points while the remainder have the points close to the centre.

Any such axis defines a new variable, or component, that is a

linear combination of the original variables. So if the original

variables are denoted x1, x2,. . ., xp, and the new components

are denoted y1, y2,. . .yp, then each y can be obtained from the

x’s by means of a simple formula yI = ai1x1 + ai2x2 + . . .+
aipxp, where i= 1, . . ., p [6].

Moving the axes to the centroid of the points simply

corresponds to mean-centering the data. The condition that

the first few components should represent the greatest spread

of the points is fulfilled by calculating the principal compo-

nents of the data. Its coefficients, also called loadings, aij, can

be easily computed using standard software. For example,

there is a mathematical decomposition of any matrix known

as the singular value decomposition (svd). This will decom-

pose the data matrix X into a product of three matrices:

X =UDVT. Here U has n rows and p columns, D is a ( p� p)

diagonal matrix and squares, di
2, of its elements represent the

amount of information corresponding to each principal

component, and V is a ( p� p) orthogonal matrix with

columns containing the loadings, aij, of the ith principal

component. The superscript T denotes matrix transpose.

When X is subject to svd, the best r-dimensional approxi-

mation of the p dimensional space in a least-squares sense is

given by a plot of points on the first r principal components

as axes. The coordinates of the points on these axes are called

principal component scores. These are also obtained from the

singular value decomposition of X (they are the first r

columns of UD) [5,6].

2.1. Selecting the number of components

The first important question in multivariate data analysis

is to decide how many PCs should be used to model the
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data. We want r to be large enough to contain the essential

features in the data, but we also want it to provide a

reasonably simple structure for plotting and inspecting the

data. Many different approaches have been suggested to

answer this question, but no definite single best approach

has yet emerged. Among these approaches, the method of

Eastment and Krzanowski [4] takes a predictive and quite

intuitive standpoint and utilises the above singular value

decomposition in a direct way. Let xij, uij, dI, vij, denote

elements of the matrices X, U, D and V. If the first r

components correspond to ‘‘signal’’ and the remaining

(p–r) components represent ‘‘noise’’, we can write: xij ¼Pr
k¼1 uikdkvjk þ eij where eij is the residual noise. A

predictor of xij is calculated as

x̃ij ¼
Xr

k¼1

uikdkvjk : ð1Þ

The goodness of fit for a particular r can then be obtained

from the predictors of all elements of X by calculating

the overall discrepancy between observed and predicted

elements:

PRESSðrÞ ¼ 1

np

Xn
I¼1

Xp
j¼1

ðx̃ij � xijÞ2:

To avoid bias, i.e., not to use each data point in both

prediction and assessment, the data point xij should not be

used in the prediction of x̃ij [4,5] (nevertheless, as much

of the original data as possible should be used in

predicting xij). This is avoided as follows: Delete the ith

row of X, mean center the columns and denote the result

X(� i). Likewise delete the jth column of X, mean center

the columns and denote the matrix X(� j). Perform sin-

gular value decompositions of these two new matrices [4]
Fig. 1. Illustration how human brain may us
X� 1 = ŪD̄V̄T with Ū=(ūst), V̄= v̄st, and D̄ = diag(d̄1,. . .,d̄p),

and X̄(� j) = ŨD̃Ṽ
T with Ũ=(ũst), Ṽ=(ṽst), and D̃ =diag

(d̃1, . . ., d̃( p� 1)).From these construct, the predictor [4–6]:

x̂ij ¼
Xr

k¼1

ũik

ffiffiffiffiffi
d̃k

q� � ffiffiffiffiffi
d̄k

q
v̄jk

� �
: ð2Þ

In difference with the predictor in Eq. (1), this new

predictor does not make use of xij. To find optimum value

of r, PRESS(r) is calculated for different values of r from 1

to p� 1. Eastment and Krzanowski [4] suggested to calcu-

late Wr ¼ ððPRESSðr � 1Þ � PRESSðrÞÞ=DrÞHðPRESSðrÞ=
DresðrÞÞ , where Dr is the number of degrees of freedom

required to fit the rth component and Dres(r) is the number

of degrees of freedom that remains after fitting the rth

component. Dr = n + p� 2r and Dres(r) is obtained by suc-

cessive subtractions starting with (n� 1)p degrees

of freedom for the mean-centered matrix X, i.e., Dres(1)=

(n� 1)p and Dres(r) =Dres(r � 1)� (n +p� 2(r� 1)) [4–6].

Formed this way, Wr represents the increase in predictive

power when adding the rth component, divided by the mean

predictive information in the remaining components. Hence,

the number of significant components r is given by the

highest value for which Wr is greater than 1.
3. Procrustes analysis

Having determined the number of significant PCs, we are

ready to compare data sets by Procrustes rotation. This is

better achieved by using the principal component subspace

where we have signal rather than noise. So, let T and Z the

n� r scores matrices for two original data sets (X and Y,

respectively) and let one of them, T, be fixed and transform

the other data set, Z, to match T. Geometrically, this is done
e Procrustes rotation to identify faces.



Fig. 2. Principal component scores of roadsoils considering 12 variables. Only results for fall (A) and spring (B) are shown. Highway (o), city gardens (+),

transects (� ), main avenue (*).
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by translating, rotating, and then stretching/shrinking it such

that the sum of squared distances, M2, between the elements

of Z and the corresponding elements of T is minimized. The

smaller value of M2, the more similar are the two config-

urations. A perfect match gives M2 = 0. Below we briefly

describe Procrustes rotation. For thorough derivation, see

Krzanowski [6].

The first step, translation, is effected by mean-centering

the original X and Y (if no data pretreatment was carried out

in advance, the scores should be mean-centered). For

rotation and stretching, we first perform singular value

decomposition of the product TTZ to obtain UDVT. Rota-

tion and reflection is then performed by multiplication with

the matrix product VUT. The discrepancy between T and Z

(so between X and Y) is finally calculated as M2 = trace(-

TTT +ZZT� 2D). Note that trace(TTT +ZZT� 2D) = 0

when T=Z.

Apart from its mathematical principles, Procrustes rota-

tion can be seen as a natural way to compare objects and

might mimic what our brains employ in daily life. Think,

for instance, what happens when we obtained a blurred

vision of a face of a person we pass when walking fast.

Probably, our brain will make some kind of ‘‘Procrustes

comparison’’ by considering in turn each of the faces stored

in our memory to identify the ‘‘fuzzy’’ face (Fig. 1). A

Procrustes approach is being used in the analysis of pictures

taken by CCTV cameras of the suspect in the murder case

of Swedish former foreing Minister Anna Lindh (http://

chalmersnyheter.chalmers.se/Article.jsp?article = 2352).
Fig. 3. Principal component scores of roadsoils considering only the two Procruste

transects (� ), main avenue (*).
To select variables, let us first suppose that the number of

variables r has been decided, either from substantive prior

knowledge or, for example, by the Wr statistic. This implic-

itly suggests that we anticipate the ‘‘true’’ configuration

dimensionality to be (no greater than) r. The first r principal

components are extracted from the data matrix X, and the

coordinates of the data points on these components are taken

as the ‘‘basis configuration’’. Let us denote this configura-

tion by Z. Each variable is then removed in turn from the

data set and the first r principal components are extracted

from the reduced n� ( p� 1) data matrix. Let the coordi-

nates of the data points on these components be denoted by

Z( j) when the jth variable has been removed. Comparing

Z( j) with Z by means of Procrustes Analysis gives the

discrepancy value M ( j)
2 . The variable which causes the least

disturbance to the data configuration when it is omitted, is

the one that has the smallest M ( j)
2 . value. This variable is

removed from the set to leave p� 1 variables. The proce-

dure is then repeated on the reduced set of variables to find

the one out of p� 1 variables that can be eliminated with

least disturbance. The procedure goes on until only r

variables remain. These will be the ‘‘best’’ r variables, in

the sense that they are the r variables that best capture the

structure of all original p variables.

Experimental research often has to cope with qualitative

variables which makes the comparisons a bit more complex.

Krzanowski [7] has therefore extended the Procrustes rota-

tion technique to situations where all variables are categor-

ical, so that correspondence analysis must be employed
s-selected variables. Fall (A) and spring (B). Highway (o), city gardens (+),

 http:\\www.chalmersnyheter.chalmers.se\Article.jsp?article=2352 


Table 1

Loadings for the two most significant consensus vectors and the angles they
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rather than principal component analysis to form the basis

configuration.

form with the corresponding principal components for the four seasons

Variable hPC1i hPC2i
Cd 0.46 � 0.06

Co � 0.16 � 0.49

Cu 0.43 � 0.10

Cr 0.02 � 0.54

Fe � 0.24 � 0.40

Mn � 0.17 � 0.16

Ni 0.07 � 0.48

Pb 0.46 � 0.15

Zn 0.45 � 0.03

Angles a1 a2

Autumn 6.6 24.0

Winter 6.4 19.0

Spring 3.7 17.7

Summer 6.6 10.4
4. Example 1: variable selection with Procrustes rotation

Samples were collected in the medium-size city (ca.

300,000 inhabitants) of A Coruña, NW Spain and its

surroundings. Soils were sampled at 95 points representing

green areas, along a main avenue with high traffic density

(ca. 100,000 vehicles per day), along a highway and along

some perpendicular transects of the highway (both cultivat-

ed and uncultivated fields). Samples were collected in fall,

winter, spring and summer, and analyzed for the heavy

metals Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb and Zn, humidity,

loss on ignition (LOI), and pH.

For all sampling season, the 12 measured variables

produce distributions in which the 95 sampling points

divide into two main blocks that can be identified as

gardens within the city and samples pertaining to the

highway. This main division is found in the principal

component score plots PC1–PC2 for each season. The first

principal component accounts for about 38% of the total

information and somewhat depends on sampling season

(Fig. 2). Detailed inspection of the loadings [8] suggests

that metals related to the lythological characteristics of the

soils are a main discriminator. Hence, the main difference

between the two groups of samples can be attributed to

natural soil variation.

PC2 instead discriminates between samples that have

different pollution characteristics. Negative PC2 scores and

scores close to zero reflect samples collected at the border of

the highway or at the main avenue. Positive PC2 scores are

from the transect samples along a highway and most of the

city gardens (Fig. 2A). The differences are larger during fall

and winter possibly due to accumulation of pollutants
Fig. 4. Concept behind generalized Procrustes rotation. Angles b-PC denote close

interpretation of the consensus vectors.
during summer and late spring (that bring the groups closer)

(Fig. 2B).

In the study, a total of 12 variables were measured. If

some could be left out without compromising measured

information, too much workload and money could be saved.

This can be tested by Procrustes rotation. Using the Wr

statistic, we find that two PCs reflect most of the features of

the four seasons, hence, two variables should be sufficient to

describe the system. By Procrustes rotation, these were

identified as Co and Pb (Cd) in autumn, Co and Pb (Cd)

in winter, Co and Pb (Cd) in spring, and Pb and Cd (Co) in

summer. The elements in brackets are the third most

important variables in each season, respectively.

It is noteworthy that a lithological and an anthropogenic

variable are selected. This most likely reflect the main dif-

ference between the two sample groups (‘‘city’’ vs. ‘‘high-

way’’). From these variables, we can predict increased

pollution in summer time, reflected by high values of Pb

and Cd.
ness amongst the consensus and original spaces. ‘‘Loadings’’ give chemical
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Consider the principal component scores plots (PC1 vs.

PC2) constructed using only the two selected variables. The

agreement with the original PC scores plots is satisfactory as

the main sample patterns can still be observed (Fig. 3) [8].

By visual inspection, we see similarities between the four

sampling seasons. By Procrustes rotation, we can quantify

them. Although regular Procrustes rotation compares two

data sets, four data sets can be compared by applying

generalized Procrustes rotation [6].

The idea behind generalized Procrustes rotation is to find

a consensus subspace to which the individual subspaces are

compared simultaneously. The methodology depends on

whether points or axes are used to compare the subspaces;

here we use axes. If r principal components have been

extracted for each data set, then we can derive r consensus

vectors, b, that resemble all data sets as closely as possible.

The consensus subspace is given by [6]:

H ¼
XG
g¼1

LgVLg

where G is the number of subspaces compared and columns

of Lg are the principal component loadings in the gth
Fig. 5. Application of Procrustes rotation to spectral data to identify pure profiles

different emission wavelenghts for samples containing 1 dye per 40 and 20 bas

loadings.
subspace. We can even quantify the similarity between the

data sets and the consensus subspace by calculating the angle

between its principal components and the corresponding

consensus vectors. For the first consensus vector, the angle

is cos� 1{(b1VLgVLgb1)
1/2}. Fig. 4 illustrates these conceptual

ideas.

Table 1 shows the two most significant consensus vectors

for the four sampling seasons. The first consensus vector is

dominated by Pb, Cd, Zn and Cu. These are the variables for

which the sample scatters (groups) are similar during the

year. Note that the angles between the 1st consensus vector

and the original PCs are generally very low. This means that

these variables behave similarly in the four seasons. The

second consensus vector is mainly associated with Cr, Co

and Ni. The angles between this consensus vector and the

corresponding PCs are larger, reflecting lower correlations.
5. Example 2: Procrustes rotation in spectral analysis

Spectroscopic measurements are popular in the study of

test samples. Usually one is interested in identifying the

substances present, which is typically done by comparing
and relative concentrations. S1 and S2 are excitation spectra measured at

e pairs, respectively; T1 and T2 are their scores matrices, P are common
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measured spectra with those of pure substances. However,

reference spectra may not always be available. In such cases,

the substances can be identified by spectroscopic measure-

ments that are related to Procrustes rotation. The approach

requires a minimum of two data sets that are suitably

correlated [9]. It can be two spectra measured on each of a

set of samples, or it could be a two-dimensional spectroscopic

measurement on each of two samples [10]. It could also be a

single sample studied by a suitable three-dimensional tech-

nique [11]. The measured data should be correlated such that

the contribution of each substance to the two spectra has the

same wavelength dependence but different spectral magni-

tude. Typical combinations are excitation spectra measured at

different emission wavelengths and emission spectra mea-

sured at different excitation wavelengths.

When designed this way, the experiments generate two

correlated sets of spectra that are described by S1 =A(ckvk)
and S2 =A(ck dkvk), where ck is the concentration depen-

dence of chemical k, vk is its normalized spectrum, and dk is

the relative amplitude of the responses of chemical k in the

second measurement compared to the first. In matrix nota-

tion, S1 =CV and S2 =CDV.

By first analyzing the two data sets separately by singular

value decomposition, we can then relate them by Procrustes
Fig. 6. Trilinear decomposition of a three-array data set. Excitation/emission scans

set). For three of the samples intensity plots are shown in two-dimensional surfac
rotation. This determines C, V and D [9]. Briefly, PCA gives

S1 =T1PT and S2 =T2PT. Then T1 = S1P and T2 = S2P.

Procrustes rotation transforms T1, T2 and PT into C, CD

and V by calculating a rotation matrix, R, such that

C =T1R� 1 and V=RPT. This is done as follows: T1 is

Procrustes rotated to yield T2 as Q=(T1T*T1)
� 1

*T1
T
*T2,

which defines D and R by the similarity transform

D =RQR� 1. Procrustes rotation analysis is readily per-

formed using (e.g.) DATAN, available at www.muldid.se.

As an example, we analyze the binding of the fluorescent

asymmetric cyanine dye thiazole orange to DNA. Asym-

metric cyanine dyes have fluorescence only in bound state,

which makes them popular labels of biomolecules. They are

used, for example, in the LightUp probes for detection of

nucleic acids in real-time PCR (see, www.lightup.se for

more details) [12].

Two mixtures of thiazole orange and DNAwere prepared

with one dye bound per 20 and 40 base pairs, respectively,

and fluorescence excitation spectra were measured at thirty-

four different emission wavelenghts of each sample (Fig. 5).

First, the number of principal components, which should

correspond to the number of independent fluorescent spe-

cies that are present, was determined. Two significant

components were found, which nicely account for the
of six samples shown as contour plots (each one represents a bilinear data

e plots.

 http:\\www.muldid.se 
 http:\\www.lightup.se 


J.M. Andrade et al. / Chemometrics and Intelligent Laboratory Systems 72 (2004) 123–132130
measured spectra (Fig. 5). The scores vectors however do

not represent real spectra. To calculate components’ spectra,

the score vectors are rotated by Procrustes rotation. This

produces the spectra shown in Fig. 5. The calculated spectra

have distinct features and can be identified as bound

monomer and dimer, respectively [13,14]. Their concentra-

tions, calculated from the d-values, reveal that at low

binding ratios (1 dye per 40 base pairs) 77% of the dye

binds as monomer, while at high binding ratios (1 dye per

20 base pairs) only 41% is bound as monomer.
6. Example 3: trilinear decomposition

Trilinear decomposition is an special form of generalized

Procrustes rotation. It compares several data sets [13] but also

requires the components’ contributions to be factorizable.

Iða; b; cÞ ¼
Xr

i¼1

Iiða; b; cÞ ¼
Xr

i¼1

IiðaÞIiðbÞIiðcÞ

Trilinear decomposition is also called Parallel Factor

Analysis (PARAFAC), which was developed by Harshman

in 1970 [15]).

Typical cases where trilinear decomposition is powerful

are studies of chemical equilibria and chemical reactions by

spectroscopic methods and for analysis of test samples by
Fig. 7. Decomposition of the data in Fig. 6. Subplot (A) shows excellent agree

components (measured and reconstructed spectra coincide to such degree that they

different excitation wavelengths of one of the four-compounds mixtures. Equally g

show calculated emission and excitation spectra, respectively, for the four compoun

each of the six mixtures.
two-dimensional measurement techniques [13]. The latter is

illustrated here by an example.

Six samples containing Fluorescein, Eosin Y, Rhodamine

6G and Rhodamine B at different concentrations were

prepared and their emission spectra were recorded at eight

excitation wavelenghts. The measured data are described by:

Iðkex; kem; cðpHÞÞ~
Xn
i¼1

Iiðkex; kem; cðpHÞÞ

¼
Xn
i¼1

ciðpHÞIiðkex; kemÞ ð3Þ

Since the emission spectrum of a pure fluorescent species

is, in general, independent of the excitation wavelength used

and, vice versa, the excitation spectrum is independent of

the wavelength of emission, the excitation/emission matrix

can be factorized:

Iðkex; kem; cðpHÞÞ~
Xn
i¼1

Iiðkex; kem; cðpHÞÞ

¼
Xn
i¼1

IiðkexÞIiðkemÞciðpHÞ ð4Þ

Fig. 6 shows the excitation/emission scans of the six

samples as contour plots. For three of the samples, the data

are also shown as two-dimensional surface plots. The collec-
ment between measured and reproduced spectra assuming four principal

are hard to distinguish). Data shown are emission spectra measured at eight

ood agreement was found for the other five mixtures. Subplots (B) and (C)

ds [13]. Subplot (D) shows the calculated concentrations of the chemicals in
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tion of these six contour plots, each one being a bilinear data

set, makes up the trilinear data set (three-array data set).

Four principal components reproduce the measured spec-

tra (only one set is shown). By trilinear decomposition the

emission spectra, the excitation spectra and the concentra-

tions for all substances are calculated (Fig. 7). Comparing

with spectra of standards, which were not used in the

analysis, showed that the calculated spectra are in excellent

agreement with the true ones.
7. More applications of Procrustes rotation in analytical

chemistry

We have presented three examples of Procrustes rotation

in some detail above. Short description of some more

selected applications of Procrustes analyses follows below

with references to original work.

In environmental studies, it is commonly important to

identify the essential measurement variables to develop

simpler and more economic monitoring schemes [16]. In

airborne-related studies, King and Jackson [17] used Pro-

crustes rotation to select variables that best describe the

sample groups and Richman and Vermette [18] applied it to

compare data space (measured variables) with target space

(i.e., a list of pollution sources). In this way, Procrustes

rotation is an attractive way to source apportionment.

Industrial quality control is another important field where

Procrustes rotation methods are becoming important. In

industry, homogeneous products are generally fabricated

and it is seldom meaningful to group samples. This makes

it hard to identify problems and many PCs are usually

required to adequately describe the system. For quality

control, it is therefore advisable to combine Procrustes

rotation with industrial know-how and expertise. Deane

and McFie [19] applied Procrustes rotation to quality

control of kerosene, and Andrade et al. [20] verified that

almost the same variables were useful to describe kerosene

quality from a different refinery. The good agreement

between the two studies supports the notion that Procrustes

rotation is a valuable tool for quality control in production.

Scarponi et al. [21] determined total phenols, polymer-

izable phenols, antocyanins and leucoantocyanins in Italian

red wines that were subjected to different treatments. By

Procrustes rotation, the main features of the data were

identified and used to define a subset of variables that

described the main features.

Procrustes analysis was used to determine the number of

significant masses in GC-MS by Demir et al. [22] and

Bessant et al. to compare data collected by two detectors

in a triply coupled diode array liquid chromatography

electrospray mass spectrometry device [23]. The latter study

determined consensus chromatogram and consensus spectra

that accounted for the data measured by both detectors. In a

following study [24], the authors reduced the mass spectra

of 2- and 3-hydroxypyridines to 20 significant masses by
comparing the data collected by the two detectors. Schulze

and Stilbs [25] employed Procrustes rotation to analyze

Fourier-transform pulsed-gradient spin-echo NMR data to

identify specimens with distinct diffusion coefficients. A

refined approach was later employed for magnetic reso-

nance imaging by Antalek and Windig [26].

Robert and Carbo [27] used Procrustes rotation to de-

scribe organic molecules. They compared molecular quan-

tum similarity measures to find redundancies in the

information. In another molecular classification Tomas et

al. [28] classified newly-synthesised fulvene molecules into

groups defined by the Cambridge Structural Database using

a reduced set of descriptors identified by Procrustes rotation.

Guo et al. [29] presented a method based on Procrustes

rotation and genetic algorithms to select a subset of varia-

bles in PCA. A similar approach was used by Guo et al. [30]

to select a subset of variables in sequential projection pursuit

to preserve as much sample clustering information as

possible.

Application of Procrustes rotation to resolve spectra was

pioneered by Scarminio and Kubista [31], and has since

then been applied to many systems [11]. Applications

include the characterisation of pairs of samples by two-

dimensional spectroscopy [32] and the characterisation of a

single sample by a three-dimensional measurement [11].

Antonov et al. [33] compared the Procrustes-based ap-

proach with a technique of simultaneous resolution of

overlapping bands and found them to be similar for studies

of monomer-dimer equilibria. Tang and Wang [34] resolved

overlapping spectra of nitrites and nitrates using Procrustes

rotation.

Vigneau et al. [35] related NIR spectra of oils to mid-IR

spectra by Procrustes rotation. Anderson and Kalivas [36]

presented some fundamentals for calibration transfer using

piece-wise Procrustes rotation and constrained Procrustes

analysis. They compared these methods with piece-wise

direct standardisation and direct standardisation.

González-Arjona et al. [37] developed a Procrustes

discriminant analysis method and compared it to Discrim-

inant Partial Least Squares, Class Modeling Linear Discrim-

inant and Artificial Neural Networks algorithms. They

found that Procrustes rotation performs at least as well as

discriminant PLS and ANN when the classes were linearly

distributed.

Heberger and Andrade [38] compared variable selection

by Procrustes rotation with the new nonparametric Gener-

alized Pair-wise Correlation Method (GPCM), and found

them to produce similar results.
8. Concluding remarks

Being a rather unknown and ‘‘exotic’’ technique some 10

years ago, Procrustes rotation and its generalized form,

trilinear decomposition, is rapidly gaining in popularity.

Main reason is computerization of instruments, which
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makes it simple to collect multidimensional data. Another

reason is that scientists are becoming more used to think

‘‘multidimensional’’ and are learning to appreciate the great

advantages multidimensional techniques have to offer com-

pared to traditional measurements in fewer dimensions.

Finally, the rapid development of user friendly and easily

workable software for muldimensional analysis is making

life easier. The popular Matlabn software today provides

several powerful commands and toolboxes for multidimen-

sional analysis, and DATANn from MultiD Analyses AB

(www.multid.se) has a very intuitive user interface that

gives easy access to most functions needed for multidimen-

sional analysis. We therefore expect multidimensional meas-

urements to become very important in the future and

methods, such as Procrustes rotation, to become routinely

associated to analytical methods that are taught at under

graduate university level.
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