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1. Introduction

The origins of sign pattern matrices are in the 1947
book Foundations of Economic Analysis by the No-
bel Economics Prize winner P. Samuelson, who pointed
to the need to solve certain problems in economics and
other areas based only on the signs of the entries of the
matrices. (the exact values of the entries of the matrices
may not always be known)

The study of sign pattern matrices has become somewhat
synonymous with qualitative matrix analysis. Because of
the interplay between sign pattern matrices and graph
theory, the study of sign patterns is regarded as a part of
combinatorial matrix theory.
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The 1987 dissertation of C. Eschenbach, directed by
C.R. Johnson, studied sign patterns that “require” or “al-
low” certain properties and summarized the work on sign
patterns up to that point.
In 1995, Richard Brualdi and Bryan Shader produced
a thorough treatment Matrices of Sign-Solvable Linear
Systems on sign pattern matrices from the sign-solvability
vantage point.
Since 1995 there has been a considerable number of pa-
pers on sign patterns and some generalized notions such
as ray patterns.

Handbook of Linear Algebra, 2007, CRC Press, Chap-
ter 33 Sign Pattern Matrices (Hall/Li)

3



A matrix whose entries are from the set {+,−, 0} is
called a sign pattern matrix (or sign pattern, or pattern).
For a real matrix B, sgn(B) is the sign pattern matrix
obtained by replacing each positive (resp, negative) entry
of B by + (resp, −). For a sign pattern matrix A, the
sign pattern class of A is defined by

Q(A) = {B : sgn(B) = A }.

EG

If

B =

[
7 −2 0
0 5 −9

]
,

then
B ∈ Q(A)

where

A =

[
+ − 0
0 + −

]
.
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A sign pattern matrix S is called a permutation pat-
tern if exactly one entry in each row and column is equal
to +, and all other entries are 0. A product of the form
STAS, where S is a permutation pattern, is called a per-
mutational similarity.

Two sign pattern matrices A1 and A2 are said to be
permutationally equivalent if there are permutation pat-
terns S1 and S2 such that A1 = S1A2S2.

A sign pattern A requires property P if every matrix
in Q(A) has property P .

A sign pattern A allows property P if some matrix in
Q(A) has property P .
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An n × n sign pattern A is said to be sign nonsingu-
lar (SNS) if every matrix B ∈ Q(A) is nonsingular, ie,
A requires nonsingularity. It is well known that A is sign
nonsingular if and only if det A = + or det A = −, that
is, in the standard expansion of det A into n! terms, there
is at least one nonzero term, and all the nonzero terms
have the same sign.

SNS was one of the earliest notions studied in QMA.
(John Maybee and others in the 60’s)

NOTE
Each nonzero term in det A is a (composite) cycle of
length n properly signed.
A composite cycle is a product of simple cycles.
A simple cycle in A corresponds to a (simple) cycle in
D(A), the directed graph of A.
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EGS of SNS patterns (just consider the cycle structure):
any diagonal pattern with all nonzero diagonal entries;
any triangular pattern with all nonzero diagonal entries;


0 + 0
0 0 +
+ 0 0


 (any + could be - here)




0 + 0 −
+ 0 + 0
0 + 0 +
− 0 + 0







0 + 0 0
− 0 + 0
0 − 0 +
0 0 − 0


 (diagonal could be: +,+,+,+; -,-,+,+)




+ + + 0 0
− + + 0 0
0 − + + 0
0 + − + +
0 − + − +




(“complementary zig-zag shape”, M. Fiedler LAA 2008)
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Which sign patterns allow orthogonality? In other words,
given an n×n sign pattern A, is there a B in Q(A) such
that BBT = I? This question was originally raised by M.
Fiedler in Proceedings: Theory of Graphs and Its Appli-
cations, Publishing House of the Czechoslovakia Academy
of Sciences, Prague, 1964. Because of this question, there
has been much research related to this topic since that
time. In particular, there is one whole chapter in the
HLA.
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A square sign pattern A is potentially orthogonal (PO)
if A allows orthogonality.
A square sign pattern A that does not have a zero row
or zero column is sign potentially orthogonal (SPO) if
every pair of rows and every pair of columns allows or-
thognality.

Every PO pattern is SPO.
For n ≤ 4, every n × n SPO pattern is PO.
There is a 5 × 5 fully indecomposable SPO pattern that
is not PO.
There is a 6× 6 (+,−) pattern that is SPO but not PO.


+ + +
+ + −
+ − +


 is both PO and SPO.
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Recall that the rank of a real matrix is the maximimum
number of linearly independent rows (or columns).

For an m × n sign pattern matrix A, the minimum
rank of A, denoted mr(A), is defined as

mr(A) = min
B∈Q(A)

{rank B},

while the maximum rank of A, denoted MR(A), is de-
fined as

MR(A) = max
B∈Q(A)

{rank B}.

The maximum rank of a sign pattern A is the same as
the term rank of A, which is the maximum number of
nonzero entries which lie in distinct rows and in distinct
columns of A. However, determination of the minimum
rank of a sign pattern matrix in general is a longstanding
open problem in combinatorial matrix theory.

The all + pattern J has mr 1.
Any n × n SNS pattern has mr n.


+ + +
+ + −
+ + +


 has mr 2.
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A subpattern of a sign pattern A is a sign pattern ma-
trix obtained by replacing some (possibly none) of the +
or − entries in A with 0. The sign pattern In ∈ Qn is
the diagonal pattern of order n with + diagonal entries.

An m × n sign pattern matrix A is said to be an L-
matrix if every real matrix B ∈ Q(A) has linearly in-
dependent rows (so m ≤ n). It is known that A is an
L-matrix iff for every nonzero diagonal pattern D, DA
has a unisigned column (that is, a nonzero column that
is nonnegative or nonpositive). (see B/S book)

11



From P. Rao/B. Rao, On Generalized Inverses of Boolean
Matrices, LAA(1975); also, book by Kim:

Let B be the (0, 1) Boolean algebra (1 + 1 = 1). A
Boolean matrix (or vector) has entries (or components)
in B. Let Bn be the set of all Boolean vectors with n com-
ponents. For Boolean vectors x1, x2, . . . , xk ∈ Bn, the
linear manifold M(x1, x2, . . . , xk) is the set of all vectors

of the form
∑k

i=1 cixi, where ci ∈ B. A set of Boolean
vectors {x1, x2, . . . , xk} ⊆ Bn is said to be dependent if
one vector in the set is the sum of some of the remaining
vectors or the zero vector is in the set. Otherwise, the set
is said to be independent.

{x1, x2, . . . , xk} dependent means:
{0} is dependent.
For k ≥ 2, some xi is in the linear manifold spanned by
the remaining vectors.
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The vectors
1 1 1
1 1 0
0 1 1
are Boolean dependent but independent over the reals.
1 0 0
0 1 1
0 0 1
1 1 0
are Boolean independent but dependent over the reals.
1 0 0
0 1 0
are independent in both ways.
1 0 0
0 1 0
0 0 1
1 1 1
are dependent in both ways.
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Let T = {x1, x2, . . . , xk}, where xi ∈ Bn. A set
S ⊆ T is said to be a basis of T if S is independent and
T ⊆ M(S). It is known that every T ⊆ Bn, T 6= {0},
has a unique basis. The cardinality of the basis for T is
called the rank of T .
Note:
1) In T ⊆ M(S) we could have proper set inclusion,
eg, S = T = {(1, 0, 1), (0, 1, 0)}; M(S) also includes
(1, 1, 1).
But, if T is a “subspace” of Bn, then T = M(S).

2) rank T ≤ k since S ⊆ T .

3) rank T ≤ n may not hold, eg,
rank T = {1, 0, 0), (0, 1, 1), (0, 0, 1), (1, 1, 0)} = 4!
(T is a basis of T )
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Let A be a Boolean matrix. The Boolean row (col-
umn) rank of A is defined to be the rank of the set of
row (column) vectors of A. Since a nonnegative sign pat-
tern matrix (namely, a matrix whose entries are from the
set {+, 0}) may be viewed as a Boolean matrix (by identi-
fying each + entry with 1), Boolean row (column) rank is
now defined for a nonnegative sign pattern matrix. Note
that for a nonnegative sign pattern matrix A, the Boolean
row rank of A and the Boolean column rank of A may be
different. When these are the same, this common value
is called the Boolean rank of A.
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Example Let

A =




+ 0 0 +
0 + 0 +
+ + 0 +
+ + + 0


 .

Rows 1, 2, and 4 form a basis for the set of rows of A.
Boolean row rank of A is 3.

The 4 columns of A form a basis for the set of columns
of A. Boolean column rank of A is 4.
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Two new notions:

Let T = {x1, x2, . . . , xk}, where xi ∈ Bn. T is said to
be weakly dependent if there exist two disjoint subsets S1

and S2 of {1, 2, . . . , k}, not both empty (by convention,
an empty sum is equal to 0), such that

∑

i∈S1

xi =
∑

j∈S2

xj.

Otherwise, T is said to be strongly independent.
Note:
1) dependent → weakly dependent, equivalently,
strongly independent → independent, (Boolean)
2) {1, 0, 0), (0, 1, 1), (0, 0, 1), (1, 1, 0)} is weakly dependent,
but independent!
(S1 = {1, 2}, S2 = {3, 4})
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It can be seen that for row vectors x1, x2, . . . , xk in
Bn, {x1, x2, . . . , xk} is weakly dependent iff the matrix


x1
...

xk


 is not an L-matrix. In other words, {x1, x2, . . . , xk}

is strongly independent iff the matrix




x1
...

xk


 is an L-

matrix.

Note that for k ≤ 3, {x1, . . . , xk} is independent iff

{x1, . . . , xk} is strongly independent, iff the matrix




x1
...

xk




is an L-matrix.
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2. BOOLEAN ROW (COLUMN) RANK AND
MINIMUM RANK

Observation 2.1 Let A be an m×n nonnegative sign
pattern matrix. Then

mr(A) ≤ min {Bool col rank of A, Bool row rank of A}.

This observation follows from the fact that a Boolean
basis for the columns (rows) of A can serve as a spanning
set for the columns (rows) of some real matrix B ∈ Q(A).

For nonnegative sign patterns that have fewer than four
rows (or fewer than four columns), we have a Boolean
basis for the rows (cols) of A with fewer than four rows
(cols). The rows (cols) in the basis then form an L-matrix.
Hence, we have equality in the above inequality. However,
equality does not hold in general, as can be seen from the
following example.
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Example 2.2 Let

A =




+ + + 0
+ + 0 +
+ 0 + +
0 + + +


 .

Then mr(A) = 3 < 4 = Boolean rank of A.
That A has Boolean column and row rank 4 should be
clear. Now, the upper-right 3 × 3 submatrix A1 of A is
sign nonsingular, with det(A1) = −. So, mr(A) ≥ 3.
However, A is not sign nonsingular as the matrix

B =




1 1 2 0
1 1 0 2
2 0 1 1
0 2 1 1




in Q(A) is singular. Indeed, for B, row 1 + row 2 = row
3 + row 4. Hence, mr(A) = 3. Note that the rows of A
are independent, but weakly dependent.
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In the following theorem we determine exactly when we
can have equality in Observation 2.1.

Theorem 2.3 Let A be an m × n nonnegative sign
pattern matrix and let F be a submatrix of A whose
rows form a Boolean basis for the rows of A. Then

mr(A) = Boolean row rank of A

if and only if F is an L-matrix.
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We next discuss rank factorizations. In general, a non-
negative real matrix may not have a nonnegative full-
rank factorization. For nonnegative sign pattern matri-
ces, minimum rank factorizations are crucial and we make
the following definition.
Let A be an m×n nonnegative sign pattern matrix, with
mr(A) = r. We say that A has a nonnegative minimum
rank factorization if A = HK for some m × r (r × n)
nonnegative sign pattern matrices H (K) where mr(A) =
mr(H) = mr(K) = r.

If A has such a factorization, then since
r = mr(K) ≤ Boolean row rank of K ≤ r,
mr(K) = Boolean row rank of K;
similarly, mr(H) = Boolean column rank of H .
Further, H (K) has strongly independent columns (rows).
However, nonnegative minimum rank factorization is not
always possible.
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Example 2.4 As in Example 2.2, let

A =




+ + + 0
+ + 0 +
+ 0 + +
0 + + +


 .

It can be shown by discussing various cases that the
columns of A cannot be generated (as Boolean combi-
nations) by any three nonnegative vectors. Therefore, A
does not have a nonnegative minimum rank factorization.
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Let A be an m × n nonnegative sign pattern matrix.
Then the Schein rank of A is the smallest positive integer
k such that A = HK for some m×k (k×n) nonnegative
sign pattern matrices H (K). (possible applics in biology,
etc)

The following are easily established:

mr(A) ≤ Schein rank(A)

≤ min {Bool col rank of A, Bool row rank of A}.

A has a nonnegative minimum rank factorization if and
only if

mr(A) = Schein rank(A).

When does A have a nonnegative minimum rank fac-
torization??

Also recall: (Theorem 2.3) Let F be a submatrix of A
whose rows form a Boolean basis for the rows of A. Then

mr(A) = Boolean row rank of A

if and only if F is an L-matrix. (this tells us when we
have equalities in both of the above inequalities)
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Even when a nonnegative sign pattern matrix A has a
nonnegative minimum rank factorization, mr(A) may not
be equal to the Boolean row (column) rank of A.

Example 2.5 Let

A =




+ + 0 0
+ + 0 +
0 0 + +
0 + + +


 =




+ 0 0
+ + 0
0 0 +
0 + +







+ + 0 0
0 + 0 +
0 0 + +


 = HK.

Clearly, A is not sign nonsingular. Since the upper-
right 3×3 submatrix of A is sign nonsingular, mr(A) = 3,
and HK is a nonnegative minimum rank factorization of
A. However, both the Boolean row and column ranks of
A are 4.
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It is worth mentioning that if mr(A) (mc(A)) denotes
the maximum number of strongly independent rows (columns)
of a nonnegative sign pattern A, then clearly we have

Proposition 2.6 For every nonnegative sign pattern
A, max{mr(A), mc(A)} ≤ mr(A).

Hence,
max{mr(A), mc(A)} ≤ mr(A) ≤ Schein rank(A)
≤ min {Bool col rankA, Bool row rankA}.

Strict inequality in Prop 2.6 is possible, as the following
example shows.
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Example 2.7 Let G be the 5 × 10 sign pattern corre-
sponding to the matrix Γ2 as defined on page 20 of the
Brualdi/Shader book. That is,

G =




0 0 0 0 + + + + + +
0 + + + 0 0 0 + + +
+ 0 + + 0 + + 0 0 +
+ + 0 + + 0 + 0 + 0
+ + + 0 + + 0 + 0 0




which is the 5×10 nonnegative sign pattern consisting of
all possible columns with exactly three positive entries in
each column. Now, G is a barely L-matrix, that is to say,
G is an L-matrix and if one or more columns are deleted
from G, then the resulting matrix is not an L-matrix. The
fact that G is an L-matrix means that the 5 rows of G are
strongly independent, so that mr(G) = 5. However, G
does not have 5 strongly independent columns. In fact,
if G had 5 strongly independent columns, then such 5
columns would form a 5× 5 sign nonsingular matrix, and
thus we obtain a 5×5 submatrix of G that is an L-matrix,
contradicting the fact that G is a barely L-matrix. On
the other hand, the columns c1, c2, c3, c5 of G can be seen
to be strongly independent. Thus we have mc(G) = 4 <

mr(G) = 5. Furthermore, for A =

[
0 G

GT 0

]
, we have

mr(A) = 2 mr(G) = 10, while mr(A) = mc(A) = 9.
Thus max{mr(A), mc(A)} < mr(A).
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In the above example,

max{mr(A), mc(A)} = 9

mr(A) = 10 = Schein rank(A)

min {Bool col rank of A, Bool row rank of A} = 15.

The reason mr(A) = Schein rank(A) is that A has the
nonnegative minimum rank factorization

A =

[
0 G

GT 0

]
=

[
I5 0
0 GT

] [
0 G
I5 0

]
.

What is an example where

max{mr(A), mc(A)} < mr(A) < Schein rank(A)

< min {Bool col rank of A, Bool row rank of A}?
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Related ideas

Recall: Let A be an m × n Boolean (nonnegative sign
pattern) matrix. Then the Schein rank of A is the min-
imum k such that A = HK for some m × k (k × n)
Boolean (nonnegative sign pattern) matrices H (K).

More generally: In “Real Rank Versus Nonnegative Rank”,
LAA, 2009, L. Beasley and T. Laffey define the factor
rank for matrices over a general semiring S .
The factor rank of an m×n matrix A over S is the min-
imum k such that A = HK for some m × k (k × n)
matrices H (K) over S .

When S is the set of real numbers, the factor rank is the
same as the usual rank (A). (in full-rank factorization)
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For some applications, in actual practice, we try to get
as “close as possible” to A with HK.

For Boolean matrices, determining the Schein rank is NP-
hard (at least as hard as NP-complete) - G. Markowsky,
1992.
In the study of human olfactory perception (relating to
the sense of smell), we are using the receptor-ligand recog-
nition model. Our algorithm stops when a required per-
centage of 1’s in A are covered.

In nonnegative data analysis, the nonnegative matrix
factorization (NNMF) problem, probably due to Paatero
and Tapper, 1994:
Given a real m× n nonnegative matrix Y and a positive
integer p < min{m, n}, find nonnegative m × p (p × n)
matrices U (V ) so as to minimize the functional

||Y − UV ||F ,

where F denotes the Frobenius norm. An appropriate
decision on the value of p is critical in practice, but the
choice of p is very often problem dependent.
(papers by R. Plemmons, etc)

30



We remark that in the characterizations in the next two
sections the sign patterns A have a nonnegative minimum
rank factorization and also mr(A) = Boolean rank of A.

3. IDEMPOTENTS

Clearly, if a square nonnegative pattern A allows a
real idempotent, that is, there is an idempotent matrix
B ∈ Q(A), then A is idempotent. The converse does not

hold. For example, the pattern A =

[
+ +
0 +

]
is idempo-

tent, but does not allow a real idempotent. The following
result from Eschenbach/Hall/Li, Sign pattern Matrices
and Generalized Matrices, LAA(1994) determines when
a nonnegative pattern allows a real idempotent.

Proposition 3.1 Let A be a square nonnegative sign
pattern matrix, with mr(A) = r. Then A allows a real
idempotent if and only if A is permutationally similar to
a pattern of the form

[
Ir A2

A3 A3A2

]

where A2A3 is a subpattern of Ir (that is, A2A3 is a
diagonal pattern).
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Theorem 3.2 Let A be a square nonnegative sign pat-
tern matrix, with mr(A) = r. Then A is idempotent if
and only if A is permutationally similar to a sign pattern
of the form [

A1 A1A2

A3A1 A3A1A2

]

where A1 is r × r sign nonsingular and idempotent, and
A2A3 is a subpattern of A1.

We note that when A is idempotent as in the above
theorem that (a permutational similarity of)

[
A1

A3

] [
A1 A1A2

]

is a nonnegative minimum rank factorization of A.

Theorem 3.3 Let A be a nonnegative idempotent sign
pattern matrix. Then

mr(A) = Boolean rank of A.

Proof: Let mr(A) = r. By Theorem 3.2, A is permuta-
tionally similar to a sign pattern of the form

[
A1 A1A2

A3A1 A3A1A2

]

where A1 is r×r sign nonsingular and idempotent. Hence,

mr(A) = r = mr(A1) ≤ Boolean rank of A1.
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So, Boolean rank of A1 = r. Since Boolean rank of A =
Boolean rank of A1, the result follows.

Corollary 3.4 If A is an n×n nonnegative idempotent
sign pattern matrix with Boolean rank n, then mr(A) =
n, that is, A is sign nonsingular.

For symmetric patterns, the blocks in the strictly upper
triangular part of the Frobenius normal form are zero.
The proof of the following theorem is parallel to the proof
of Theorem 3.2.

Theorem 3.5 Let A be a symmetric nonnegative sign
pattern matrix, with mr(A) = r. Then A is idempotent
if and only if A is permutationally similar to a pattern of
the form [

Ir A2

AT
2 AT

2 A2

]

where A2A
T
2 is a subpattern of Ir.

Proposition 3.1 and Theorem 3.5 immediately yield the
following.

Theorem 3.6 Let A be a symmetric nonnegative sign
pattern matrix. Then A is idempotent if and only if A
allows a real idempotent.
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4. PATTERNS THAT ALLOW NONNEGA-
TIVE GENERALIZED INVERSES

Let B, X be real (or Boolean) matrices. Consider the
following conditions.

(1) BXB = B.

(2) XBX = X.

(3) BX is symmetric.

(4) XB is symmetric.

If (1) holds, X is called a (1)-inverse of B; if (1) and
(2) hold, X is called a (1, 2)-inverse of B; if (1) and (3)
hold, X is called a (1, 3)-inverse of B; if (1) and (4) hold,
X is called a (1, 4)-inverse of B; if (1)–(4) hold, then X
is unique and is called the Moore-Penrose inverse of B.
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Lemma 4.1 Let A be an m×n nonnegative sign pattern
matrix. If A allows a nonnegative (1)-inverse, then A has
a nonnegative (1)-inverse.

The same result holds for other generalized inverses
such as (1, 3)- and Moore-Penrose inverse. For the proof
just replace positive entries by +.

The converse of Lemma 4.1 does not hold. For example,

the pattern A =

[
+ +
0 +

]
is in fact a (1, 2)-inverse of

itself, but A does not allow a nonnegative (1)-inverse.
This pattern A is sign nonsingular with inverse pattern[

+ −
0 +

]
.
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Using two results from Rao/Rao:
Theorem 4.2 Let A be an m × n nonnegative sign
pattern matrix, with mr(A) = r. Then the following are
equivalent:

(i) A has a nonnegative (1)-inverse.

(ii) A is permutationally equivalent to a sign pattern of
the form [

A1 A1A2

A3A1 A3A1A2

]

where A1 is r × r sign nonsingular and idempotent.

(iii) A = HK, H = AN, K = SA for some m × k, k ×
n, n× k, k ×m nonnegative patterns H, K, N, S, re-
spectively.

Corollary 4.3 Let A be an m × n nonnegative sign
pattern matrix that has a nonnegative (1)-inverse. Then
A has a nonnegative minimum rank factorization and also
mr(A) = Boolean rank of A.

It follows from Lemma 4.1 and Corollary 4.3 that if
a nonnegative pattern allows a nonnegative (1)-inverse
(in particular say a (1, 3)-inverse), then A has a non-
negative minimum rank factorization and also mr(A) =
Boolean rank of A.
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We recall that a real nonnegative matrix B is said to
be monomial if and only if B has exactly one nonzero
entry in each row and each column, that is, B can be
expressed as a product of a nonsingular diagonal matrix
and a permutation matrix. It is well-known that an m×n
rank r, real, nonnegative matrix B has a nonnegative
(1)-inverse if and only if B has a monomial submatrix
of order r (see Th 4 in Berman/Plemmons, Inverses of
Nonnegative Matrices, LAMA(1974)).

Theorem 4.4 Let A be an m × n nonnegative sign
pattern matrix, with mr(A) = r. Then the following are
equivalent:

(i) A is permutationally equivalent to a sign pattern of
the form [

Ir A2

A3 A3A2

]
.

(ii) A allows a nonnegative (1)-inverse.

(iii) A allows a nonnegative (1, 2)-inverse.

(iv) A = HK where H (K) is an m × r (r × n) non-
negative pattern and both H and K contain some
row-permutation of Ir as a submatrix.
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From the proof of Theorem 4.4, the only matrices B ∈
Q(A) that can have a nonnegative (1)-inverse are of rank
equal to mr(A). In fact, if A allows a nonnegative (1)-
inverse, then all matrices B ∈ Q(A) of rank equal to
mr(A) have a nonnegative (1)-inverse. Indeed, such a B
is permutationally equivalent to a matrix of the form

[
Dr C
D DD−1

r C

]
,

where Dr is a diagonal matrix with positive diagonal en-
tries, and so B has a monomial submatrix of order r.
Furthermore, since these matrices B have a nonnegative
(1)-inverse, they then have a nonnegative full rank fac-
torization.

We will now show that if a nonnegative sign pattern A
has a nonnegative (1, 4)-inverse, then A allows a nonneg-
ative (1, 4)-inverse. The same is true for (1, 3)-inverse
and the Moore-Penrose inverse. As was seen earlier, this
is not the case in general for (1)-inverse.
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Theorem 4.5 Let A be an m × n nonnegative sign
pattern matrix, with mr(A) = r. Then TFAE:

(i) A has a nonnegative (1, 4)-inverse.

(ii) A is permutat equiv to a pattern of the form

[
Ir A2

A3 A3A2

]

where A2A
T
2 is a subpattern of Ir.

(iii) A is permutat equiv to a pattern of the form

[
F

GF

]

where F is r × n and has orthogonal rows, and G is
nonnegative.

(iii)′ A is permutat equiv to a pattern of the form

[
J 0

GJ 0

]
,

where G is nonnegative and J =




J1 0
. . .

0 Jr


 , with

each Ji an all + row.

(iv) A allows a nonnegative (1, 4)-inverse.

(v) A allows a nonnegative (1, 2, 4)-inverse.

(vi) A = HK, where H(K) is an m×r (r×n) nonnega-
tive pattern, H contains some row-permutation of Ir

as a submatrix, mr(K) = r, and the rows of K are
orthogonal.
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(i) ⇔ (ii) follows from Th 4.1 in Rao/Rao. The proofs
of (iii) ⇒ (iv) ⇒ (v) follow from Berman/Plemmons, but
we have given self-contained proofs. Th 4.6 in our paper
is a parallel theorem for (1, 3)-inverses.

Finally , we consider the Moore-Penrose inverse.

Theorem 4.7 Let A be an m × n nonnegative sign
pattern matrix, with mr(A) = r. Then TFAE:

(i) A has a nonnegative Moore-Penrose inverse.

(ii) A is permutat equiv to a pattern of the form

[
Ir A2

A3 A3A2

]

where A2A
T
2 and AT

3 A3 are subpatterns of Ir.

(iii) A is permutat equiv to a pattern of the form

[
J 0
0 0

]
,

where J =




J1 0
. . .

0 Jr


 , with each Ji an all + (not

necessarily square) block.

(iv) A allows a nonnegative Moore-Penrose inverse (in
Q(AT )).

(v) A = HK, where H (K) is an m× r (r×n) nonneg-
ative pattern, mr(H) = mr(K) = r, and the columns
(rows) of H (K) are orthogonal.
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(i) ⇔ (ii) follows from Theorem 4.3 in Rao/Rao. Using
a result in Plemmons/Cline, The Generalized Inverse of
a Nonnegative Matrix, AMS Proc (1972), one can show
that (iii) ⇔ (iv). When A allows a nonnegative Moore-
Penrose inverse, then all matrices B ∈ Q(A) of rank
equal to r = mr(A) have a nonnegative Moore-Penrose
inverse. This follows since such a matrix B is of the form
in Plemmons/Cline.

5. NONNEGATIVE PATTERNS THAT AL-
LOW POSITIVE GENERALIZED INVERSES

Proposition 5.1 Let A be an m×n nonnegative sign
pattern matrix. Then the following are equivalent:

(i) A allows a positive (1)-inverse.

(ii) A has a positive (1)-inverse.

(iii) A is permutationally equivalent to a pattern of the
form [

J 0
0 0

]
,

where J is an all + (possibly empty) pattern.

In contrast, we have the following result on (2)-inverses.
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Proposition 5.2 Let A be an m × n sign pattern
matrix. Then the following are equivalent:

(i) A allows a positive (2)-inverse.

(ii) A allows a nontrivial nonnegative (2)-inverse.

(iii) A has at least one + entry.

Corollary 5.3 Let A be an m × n nonnegative sign
pattern matrix. Then the following are equivalent:

(i) A allows a positive (2)-inverse.

(ii) A allows a nontrivial nonnegative (2)-inverse.

(iii) A has a positive (2)-inverse.

(iv) A has a nontrivial nonnegative (2)-inverse.

(v) A has at least one + entry.

We now consider nonnegative sign patterns that allow
positive Moore-Penrose Inverses.

Proposition 5.4 Let A be an m×n nonnegative sign
pattern matrix. Then the following are equivalent:

(i) A allows a positive Moore-Penrose inverse.

(ii) A has a positive Moore-Penrose inverse.

(iii) A is the all + pattern.
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