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BOUNDARY VALUE PROBLEMS FOR GENERALIZED LINEAR
DIFFERENTIAL EQUATIONS

STEFAN SCHWABIK, MILAN TVRDY, Praha

(Received November 12, 1977)

The paper is devoted to linear boundary value (b.v.) problems for generalized
linear differential equations

(0,1)  dx = d[A] x + df (x(t) = x(0) + '[ (:d[A(s)] x(s) + f(r) — £(0)),

0,2) J:d[K] x - reR,

In Section 1 a survey of basic properties of generalized linear differential equations
is given. The properties of fundamental matrix solutions to dx = d[A] x imply
a close relationship between the equations (0,1) and

03 ¥O)+ rEAG) -y - () A0 + [ dlr (] 40) -

= ¢o*(t) — ¢*(s), t,se[0,1].

Section 2 provides the underlying theory for equations of the type (0,3). In Section
3 and 4 the b.v. problem (0,1), (0,2) is dealt with. The adjoint problem is found in
such a way that the usual Fredholm theorem on the existence of a solution holds.
Furthermore, the Green matrix is defined and its basic properties are discussed.
The results obtained here are generalizations of those given in [2], [7]—[9] and [11].

1. GENERALIZED LINEAR DIFFERENTIAL EQUATIONS

In this section we give a short survey of the basic properties of generalized linear
differential equations. More details and the proofs can be found in [7].

1.1. Notation. R, is the space of real column n- vectors Ry is the space of real
row n-vectors, L(R,,, R,) denotes the space of real m x n-matrices, L(R,, R,) =
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= L(R,) . I is the identity matrix. Given M= (M; i=1 n € L(R,, R,,), M* denotes
i n

its transpose and lM | max Z |M i :l Zero matrlces of an arbitrary type are
i=1,.

denoted by 0. In particular, both zero row vectors and zero column vectors are
denoted by 0. The value of the determinant of M e L(R,) is denoted by det (M).

Given «, Be Ry, a < B, the symbols [«, B], («, B), [, B) and («, B] stand for the
closed, open and half-open intervalsa < t < f,a <t < p,a<t<Panda<t <
< B, respectively.

If a matrix valued function F:[0,1] —» L(R,, R,) is of bounded variation on
[0, 1] (i.e. any component f; ; of F, F(t) = (f; ,(t)), 12 cm is of bounded variation
on [0, 1]) we write F € BV. The space of functions f : [0 1] - R, of bounded variation
on [0, 1] is denoted by BV,

Given Fe BV, te(0,1] and s € [0, 1), then A*F(s) = F(s+) — F(s) and A™F(t) =
= F(t) — F(t-).

1.2. Generalized linear differential equations. Let A : [0, 1] » L(R,), Ae BV and
f € BV,. The equation

(1.1) () = x6) + [ ALAC)] () + ) ~ £0)

will be called the generalized linear differential equation. Let [a, b] < [0, 1].
A function x : [a, b] - R, is said to be a solution of (1,1) on [a, b] if (1,1) holds
for every t,s€[a, b]. The integral occuring in (1,1) is the Perron-Stieltjes integral,

J-:d[A(r)] x(r) =v = (v)i=1,2,..n € R
o =.i€=£'1 J..:d[Ai’j(r)] xi(r) , i=1,2,..,n

We shall use the symbolic transcription
(1,2) dx = d[A] x + df

for the equation (1,1).
The properties of the initial value problem

(1,3) dx = d[A] x + df, x(s) = x,€R,

are of a great importance for our purposes. The following existence and uniqueness
theorem holds.

1.3. Theorem. Let A:[0, 1] — L(R,) be of bounded variation on [0, 1]. The
initial value problem (1,3) has a unique solution x : [0, 1] - R, on [0, 1] for any
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given s€ [0, 1], x, € R, and f € BV, if and only if
(1,4 det(I — A"A(t)) # 0 for te(0,1] and
det(I + A*A(t)) # 0 for te[0,1).

Let A:[0,1] - L(R,) and f:[0,1] = R, be of bounded variation on [0, 1].
Then the conditions on the regularity of I — A~A(1), I + A*A({) can be violated
only at a finite number of points in [0, 1]. This is an immediate consequence of the
fact that |A"A(t)] = 1 or |A*A(t)| = 1 may hold only for a finite number of points
in (0, 1] or [0, 1), respectively.

Given a solution x of (1,2) on [a, b] = [0, 1], all the onesided limits x(a+),
x(b—), x(t+), x(t—), t € (a, b) exist and

(1,5 x(t+) =[1 + A*A(1)] x(t) + A*f(f) for te[a,b),
x(t=)=[1— A"A(t)] x(t) — A™f(f) for te(a,b].
Moreover, any solution of (1,2) on [a, b] has a bounded variation on [a, b].

Let us notice that the condition det (I — A"A(f)) # 0 enables us to define the
solution at the point ¢ if it is known on an interval [s, 1) (cf. (1,5)). Similarly, the
condition det (I + A*A(t)) + 0 enables us to continue the solution to the point ¢
from the right.

1.4. Theorem. Let A : [0, 1] - L(R,) be of bounded variation on [0, 1] and let
the conditions (1,4) hold. Then for every t,€[0,1] and X, e L(R,) there exists
a unique function X :[0, 1] - L(R,) such that X(t,) = X, and

(1,6) X(t) = X(s) + ﬁd[A(r)] X() for tse[0,1].
Moreover, if det (X,) # 0, then
(1,7) det (X(#)) # 0 on [0,1].

1.5. Definition. Any matrix valued function X:[0, 1] — L(R,) fulfilling (1,6)
and (1,7) is called a fundamental matrix solution of the homogeneous equation

(1,8) dx = d[A] x.

For any fundamental matrix solution X of (1,8) its inverse X ™! is defined on [0, 1],
has a bounded variation on [0, 1] and satisfies the relation

(1,9) XY (1) = X"(s) — X"I(1) A(t) + X~ (s) A(s) + ﬁd[X“(r)] A7)
for t,se[0,1].
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The following statement is important for our considerations:

1.6. Theorem. Let A:[0,1] > L(R,), Ae BV and (1,4) hold. Then for every
fe BY,, se[0,1] and x, € R, the unique solution x : [0, 1] - R, of (1,3) is given
by the variation-of-constants formula

(1L10) () = X0 X0 xo + £() = £6) = X() [ ALX 01 (69 - £09).

where X : [0, 1] — L(R,) is an arbitrary fundamental matrix solution of (1,8).

2. FORMALLY ADJOINT EQUATION

The equation (1,9) which is satisfied by the inverse X! to a fundamental matrix
solution X of (1,8) is not a generalized linear differential equation of the type (1,2).
This leads us to the consideration of equations of the form

@D =rO - rOA)+re) + re) A0 + [y A0 -
= ¢*(1) — ¢*()

or in the abbreviated form,

(22) —dy* — d[y*A] + d[y*] A = d¢*.

2.1. Definition. The function y :[a, b] - R, is a solution of (2,2) on [a b] =
< [0, 1] if (2,1) holds for all ¢, s € [a, b].

Let us notice that if A € BV is continuous on [0, 1] and [§ y*(r) d[A(r)] exists, the
integration by parts yields

[[aty 01 40) - v 40 + ) 40 = = [ y'() a[aE

for all t, s € [0, 1] and (2,2) becomes the transposition of an equation of the form
(1, 2) Of course, as the general integration-by-parts formula involves also the Jumps
of y and A, this is not the case in"general.

It is’Of primary interest to prove the existence and unigueness of a solution to the
equation (2,2) on the whole interval [0, 1], Though it is possible to do it directly, we
shall give here a proof which makes use of the properties of the fundamental matrix
solution to (1,8). :

We suppose A : [0, 1] — L(R ), Ac BY, (1 4) (1 e. the hypotheses of: Theorem 1.4
are satisfied) and ¢ € BY,. Let X: [0 1] - L(R) be an arbltrary matrix solution
of (1,8) and let us put S i

(23) z*(s) = de[(p*(r)] X(ry X~ '(s) ~for se[0,1].
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The function z:[0, 1] > R, is of bounded variation on [0, 1]. Let ¢, s€[0, 1],
s < t be given arbitrarily and let us calculate

j :d[z*(’)] Ar) = _EdrUid[w*(r)] X(z) X~ 1(r)] A(r) =

- [[o] [ato@nx0x0)]a0) + [ o [ dtor@1 20 x710)] 40) -

- [ [ator@1 20 x0) | a0) + [ ([ sto01 %0 aLx 001 40

Thus

ey [awenan =[] [demxox]an +

+ (fd[«p*(r)] X(r)) (ﬁd[x- "] A(r)) .

In the first integral on the right-hand side of (2,4) we shall interchange the order of
integration. To this aim, let us put

y L [X(x) X~ '(r) for r<rt,
(23) Q(”)‘{x()x e)=1 for t<r.
Evidently Q is of bounded twodimensional Vitali v on [0, 1] x [O 1] nd
vary Q(0, +) + varg Q(+, 0) < 0. (Both X and X of b nded v

[0, 1].) Furthermore, for any r € [s, 1] we hav
Jatoren o) =£d[«p*(r)] Q) +
+ [atoren e = [atoren + [alore) X0 x10).

Hence

[[ator@1 X0 2760) = [[ato @ @05 ) - [[aboo)

o = [ [atoren xox 1| a0) -
- [ [atoren ot 0] ) - [ [atercon] o

Moreover, using [7] 1.6.22 (or [6] Lemma 2.2) and taking into account (2,5), we
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obtain

o = [t ([0 1 40)) - [ oo 40) -
- [[ator@([x0) apx-111 40)) - oLt 40).
Inserting this into (2,4) and making use of (1,9) we get
[az0140) = [atoren x6)( [srx-10 40) -
- [[ato@140) + [ ato @1 x0) ( [[atx-e1 40)) =
= [0 X0 DX 1 + 46 - X76) 0+ 4G)] - || a0 A) +
+ ([ atoren @) X100 + 40) - X000 + 401 -
- [[ato@1 - ( [[abo @1 X0 X710 1+ A9) +

+ ([ a0 x6) x10) 0 + 40).
Consequently, for z : [0, 1] — R, given by (2,3) we have
26) J" a[24(I] AP) = 24(1) + 24(1) AQY) — 2(s) — 2°(5) A(s) +
+ o*(t) — ¢*(s) for t,se[0,1],
i.e. z satisfies (2,1) for every ¢, s € [0, 1].

2.2. Lemma. Let A: [0, 1] — L(R,) be of bounded variation on [0, 1] and fulfil
(1,4). Then for arbitrary ¢ € R, and ¢ € BV, the function

27) PO = < X0 X0 + [ o] X0 X16)
is a solution to (2,2) on [0, 1].

Proof. Let us put v*(s) = ¢* X(1) X~ '(s) on [0, 1]. Then y(s) = z(s) + v(s)
with z : [0, 1] - R, given by (2,3). Multiplying the matrix equation (1,9) from the
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left by ¢* X(1) we obtain
v¥(r) + v¥(t) A(t) — v¥(s) — v¥(s) A(s) = f:d[V*(r)] Alr), tsel0,1],

wherefrom our assertion readily follows by virtue of (2,6).

In particular, given ce R, and ¢ € BV, the function (2,7) is a solution of the
initial value problem

(2.8) dy* — d[y*A] + d[y*] A = dg*, y*(1) = c*.

We wish to have also a unicity result. For this reason let us consider the homo-
geneous initial value problem

(29) dy* + d[y*A] — d[y*]A =0, y¥1)=0.

Every solution y of (2,9) on [0, 1] satisfies
1

@) yO)+ rOA)+ [AreIAD =0 o [01],
y¥(1)=0.

Clearly, the function y(s) = 0, s € [0, 1] is a solution of (2,9) on [0, 1].

2.3. Lemma. Under the assumptions of Lemma 2.2, every solution y : [0, 1] - R,
of (2,9) on [0, 1] possesses the onesided limits y(t+), y(t—) and the relations

@1) yH+) =y ([ + ATAQ]", y¥(e-) =y (@O [1 - ATA@]
hold for te[0, 1) and t € (0, 1], respectively.

Proof. Given a solution y : [0, 1] = R, of (2,9) on [0, 1], te[0,1) and 6 > 0,
we have by (2,10)

y*(t + 8) + y*(t + 8) A(t + &) — y*(1) — y*(t) A(t) = J‘:w’d[y*(r)] Ar).
Since by [7] 1.4.12 |

i ([ a0 40) - ye + 040 + v 49) 0.

it follows that

lim (y*(t + 8) + y*(t + 8) A(t + 6) — y*(t) — y*(t + 0) A(t)) =
=.,’if,“+( J :”d[y*(r)] Ar) — y*(t + 3) AQ) + y*() A(t)) o,
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) m (40 + ) + (e + 9) (A + 3) — A) =

=,,ljf>n y*(t + &) (I + A(t + 8) — A1) = y*(1) .

Since lim I + A(t + &) — A(t) = 1 + A*A(f) is a nonsingular n x n-matrix, we
-0+
conclude that the limit y*(¢+) exists and, furthermore,

y*(t+) =.,li? y*(t + 9) =.,11T (y*(t + ) [1 + A(t + 6) — A(r)] .

g1+ A+ 0) — AT = y*() [ + ATA(D)] .
Analogously we can obtain the existence of y*(t—) and the second relation in

(2,11) for te (0, 1].

2.4. Lemma. Under the assumptions of Lemma 2.2, every solution y : [0, 1] - R,
of (2,9) is bounded on [0, 1] and satisfies

Y |aty@l+ Y |ATy()] < .
te(0,1] te[0,1)

Proof. Since y possesses onesided limits on [0, 1] by Lemma 2.3, for every
to € [0, 1] there exist § > 0 and M > 0 such that |y(f)] < M on (to — 6, to + ) 0
A [0, 1]. Using the Heine-Borel Covering Theorem we can easily show the bounded-
ness of y on [0, 1]. Let K = sup |y*(1)|.

1€[0,1]

Furthermore, y has at most countable number of points of discontinuity in [0, 1]
and the series in question are well defined. By (2,11)

[A*y*(t)| = |—y*(t+) A*A(1)] < K|A*A(r)| for te[0,1)

and consequently

Y |Aty*(0)| = ¥ K|ATA()| S Kvarg A< oo .
te[0,1) te[0,1)

Similarly
Y |ATy*()| S Kvarf A < .
1e(0,1]

2.5. Lemma. Let f : [a, b] — R, possess the onesided limits f(t+) on [a, b) and
f(t—) on (a, b] and let

(2.12) , [Zb) |A*F(D)| + (ZH|A"f(t)| <.
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Then for any g : [a, b] > R, of bounded variation on [a, b] both the integrals

(2,13) f:d[f *(1)] g(t) and ij *(1) d[g(1)]

exist and the integration-by-parts formula holds in the form

(2.14) f:f*(t) d[g(r)] + ﬂd[f*(t)] g(1) = £*(b) g(b) ~ f*(a) g(a) -

- T AFOATER + Y AT AR

Proof. Let us put
f()= Y A*f(x)— ¥ Af() for te[a,b].
ast<t a<tst

Obviously var) f, < oo, A*f,(t) = A*f(t) on [a, b), A™f,(t) = A™f(¢) on (a, b] and
it is a matter of routine to show that the function f, : [a, b] — R, given by

f(1) = f(1) — fu(t) on - [a, b]

is continuous on [a, b]. Consequently, the integrals

[arzoneo. [aroen. [rodeon, [fodmo

as well as (2,13) all exist. Applying Kurzweil’s Integration-by-parts Theorem ([5])
we obtain readily (2,14).

2.6. Lemma. Under the assumptions of Lemma 2.2 the homogeneous initial
value problem (2,9) possesses only the trivial solution y(tf) = 0 on [0, 1].

Proof. Let y : [C, 1] — R, satisfy (2,9) (or (2,10)). By Lemmas 2.4 and 2.5 both
the integrals )

J.:d[)'*(r)] A(r) and f: y*(r) d[A(r)]
exist and
'f:d[)'*(r)] Alr) = - ﬁ y*(r) d[A(F)] + y*(1) A1) — y*(2) A(t) —
- T A AR + T AP A7)

for any [0, 1]. Inserting (2,10) we obtain
PO = [ PO + T 870840 - A7 A 4D o [0.1].
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Since y is bounded on [0, 1] by Lemma 2.4, it follows that y* is of bounded variation
on [0, 1]

(varg y* < (sup |y*(t) + X |A*Ty*(0)] + X |ATy*(o)|) vars A).
te[0,1] 0st<1 o0<t=1
Let us define
&(t) = varg A for te[0,1].
For a given s € [0, 1) we have (y*(1) = 0)

var; y* < I:|Y*(r)l d[&(r)] +s§g<1|A+Y(T)| |A+A(r)] .
+ 3 147y [a7Aw) =

< (vary y*) (6(1=) = &(s) +SS§:<1|A+A(r)l +s§51lA'A(1)D .
Obviously ) )
Jlim [£(1-) = &(6) +S§Z:<1|A+A(r)| +s<;§1|A°A(t)|] =0

and hence such s € [0, 1) can be found that
varg y* <} varg y*,

ie. y*(t) = 0 on [s,1]. Let s* € [0, 1] be the infimum of such s. Then y*(r) = 0
on (s* 1] and according to (2,11) also y*(s*) = 0. Assume that s* > 0. By the
same argument as above we can deduce that there is s" € [0, s*) such that y*(r) = 0
on [, s*],i.e. y*(f) = 0 on [s'. 1]. This contradicts the definition of s*. Thus s* = 0
and y*(f) = 0 on [0, 1].

Lemmas 2.2 and 2.6 together yield the following theorem.

2.7. Theorem. Let ¢ € BV,, A:[0,1] —» L(R,), A€ BV and let (1,4) hold. Then
the initial value problem (2,8) has for every c € R, a unique solution y : [0, 1] - R,
on [0, 1]. This solution has a bounded variation on [0, 1] and is given on [0, 1]
by (2,7) (where X :[0,1] — L(R,) is an arbitrary fundamental matrix solution

of (1))

2.8. Remark. Assume that B : [0, 1] - L(R,) and g:[0, 1] > R, are Lebesgue
integrable on [0, 1] (all their components are Lebesgue integrable on [0, 1]). Let us
consider the ordinary linear differential equation

(2,15) x = B(r) x + g(1)
in the sense of Carathéodory. A function x : [a, b] — R, is its solution on [a, b] =
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c [0, 1] if
(2,16) x(t) = x(s) + ﬁa(f) x(z) dt + J :g(t) de
holds for every 1, s € [a, b]. Define
20 - [ B ar, 10 = [ g0 ar,
then A and f are absolutely continuous on [0, 1] and the relation (2,16) becomes
x() = x0) + [A[A@] X + 1) - £6)

or equivalently
dx = d[A] x + df .

Consider now the usual (formal) adjoint equation to (2,15)
(2,17) y* = —y*B(t) — y*(1).
This equation written in the integral form becomes

y*(t) = y*(s) — J:y*(r) B(r)dr — J’:lﬁ*(‘r) dr

or

@.18) r0) = v’ - [ y/6) 2[AG)] - (0700 - #°()

where
o0 = [ v
The integral in (2,18) may be replaced by
(0 A = ') AQ) - |y A0) .
Thus y : [0, 1] - R, is a (Carathéodory) solution to (2,17) on [0, 1] if and only if
PO = 'O — 0 A0 + y() 40 + [ Ay @1 40 - %) + )
for all t, s € [0, 1] or equivalently if and only if it is a solution to

dy* + d[y*A] — d[y*] A = —de*
on [0, 1].
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Thus, if (2,15) is rewritten as dx = d[A] x + df, then both (2,18) and (2,2) are
equivalent to its adjoint (2,17). This means that both (2,18) and (2,2) may be con-
sidered as generalized forms of (2,17).

3. BOUNDARY VALUE PROBLEM

3.1. Assumptions. In the sequel we assume that A :[0, 1] - L(R,), A€ BV and
(1,4) holds, i.e.

det (I — A™A(t)) + 0 for 1e(0,1],
det (I + A*A(t)) +.0 for te[0,1).

Furthermore K : [0, 1] - L(R,, R,,) is of bounded variation on [0, 1], fe BV, and
reR,.

Let us consider the boundary value problem of finding a solution x : [0, 1] = R, of
(3.1) dx = d[A] x + df
on [0, 1] which fulfils also the side condition
1
(3,2) j d[K(t)] x(r) = r.
0
3.2. Remark. Let us mention that the side condition
1 .
(3,3) . Mx(0) + Nx(1) + J‘ d[H@®)] x(r) = r
; o /
with M, Ne L(R,, R,), H:[0,1] -» L(R,, R,), H e BV assumes the from (3.2) if
we put ‘ o 3
—M + H(O) for t=0,

K(r) = H(t) for 0<t<1, -
N + H(1) for t=1.

Using the variation-of-constants formula for generalized linear differential equa-
tions we obtain the following algebraic solvability condition.

3.3. Lemma. The boundary value problem (3,1), (3,2) has a solution of and only if

o9 {10 - [ xo [Lax oo} = v

holds for every y € R,, such that

(3:5) . ﬂd[x(t)] X(H) = 0.
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Proof. By the variation-of-constants formula (1,10), x : [0, 1] = R, is a solution
to (3,1) on [0, 1] if and only if (X(0) = X~*(0) = I)

(6 X = X0 < + 1) = £0) = XO) .41 = F0) on [0.1]

for some ¢ € R, Inserting (3,6) into the left-hand side of (3,2) we obtain
[[ark1x60 = ([ otk x)) < + [ atrn (9 - ) -
- [Lamenx) [ ape 61 76) - fion -
= ( [[aveen x0) < + [ arxan ) - o) -
- [Lamkenx0 [[apx-o1 1) +
# [Lark1 %0 040 - 010 = ([ etk x0) € +

+ [Latko1 10 - [[atk x0) [ atx-01 6 - [/ abon xoro).

This implies that x : [0, 1] — R, is a solution to the b.v. problem (3,1), (3,2) if and
only if it is given by (3,6), where ¢ € R, is such that

0

@) (g xo)e =+ [Laxon X0 70 - [[aren e +

+ [Lapeonxo [[apeenre.

In particular, our b.v. problem (3,1), (3,2) possesses a solution if and only if the linear
algebraic equation (3,7) has a solution c € R,, i.e. if and only if

69 wr=r{- (oo x0 0+ [[amon o -

o j' ;d[_x(t)] x(;)f;d[Xf ‘(s)].f(s)}

holds for every y € R,, ;.such~th‘atA (3,5) helds. Since for every such 7 the first term on
the right-hand side of (3,8) vanishes, the assertion of the lemma follows readily.
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3.4. Remark. A function x : [0, 1] » R, is a solution to the homogeneous b.v.
problem

(3.9) dx = d[A] x,

(3.10) ECORORY

if and only if x(f) = X(t) ¢ on [0, 1], where ¢ € R, satisfies
(3,11) (ﬁd[K(t)] X(t)) c=0.

Consequently, if n — k (0 <k= n) is the rank of the m x n-matrix

D - ﬂd[K(z)] X(),

then the homogeneous b.v. problem (3,9), (3,10) possesses exactly k linearly in-
dependent (in the evident sense) solutions x(f) = X(t)¢;, j =1,2,..., k, where
{€;};=1,2,..x is a basis of the solutions to (3,11) in R,. The problem (3,9), (3,10) is
then said to be compatible of the order k. In particular, if the rank of D equals n,
then k = 0 and the problem (3,9), (3,10) possesses only the trivial solution x(f) = 0
on [0, 1]. In this case it is called incompatible.

Now, let us turn our attention to the relation (3,4). If we put

Qts) = X(1) X~1(s) for 0<s=<t<1,
IEAX(E) X () =1 for 0st<s<1,

then Q is of bounded two-dimensional Vitali variation on [0, 1] x [(), 1],
varg Q(0, +) + var Q(+,0) < oo and

X(?) J:d[X “Ys)] f(s) = J:ds[Q(t, s)] f(s) for te[0,1].
By [6] Lemma 2.2 or [7] Theorem 6.22 we have

J.:d[K(t)] (ﬂds[Q(r, s)] f(S)) = ﬁd, U:d[x(z)] Q(t, s)] (s).

Hence

[Larxan xo [ ax-116) = [[a.] [ atxon e6.9] 9 -
- j d [ j “d[K()] Q) + j:d[K(t)] Q, s)] f(s) =
- [[a[ [lorxo + [ ot x0 x99,
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i.e.

62)  [Hke)x0[ ax-e166) - [ aken o) +
+ [ ] [amanx0x-)] .

Inserting this into the left-hand side of (3,4) we get

e [[atwn 1) - [[atxon 20 [ 10} -
- {_ J :ds[ﬁd[K(t)] X() x-l(s)] f(s)} ,

3.5. Lemma. The b.v. problem (3,1), (3,2) has a solution if and only if

J:ds [de[y* K(z) X(t) X“l(s)] f(s) + y#r = 0

To summarize:

for every solution y € R,, of (3,5).

This reformulation of the solvability condition 3.3 enables us to prove the fol-
lowing statement.

3.6. Theorem. Under the assumptions 3.1 the b.v. problem (3,1), (3,2) possesses
a solution if and only if

1
(3.13) f d[y* ()] £(5) + y*r = 0
0
for any function y : [0, 1] - R, and any constant y € R,, such that y is a solution to
(3.14) dy* + d[y*A] — d[y*] A = —d[y*K]
on [0, 1] (cf. 2.1) and
(3,15) y*0) =y*(1)=0.

3.7. Definition. The problem of determining a function y:[0,1] - R, and
a constant y € R,, such that y is a solution to (3,14) (in the sense of Definition 2.1)
and (3,15) is called the adjoint boundary value problem to the b.v. problem (3,1),
(3,2) (or (3,9), (3,10)). It will be denoted as the b.v. problem (3,14), (3,15).

Proof of Theorem 3.6. By Theorem 2.7, a function y : [0, 1] — R, is a solution
to (3,14) on [0, 1] such that y(1) = 0 (for y € R,, fixed) if and only if

(3.16) y(s) = v* L‘d[x(r)] X()XX(s) on [0,1].
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Hence a couple (¥, 7) is a solution to the b.v. problem (3,14), (3 15) if and only if y
is given by (3,16) and

r ) = ([ a1 x0)) - 0.

i.e. y satisfies (3.5). Thus the assertion of the theorem is equivalent with that of
Lemma 3.5.

3.8. Remark. The set # = {(y;,7,), j = 1,2, ..., q} of couples y;:[0, 1] = R,
7 € R, is linearly dependent on [0, 1] if there are A;€ Ry, j = 1,2, ..., q such that
2] + 2] + - + |4 >0,

q q
Y2;¥{t)=0 on [0,1] and Y Ay;=0.
j=1 i=1

The set % is linearly independent on [0, 1] if it is not linearly dependent on [0, 1].
As usual, we say that the b.v. problem (3,14), (3,15) has exactly g linearly independent
solutions if there exists a set # of its g solutions which is linearly independent on
[0, 1], while the set & U {(y, )} is linearly dependent for any solution (y, 7) of the
b.v. problem (3,14), (3,15). Similarly for the b.v. problem (3,9), (3,10).

If the b.v. problem (3,9), (3,10) has exactly k linearly independent solutions (i.e.
the rank of D equals n — k, cf. 3.4), then its adjoint (3,14), (3,15) has exactly k* =
=m — n + k linearly independent solutions (yj, y,-), j=12,...,k* where
{y;}1=1.2... 4= is a basis of the space of solutions to (3,5) and y; : [0, 1] - R,, j =
= 1,2,..., k* are given by (3,16) with y = y;. This means also that the adjoint b.v.
problem (3,14), (3,15) is incompatible if and only if m = n — k, i.e. the rank of D
equals m.

3.9. Remark, If the side condition (3,2) is written in the form (3,3), then the adjoint
b.v. problem (3,14), (3,15) reduces to the system of equations for y : [0, 1] - R, and
Y€R,

(1) ') + () AG) + J:d[y*(t)] A(t) = 7*(H(1) — H(s)) for 0<s<1,
[ e @140 = () + N - HO) + M), @) = y0) -

On the other hand. inserting (1,10) into (3 3) and repeating the above procedure we
obtain that the b.v. problem (3, 1) (3,3) possesses a solution if and only 1f

(3,18) z*(1) f(1) — z*(0) f(0) — Ld[z*(t)] f(r) = A*r
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for every z:[0,1] > R, and Ae R,, such that

(3.19)  z¥(s) + z*(s) A(s) + le[z*(t)] A(t) = A*(H(1) — H(s)) on [0,1]

i.e.

dz* + d[z*A] — d[z*] A = —d[A*H]
and
(3.20) 25(0) = —1*M, z%(1) = A*N .

It is easy to see that the relations

(3,21) MM, 5=0,
z¥(s) = y*(s), 0<s<1,
MN, s=1
A=y
0, s=0,
y*(s) =<z*(s), 0<s<1,
0, s=1

define a one-to-one correspondence between the solutions of the systems (3,17)
and (3,19), (3,20). Furthermore, given y, f € BV, and z € BV, such that z*(s) = y*(s)
on (0, 1), we have

[lat= 616 = ~2 1) + 2050 + [ iy 1.

We conclude that the solvability conditions (3,13) and (3,18) using respectively the
adjoints (3,17) and (3,19), (3,20) are equivalent.

3.10. Remark. It was derived in [10] that also the system
1
(3,22) y*(s) +J d[y*(r)] A(r) + y*(s) A(s+) + 4*K(s) =0 on [0,1],

y*(0) = y*(1) = 0
may serve as an adjoint problem to the b.v. problem (3,1),(3,2). In particular, Theorem
3.6 is true if the system (3,14), (3,15) is replaced by (3,22). Let the couples (y, 4) and
(z, 4) satisfy respectively (3,14), (3,15) and (3,22) and let u(s) = y(s) — z(s). Then
1 .

u*(s) + u*(s) A(s) + j d[u*(r)] A(r) = —y*(s) A*A(s)
and according to Theorem 2.7 and [7], 1.4.23

1

u(s) = j dy*() ATA(z)] X(z) X7(s) = — y*(s) A¥A(s), se[0,1].
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Let us notice that u*(s+) = u*(s—) = 0 on (0, 1), u*(0+) = u*(0) = u*(1—-) =
= u*(1) = 0 and consequently (cf. [7], I. 5.5)

ﬁd[u*(s)] f(s)= 0 forany feBY,.

4. THE GREEN MATRIX

In this section we shall consider the b.v. problem (3,1), (3,2)

dx = d[A] x + df, ﬁd[K(t)] x(t)=r

fulfilling the assumptions 3.1. i.e. A:[0,1] - L(R,), Ae BY, det (I + A*A(1)) £ 0
on [0,1), det( — A"A(1)) =0 on (0,1] ((1,4) holds), K:[0,1] - L(R,, R,,),
Ke BV, fe BV, and re R, As in the previous section, X : [0, 1] - L(R,) denotes
the fundamental matrix solution to dx = d[A] x on [0, 1] such that X(0) = I and

@) - [ ak()x0).

It was already shown that x : [0, 1] - R, is a solution to the b.v. problem (3,1),
(3,2) if and only if

(42) () = X()< + £() = £0) = X0 [ X1 7E) - F0) on [0.1]

and c € R, satisfies (3,7). In particular, the b.v. problem (3,1), (3,2) possesses a unique
solution for every f e BV, r € R,, if and only if

(4,3) m=n and det(D)=0.

(i.e. both the homogeneous b.v. problem (3,9), (3,10) and its adjoint (3,14), (3,15)
are incompatible.)

In the rest of the paper we shall assume (4,3). In this case, for any f € BV, and r € R,,
the function (4,2), where

(4.4)
c=D"'r— D! J K] £() + F(0) + D~ j A[K(] X() J AXTE ).

is the unique solution of the given b.v. problem (3,1), (3,2). Inserting (4,4) into (4,2)
and applying (3,12) we obtain

x(t) = X(t) D~ 'r — X(1) D"J?)d[l((s)] f(s) +
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+ x() 07t [T X0 (X O + 10 -
- X[ A = X e + 10 +
+ xo~ o] | e xe x 0] -
- xo- s, [ ][ otk xe) x 1@ ) tor 1.1

(cf. (4,1)). Hence 1 1

4,5 x(f) = X(t)D~'r + () + X(1) D‘ljtd,[jsd[K(r)] X(z) X"(s)] f(s) —
— X(t) D"‘Jtd, [J':d[K(r)] X(z) X~(s) ]f(s) for tel0,1].

Now, let us define G : [0, 1] x [0, 1] - L(R,) by

(4.6)

—X(?) D"’rd[K(r)] X(t)X~*(s) for 0Ss<t=1,
G(t,s) = °

X()b™! '[ 1d[K(T)] X(t) X~'(s) for 0=t<s=1,
G(t, 1) arbitrary for te[0, 1]

and calculate (using the properties of the Perron-Sticlties integral, cf. [7] or [4])
[[atsn ) - [0 -x0 0 [[atken x x99 -
- [ x0 07 [t x0 10| 0 -
[0+ x0 07 [ et x6) x40 ) -
[0, - x0 07 [ e x69 X0 0 -

— X(f) D~ ( j :d[K(r)] x(f)) X1} () =

= X(f) D~'DX~(¢) f(£) = f(r)
for any t € [0, 1]. This together with (4,5) yields.
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4.1. Theorem. Let A : [0, 1] - L(R,), A€ BV fulfil (1,4) and let (4,3) hold. Then
for any fe BV, and r e R, the b.v. problem (3,1), (3,2) possesses a unique solution
x : [0, 1] - R, and this solution is given by

(4,7) x(t) = X(r)D"'r + '[:ds[G(t, s)] f(s) on [0,1],

where G : [0,1] x [0,1] - L(R,) and D e L(R,) have been defined in (4,6) and
(4,1), respectively.

4.2. Definition. Any function G : [0, 1] x [0, 1] - L(R,) fulfilling (4,6) (with D
given by (4,1)) is called the Green matrix of the b.v. problem (3,1), (3,2).

We shall show that Green’s matrices G(t, s) not only offer a representation of
solutions to the b.v. problem (3,1), (3,2) but possess also the other usual properties
of Green matrices (cf. [1] or [2]). The following theorem describes their continuity
properties.

4.3. Theorem. Let the assumptions of Theorem 4.1 hold. Any Green’s matrix
satisfies

(i) G(t,0)=0for 0<t=<1,G(t,1)=0 for 0 <t <1;

(i) G(t +,s) = [ + A*A(1)] G(1, 5) for te[0,1), se[0,1], s * ¢,
G(t—,s) =[I — A"A(1)] G(¢, s) for te(0,1], se[0,1], s + t;

(iii) G(t+, 1) — G(t—, 1) = —1 — A*A(t) X(t) D™* [3d[K(7)] X(z) X~ (1) +
+ ATA(?) X(1) D! [;d[K(z)] X(z) X~X(t) for te(0,1);

(iv) G(1, s+) = [G(t, s) — X(t) D~ A*K(s)] [I + A*A(s)]"* for te[0,1],
se[0,1), s + t;
G(t,s—) = [G(t,s) + X({) D~ A™K(s)] [I — A"A(s)]™* for te[0, 1],
se(0,1], s+ 1t;

(¥) G(t, t+) — G(t,1=) = X() D~*{J3 d[K(:)] X(2) X~*()) [1 + A~A@] " +
+ [i d[K@)] X(@) X} [1 - ATA@0] " -
— ATK@) [ = ATAQD)] ! — A*K(e) [1 + A*A(R)] '} for te(0, 1).

Proof. The relations (i) follow immediately from the definition. Since for any

tef0,1)
At X(r) = A*A(r) X(1)
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(cf. (1,5)), we have for any s€ [0, 1] and ¢ € [0, s)
G(t+,s) — G(t,s) = A*X(r) D! —Ed[K(t)] X(7) X~ (s) =

= A*A(t) X(r) D~* de[K(r)] X(z) X~ (s) = A*TA(1)G(t, s) .

By the same argument we get that G(1+, s) — G(t, s) = A*A(t) G(¢, s) holds also for
s€[0, 1] and t e (s, 1]. Analogously, using the equality

A™X(t) = A“A() X(t) for te(0,1],

we can prove the second relation in (ii).
As concerns (iii), we have for any t € (0, 1) (cf. (1,5))

G(t+,1) — G(t—, 1) =

= = x(t+) D [ k(O] X() X () = X(t-) B~ [ a[KE] X)X () =

[

= —[1 + A*A(§] X(-) D~* f a[K()] X(z) X~1(s)

- [1 - 4" AO) X0 D™ [ a[KE] X() X ) = ~X() DD X~1() -
- a4 X0 0™ [ o[k X() 1) +
+ 4740 X() D~ [ d[KET X() X0
It is known (cf. [7], 1.4.12 or [4] Theorem 1.3.5) that
@) Jim | @] X0 = [[AKE] X0 - ARG XE) for se[0,1),
iim '[ :_"d[x(f)] X(@) = [ :d[K(r)] X(@) — A KE) X(s) for se(0,1],

lim Jl_ﬁd[l((r)] X(r) = J.:dK(r)] X(r) + A™K(s) X(s) for se(0,1],

020+ Js

lim J‘:Md[K(r)] X(x) = J.:d[K(r)] X(z) + A*K(s) X(s) for se[0,1).

50+
Furthermore, by (1,9) and Lemma 2.3
49 Xet)= X[+ AAQT for se[o,1),
X7 (s=)=X"Y(s)[I -~ A~A(s)]"* for se(0,1].
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Consequently,
G(t,s+) = —X(1) D™* {j;d[K(r)] X(x) + A*K(s) X(s)} X=1(s) [1 + A*A(s)]

for te(0,1], se[0,7),

G(t, s+) = X() D~ {ﬁd[x(f)] X(@) — A*K(s) X(s)} X-1(s)[1 + A*A()]™*

for te[0,1), se[t1),
6(,5-) = -X@ D~ | [ bk X() - A7K6) X} X [ - A4
for te(0,1], se(0,1]
and
61, 5-) = X(0) 0™ { | d[KEI X() + 47K X X [ - A
for te[0,1), se(t,1].

The relations (iv) and (v) follow immediately.

Up to now it has not been necessary to define the Green matrix G(t,s) for t = s.
The following calculation shows that if the values G(s, s) are appropriately chosen,
then the function Z = G(-, s) is for any s € [0, 1] a solution to the boundary value
problem consisting of the generalized linear. matrix differential equation

dZ = d[A] Z + dF
with some F = F(+, 5) : [0, 1] - L(R,) and of the side condition
1
J J[K()] Z(1) = 0.
0

Letse(0,1)and 0 < t, < s < t, < 1. Since (cf. [7] 14.21)

fld[A(r)] (G(r, s) - X(z) D* J:d[K(Q)] x(g)'x-l(s))

I

= 804 (666.9 - X007 [[eIK@I X0 X6).
we have by (1,6) ' - ) o
[[ araenete. ) = X0 - X)) 07 [ a1 X0 X9 +
N A-Ags) (G(s, 9 - '."(S)"D",‘ J :dLKgQ)] (o) x—x(s)> -
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= X(s) D~ f:d[x(g)] X(e) X~1(s) — G(t,, s) +

+ 476) (666, ) - X007 [ d[K@)] X0 X16)).

(@10 [ ata@166.9) = 66 5) - G0, 9) -

(1= A"A()) (G(s, $) = X(s) D~ de[K(Q)] X(@) x—l(s)) .
Similarly
“11) de[A(r)] G(r, 5) = Gl(ts, 5) — G(s, 5) +

+ [ + A*A(s)] {G(s, s) + X(s) D! J:d[K(t)] X(z) X"(s)} .
This yields for 0 < t; <s<t, =1

4,12) f :zd[A(r)] G(t, 5) = G(ty, 5) — G(ty, s) + 1 +
+ AA) {G(s, $) — X(s) D1 f :d[K(Q)] X(@) X“‘(s)} +
+ A*A(s) {G(s, s) + X(s)D~! J:d[K(Q)] X(e) X“(s)} .

Furthermore,
(13) [ sramnat. 9 = 6 ) - 69

forO0<t;, <t, <landsé¢[t,1,] Infact, ife.g. t; <t, <s, then
[ araw6te, 9 = [ atac x6) 07+ [‘atwon x(0 x4 =
= [X(t,) — X(t,)] D! J :d[K(Q)] X(o) X~1(s).

Similarly fors < ¢; < t,. Inthecases = Qors = 1,(4,13) holdsfor0 < t; < t, < 1
or 0 < t; < t, < 1, respectively (cf. 4.3 (i)). In particular, we have

4.4. Proposition. For any s € [0, 1] the matrix valued function

Z:te[0,1] > G(t,s)e L(R,)
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is a solution to the generalized matrix linear differential equation
dZ = d[A] Z

on the intervals [0, s) and (s, 1] (i.e. (4,13) holds for all t,, t, € [0, s) or t,, , & (0, 5]).
Let us turn our attention to the side condition. Given s € [0, 1], it is

[Larxente. ) = ([[arken xe)) o= ([ otk xo)) x-16) +
+ a7K(5){665.9) - X6) 0 [ af() X0 X9 -
~ ([[arxen x)) o= ([ otk x)) x-1¢9) +
+ 8k {665, 9) + X() 0 [[ap(a) x() x16).
whetefrom th relation
(419 [Laen et -
- a k() {als.) - X() 0 [[a(] X9 X9} +
+ 4 K() {6(s) + X0) 0 [ afKE) X() X1 o sefo.1]
immediately follows by inserting (cf. (4,1))
[larxen xe) - o - [arken xc).

It is apparent from (4,10), (4,11) or (4,14) that it would be convenient to define
G(s, s) by either

(4,15) G(s,s) = X(s) D™! de[K(—:)] X(r) X~'(s), se[0,1]

(4,16) G(s,s) = —X(s) D! j:d[K(g)] X(o) X~'(s), se[0,1],

i.e. to extend one of the relations defining G in (4,6) to the diagonal t = s of [0, 1] x
x [0, 1]. Let us assume (4,16). It means that the Green matrix G is now defined by

&

474



—X(r)b™* J d[K(e)] X(e) X~ 1(s) for 0<s<t=<1,
(4,17) G(t,s) =
X(1) D“J.sd[K(Q)] X(e) X~'(s) for 0Zt<s=<1.

By (4,11) we have for 0 < s <1, < 1

(4,18) f :zd[A(r)] G(r, s) = G(ty, s) — G(s, 5),

while (4,10) implies for 0 < t; <s <1
f :d[A(r)] G(r, 5) = G(s, 5) — G(t1, 5) —
- 1= a4 [ -x0) 07 [[atk(@] x(0) + [ alk(@] x@) x~'6)].

ie.
(4,19) f d[AX)] G(, s) = G(s, 5) — G(ty, s) + (I — A™A(s)) .
This leads to the following

4.5. Theorem. Let A:[0,1] — L(R,), A€ BV fulfil (1,4) and let (4,3) hold. In
addition, let us assume that K is left-continuous on (0, 1). Let us put

I for 0<s<t=<1,
(4’20) A(”s)‘{o for 0Zt<s=<1 or t=s5=0.

If G(t, 5) is defined by (4,17), then the relations
(4.21) G(ts, 5) — G(ty, 5) = J :d[A(r)] G(z, ) —
— (1~ AAG) () — A(1,9)

and
1

(4.22) J. d[K(1)] G(t,s) = 0
0

hold for every t, i, and s € [0, 1].

Proof. The relation (4,21) follows from (4,18) and (4 19). The relation (4,22)
follows from (4,14).

4.6. Remark. The equation (4,21) may be written in the form of a generalized linear
matrix differential equation

dG(+, s) + d[A]G(-,s) = d[(I — A™A(s)) 4(, )] .
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4.7. Remark. The assumption on the left-continuity of K on (0, 1) does not mean
any loss of generality. In fact, if K~(0) = K*(0) = K(0), K~(1) = K*(1) = K(1),
K~(f) = K(t—) and K*(t) = K(z+) on (0, 1), then

1 1 1
[ or1x0) = [} a1 %) = [ otk 20
for every x € BV, (cf. [7] 1.5.5). Obviously, an analogous assertion is true if K is
supposed to be right-continuous on (0, 1) and G(t, s) is defined by (4,6) and (4,15).

We close the paper by the investigation of the properties of the Green matrix
G(t, s) with respect to the argument s.

4.8. Theorem. Let A:[0,1] —» L(R,), A€ BV fulfil (1,4) and let (4,3) hold. Let
the matrices G(t, s), H(t) and A(t, s) be given by (4,17),

H(t) = X(f)D~*, te0,1]

and (4,20), respectively. Then for any t€ [0, 1] the relations

(4,23) G(t, 5) + G(t, s) A(s) + J.:d,[G(t, 0)] A(o) — H(t) (K(1) — K(s)) =
= —(4(t,1) — A(1,5)), se[0,1]

(4,24) G(1,0) = G(t,1) = 0 if te[0,1),

G(1,0)=0, G(1,1)= —I
hold.

Proof. The relations (4,24) follow immediately from (4,17). Obviously, we may
write .

(4,25) G(t,s) = —X(t) A(t, s) X~ '(s) + X(t) D~ * de[K(g)] X(o) X~(s)
on [0,1] x [0,1].
Using Theorem 2.7 we get '

(8.26) [la.[x0 0 otk x(0 x-1(0) | o) -
= X() D7HK(D) - K) - X() D~ || 4[K(@] X(@) X (1 + AG)

forall t,se[0,1].
For 0<t<s=<1ort=s=0, this is exactly (4,23). Now, if 0 <s <t <1,
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then in virtue of (4,20) and (1,9)
de,,[—X(t) A(t, 0) X~ '(0)] A(o) =
— _X(1) f :d[X"(o)] A(o) + A(t) =

= =X [X7'(1) + X7 (1) A(r) — X7(s) — X~ I(s) A(s)] + A(t) =
= —1 + X(2) A(t, s) X~ (s) + X(2) A(t, 5) X~ !(s) A(s) -
This together with (4,26) yields (4,23) also for 0 < s < t < 1.

4.9. Remark. In other words, the couple G(t, s), H(s) is for any ¢ € (0, 1) a solution
to the adjoint nonhomogeneous matrix boundary value problem

—dG(t, ) — d[G(t, *) A] + d[G(t, *)] A — d[H() K] = —d4(t, ),
G(1,0) =G(t,1)=0.

References

[1] Bryan R. H.: A linear differential system with general linear boundary conditions, J. Dif-
ferential Equations, 5 (1969), 38—48.

[2] Cole R. H.: General boundary conditions for an ordinary linear differential system, Trans.
Amer. Math. Soc., 111 (1964), 521—550.

[3] Krall A. M.: The development of general differential and general differential-boundary
systems, Rocky Mountain J. Math., 5 (1975), 493 —542.

[4] Kurzweil J.: Generalized ordinary differential equations and continuous dependence on
a parameter, Czechoslovak Math. J., 7 (82) (1957), 418—449.

[5] Kurzweil J.: On integration by parts, Czechoslovak Math. J. 8 (83) (1958), 356—359.

[6] Schwabik S.: On an integral operator in the space of functions with bounded varlatxon,
Casopis pést. mat., 97 (1972), 297—330.

[7]1 Schwabik S., Tordy M. and Vejvoda O.: Differential and integral equations: Boundary
value problems and adjoints, Academia, Praha & Reidel, Dordrecht, 1979.

[8] Tvrdy M.: Boundary value problems for linear generalized differential equations and their
adjoints, Czechoslovak Math. J., 23 (98) (1973), 183—197.

[9] Tvrdy M.: Boundary value problems for generalized linear integrodifferential equations
with left-continuous solutions, Casopis pést. mat. 99 (1974), 147—157. _

[10] Tvrdy M.: Fredholm-Stieltjes integral equations with linear constraints. Duality theory,
and Green’s Function, Casopis pé&st. mat., 104 (1979), to ‘appear.
[11] Vejvoda O. and Tvrdy M.: Existence of solutions to a linear integro-differential equation with

additional conditions, Ann. Mat. Pura Appl. 89 (1971), 169—216.

Authors® address: 115 67 Praha 1, Zitna 25, CSSR (Matematicky tstav CSAV).

477



		2010-05-30T18:19:33+0200
	CZ
	DML-CZ




