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1 . Introduction

Throughout the paper N stands for the set of positive integers. Furthermore, Rn×m

denotes the space of real n×m-matrices, Rn = Rn×1, R1 = R. For a given n×m-
matrix A ∈ Rn×m, by |A| we denote its norm,

|A| = max
i=1,...,n

m∑
j=1

|ai,j|,

and det A is its determinant. The symbols I and 0 stand respectively for the identity
and the zero matrix of the proper type.
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As usual, by [0, 1] and (0, 1) we denote the corresponding closed and open in-
tervals, respectively. Furthermore, [0, 1) and (0, 1] are the corresponding half-open
intervals.

The space of all functions F : [0, 1] → Rn×m of bounded variation on [0, 1] is
denoted by BVn×m. It is well known that BVn×m equipped with the norm

F ∈ BVn×m → ‖F‖BV = |F (0)|+ var 1
0F

is a Banach space. For a given F ∈ BVn×m, we denote

F (t−) = lim
τ→t−

F (τ) and ∆−F (t) = F (t)− F (t−) for t ∈ (0, 1],

F (t+) = lim
τ→t+

F (τ) and ∆+F (t) = F (t+)− F (t) for t ∈ [0, 1),

F (0−) = F (0), ∆−F (0) = 0, F (1+) = F (1), ∆+F (1) = 0.

As usual, the space of n × m-matrix valued functions continuous on [0, 1] is
denoted by Cn×m and the space of n×m-matrix valued functions Lebesgue integrable
on [0, 1] is denoted by Ln×m

1 . Instead of BVn×1 or Cn×1 or Ln×1
1 we write BVn or

Cn or Ln
1 , respectively. For given F ∈ Ln×m

1 and G ∈ Cn×m, we denote

‖F‖L1
=

∫ 1

0

|F (t)|dt and ‖G‖ = sup
t∈[0,1]

|G(t)|.

The integrals are considered in the Perron-Stieltjes sense. We work with the
equivalent summation definition due to J. Kurzweil (cf. [5]) which is now usually
called the Kurzweil - Henstock integral or the gauge integral.

Let Pk ∈ Ln×n
1 for k ∈ N ∪ {0} and let Xk ∈ ACn×n be the corresponding

fundamental matrices, i.e.

Xk(t) = I +

∫ t

0

Pk(s)Xk(s)ds on [0, 1] for k ∈ N ∪ {0}.

The following two assertions are relatively representative examples of theorems
on the continuous dependence of solutions of ordinary differential equations on a
parameter.

Theorem 1.1. If

lim
k→∞

∫ 1

0

|Pk(s)− P0(s)|ds = 0,

then

lim
k→∞

Xk(t) = X0(t) uniformly on [0, 1].
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Theorem 1.2. (Kurzweil & Vorel, [6]) Let there exist m ∈ L1
1 such that

|Pk(t)| ≤ m(t) a.e. on [0, 1] for all k ∈ N (1.1)

and let

lim
k→∞

∫ t

0

Pk(s)ds =

∫ t

0

P0(s)ds uniformly on [0, 1]. (1.2)

Then

lim
k→∞

Xk(t) = X0(t) uniformly on [0, 1].

Remark 1.3. For t ∈ [0, 1] and k ∈ N ∪ {0} denote

Ak(t) =

∫ t

0

Pk(s)ds.

Then the assumptions of Theorem 1.2 may be reformulated for Ak as follows:

Ak ∈ ACn×n for all k ∈ N ∪ {0}, (1.3)

sup
k∈N

‖A′
k‖L1

< ∞, (1.4)

lim
k→∞

Ak(t) = A0(t) uniformly on [0, 1]. (1.5)

Besides, the assumption (1.1) means that there exists a nondecreasing function
h0 ∈ AC such that

|Ak(t2)− Ak(t1)| ≤ |h0(t2)− h0(t1)| for all t1, t2 ∈ [0, 1].

In fact, we may put

h0(t) =

∫ t

0

m(s)ds on [0, 1].

2 . Linear GDE’s - a survey of known results

The following basic existence result for linear generalized differential equations of
the form

x(t) = x̃ +

∫ t

0

d[A(s)]x(s), t ∈ [0, 1]

may be found e.g. in [9] (cf. Theorem III.1.4) or in [8] (cf. Theorem 6.13).
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Theorem 2.1. Let A ∈ BVn×n be such that

det
[
I−∆−A(t)

] 6= 0 for all t ∈ (0, 1]. (2.1)

Then there exists a unique X ∈ BVn×n such that

X(t) = I +

∫ t

0

d[A(s)]X(s) on [0, 1]. (2.2)

Definition 2.2. For a given A ∈ BVn×n, the n × n-matrix valued function X ∈
BVn×n such that (2.2) holds is called the fundamental matrix corresponding to A.

When restricted to the linear case, Theorem 8.8 from [8] modifies to

Theorem 2.3. Let A0 ∈ BVn×n satisfy (2.1) and let X0 be the corresponding fun-
damental matrix. Let Ak ∈ BVn×n, k ∈ N, and scalar nondecreasing and left-
continuous on (0, 1] functions hk, k ∈ N ∪ {0}, be given such that h0 is continuous
on [0, 1] and

lim
k→∞

Ak(t) = A0(t) on [0, 1], (2.3)

|Ak(t2)− Ak(t1)| ≤ |hk(t2)− hk(t1)| (2.4)

for all t1, t2 ∈ [0, 1] and k ∈ N ∪ {0},
lim sup

k→∞

[
hk(t2)− hk(t1)

] ≤ h0(t2)− h0(t1) (2.5)

whenever 0 ≤ t1 ≤ t2 ≤ 1.

Then for any k ∈ N sufficiently large there exists a fundamental matrix Xk

corresponding to Ak and

lim
k→∞

Xk(t) = X0(t) uniformly on [0, 1].

Lemma 2.4. Under the assumptions of Theorem 2.3 we have

sup
k∈N

var 1
0Ak < ∞ (2.6)

and

lim
k→∞

[
Ak(t)− Ak(0)

]
= A0(t)− A0(0) uniformly on [0, 1]. (2.7)
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Proof. 1 i) By (2.5) there is k0 ∈ N such that

hk(1)− hk(0) ≤ h0(1)− h0(0) + 1 for all k ≥ k0.

Hence for any k ∈ N we have

var 1
0Ak ≤ α0 = max

({
var 1

0Ak; k ≤ k0

} ∪ {
h0(1)− h0(0) + 1

})
< ∞.

Thus we conclude that (2.6) is true.

ii) Suppose that

lim
k→∞

Ak(t) = A0(t) uniformly on [0, 1] (2.8)

is not valid. Then there is ε̃ > 0 such that for any ` ∈ N there exist m` ≥ ` and
t` ∈ [0, 1] such that

|Am`
(t`)− A0(t`)| ≥ ε̃. (2.9)

We may assume that m`+1 > m` for any ` ∈ N and

lim
`→∞

t` = t0 ∈ [0, 1]. (2.10)

Let t0 ∈ (0, 1) and let an arbitrary ε > 0 be given. Since h0 is continuous, we
may choose η > 0 in such a way that t0 − η, t0 + η ∈ [0, 1] and

h0(t0 + η)− h0(t0 − η) < ε. (2.11)

Furthermore, by (2.3) there is `1 ∈ N such that

|Am`
(t0)− A0(t0)| < ε for all ` ≥ `1 (2.12)

and by (2.4), (2.5) and (2.11) there is `2 ∈ N, `2 ≥ `1, such that

|Am`
(τ2)− Am`

(τ1)| ≤ h0(t0 + η)− h0(t0 − η) + ε < 2ε (2.13)

whenever τ1, τ2 ∈ (t0 − η, t0 + η) and ` ≥ `2.

The relations (2.3) and (2.13) imply immediately that

|A0(τ2)− A0(τ1)| = lim
`→∞

|Am`
(τ2)− Am`

(τ1)| ≤ 2ε (2.14)

whenever τ1, τ2 ∈ (t0 − η, t0 + η).

1The author is indebted to Ivo Vrkoč for his suggestions which led to a considerable simplification
of this proof.
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Finally, let `3 ∈ N be such that `3 ≥ `2 and

|t` − t0| < η for all ` ≥ `3, (2.15)

then in virtue of the relations (2.10)–(2.15) we have

|Am`
(t`)− A0(t`)|
≤ |Am`

(t`)− Am`
(t0)|+ |Am`

(t0)− A0(t0)|+ |A0(t0)− A0(t`)|
≤ 5ε.

Hence, choosing ε < 1
5
ε̃, we obtain by (2.9) that

ε̃ > |Am`
(t`)− A0(t`)| ≥ ε̃.

This being impossible, the relation (2.8) has to be true. The modification of the
proof in the cases t0 = 0 or t0 = 1 and the extension of (2.8) to (2.7) is obvious.

Thus, Theorem 2.3 is a special case of the following result due to M. Ashordia
(cf.[1]).

Theorem 2.5. Let A0 ∈ BVn×n satisfy (2.1), let X0 be the corresponding funda-
mental matrix and let {Ak}∞k=1 ⊂ BVn×n be such that (2.6) and (2.7) hold. Then
for any k ∈ N sufficiently large there exists a fundamental matrix Xk corresponding
to Ak and

lim
k→∞

Xk(t) = X0(t) uniformly on [0, 1].

Remark 2.6. Under the assumptions of Theorem 2.5 we obviously have

lim
k→∞

Ak(t−) = A0(t−) and lim
k→∞

Ak(s+) = A0(s+)

for all t ∈ (0, 1] and all s ∈ [0, 1), respectively. Thus Theorem 2.5 cannot cover the
case that there is a t0 ∈ (0, 1] such that

Ak(t0−) = Ak(t0) for all k ∈ N, while A0(t0−) 6= A0(t0).

In particular, Theorem 2.5 does not apply to the following simple example.

Example 2.7. Consider the sequence of initial value problems

x′k = a′k(t)xk on [−1, 1], x(−1) = x̃,

where
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ak(t) =





0 if t ≤ αk,
t−αk

βk−αk
if t ∈ (αk, βk),

1 if t ≥ βk;

{αk}∞k=1 is an arbitrary increasing sequence in [−1, 0) such that

lim
k→∞

αk = 0;

{βk}∞k=1 is an arbitrary decreasing sequence in (0, 1] such that

lim
k→∞

βk = 0

and

lim
k→∞

αk

αk − βk

= κ ∈ [0, 1).

For the corresponding solutions we have

xk(t) =





x̃ if t ≤ αk,

e
t−αk

βk−αk x̃ if t ∈ (αk, βk),
e x̃ if t ≥ βk

x0(t) = lim
k→∞

xk(t) =





x̃ if t < 0,
eκ x̃ if t = 0,
e x̃ if t > 0,

while the unique solution x(t) of the ”limit” equation

x(t) = x̃ +

∫ t

−1

d[a(s)]x(s), t ∈ [−1, 1],

where

a(t) = lim
k→∞

ak(t) =





0 if t < 0,
κ if t = 0,
1 if t > 0,

is given by

x(t) =





x̃ if t < 0
1

1−κ x̃ if t = 0
2−κ
1−κ x̃ if t > 0



 6= x0(t).

On the other hand, x0 is a solution to

x0(t) = x̃ +

∫ t

−1

d[a0(t)]x0(s) on [−1, 1],
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where

a0(t) =





0 if t < 0,
1− e−κ if t = 0,

(e− 1) e−κ if t > 0

and ak tends to a0 in the following sense:

(a) given arbitrary α ∈ (−1, 0) and β ∈ (0, 1), limk→∞ ak(t) = a0(t) uniformly on
[−1, α] and limk→∞[ak(t)− ak(β)] = a0(t)− a0(β) uniformly on [β, 1];

(b) limk→∞ ak(t) = a0(t) + ã0(t), where

ã0(t) =





0 if t < 0,
κ + e−κ − 1 if t = 0,

1− e1−κ + e−κ if t > 0;

(c) for any z ∈ R and ε > 0, there is δ > 0 such that for any δ′ ∈ (0, δ) there is
k0 ∈ N such that for any k ≥ k0 we have αk ≥ −δ′, βk ≤ δ′ and the relations

∣∣∣yk(0)− yk(−δ′)− ∆−a0(0)z

1−∆−a0(0)

∣∣∣ < ε

and

|zk(δ
′)− zk(0)−∆+a0(0)z| < ε

are satisfied for any solution yk on [−δ′, 0] of

y′k = a′k(t)yk with yk(−δ′) ∈ (z − δ, z + δ)

and any solution zk on [0, δ′] of

z′k = a′k(t)zk with zk(0) ∈ (z − δ, z + δ).

In fact, for given z ∈ R, δ′ > 0 and k ∈ N such that αk ≥ −δ′ we have

yk(t) = e
t−αk

βk−αk yk(−δ′) on [αk, 0]

and thus

∣∣∣yk(0)− yk(−δ′)− ∆−a0(0)z

1−∆−a0(0)

∣∣∣

=
∣∣∣
(
e

−αk
βk−αk − 1

)
yk(−δ′)− (

eκ − 1
)
z
∣∣∣

≤
∣∣∣e

−αk
βk−αk − eκ

∣∣∣|z|+
∣∣∣e

−αk
βk−αk − 1

∣∣∣
∣∣z − yk(−δ′)

∣∣,
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where

lim
k→∞

∣∣∣e
−αk

βk−αk − eκ
∣∣∣ = 0,

∣∣∣e
−αk

βk−αk − 1
∣∣∣ ≤ 2

and

∣∣z − yk(−δ′)
∣∣ ≤ δ.

Analogously, if k ∈ N is such that βk ≤ δ′, we have

zk(t) = e
βk

βk−αk zk(0) on [0, δ′]

and thus ∣∣∣zk(δ
′)− zk(0)−∆+a0(0)z

∣∣∣

=
∣∣∣
(
e

βk
βk−αk − 1

)
zk(−δ′)− (

e1−κ − 1
)
z
∣∣∣

≤
∣∣∣e

βk
βk−αk − e1−κ

∣∣∣|z|+
∣∣∣e

βk
βk−αk − 1

∣∣∣
∣∣z − zk(0)

∣∣,
where

lim
k→∞

∣∣∣e
βk

βk−αk − e1−κ
∣∣∣ = 0,

∣∣∣e
βk

βk−αk − 1
∣∣∣ ≤ 2

and
∣∣z − zk(0)

∣∣ ≤ δ.

Notice that if

x0(t) = x̃ +

∫ t

−1

d[a0(t)]x0(s) on [−1, 1],

then

∆−x0(0) =
( 1

1−∆−a0(0)
− 1

)
x0(0−) =

∆−a0(0)

1−∆−a0(0)
x0(0−).

The convergence described in Example 2.7 is closely related to the notion of the
emphatic convergence introduced by J. Kurzweil (cf. [5]).

Definition 2.8. A sequence {Ak}∞k=1 ⊂ BVn×n converges emphatically to A0 ∈
BVn×n on [0, 1] if

(i) there exist nondecreasing functions hk : [0, 1] → R, k ∈ N ∪ {0}, which are
left-continuous on (0, 1] and such that

|Ak(t2)− Ak(t1)| ≤ |hk(t2)− hk(t1)|
for all k ∈ N ∪ {0} and t1, t2 ∈ [0, 1];
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(ii) lim supk→∞
[
hk(t2)−hk(t1)

] ≤ [
h0(t2)−h0(t1)

]
whenever 0 ≤ t1 ≤ t2 ≤ 1 and

h0 is continuous at t1 and t2;

(iii) there is Ã0 ∈ BVn×n such that limk→∞ Ak(t) = A0(t)+Ã0(t) whenever h0(t) =

h0(t+) and |Ã0(t2)− Ã0(t1)| ≤ |h̃0(t2)− h̃0(t1)| for all t1, t2 ∈ [0, 1], where h̃0

stands for the break part of h0;

(iv) if h0(t0+) > h0(t0), then for any z ∈ Rn and any ε > 0 there exists δ > 0 such
that for any δ′ ∈ (0, δ) there is k0 ∈ N such that

|yk(t0 + δ′)− yk(t0 − δ′)−∆+A0(t0)z| ≤ ε

holds for any k ≥ k0, any ỹk ∈ Rn such that |z − ỹk| ≤ δ and any solution yk

of the equation

yk(t) = ỹk +

∫ t

t0−δ′
d[Ak(s)]yk(s) on [t0 − δ′, t0 + δ′].

The following assertion is a restriction of Theorem 4.1 from [5] to the linear case.

Theorem 2.9. Let Ak converge emphatically on [0, 1] to A0. Let the sequence {Xk}∞k=1 ⊂
BVn×n of the fundamental matrices corresponding respectively to Ak, k ∈ N, be uni-
formly bounded on [0, 1] and such that

lim
k→∞

Xk(t) = Z0(t) on [0, 1] whenever h0(t+) = h0(t).

Then Z0 ∈ BVn×n and the function X0 defined by

X0(t) =

{
Z0(t) if h0(t+) = h0(t),
Z0(t−) otherwise

is the fundamental matrix corresponding to A0.

Remark 2.10. Let us notice that necessary and sufficient conditions assuring the
uniform convergence of fundamental matrices Xk corresponding to Ak, k ∈ N, to
the fundamental matrix X0 corresponding to A0 may be found in the paper [2] by
M. Ashordia.

Results related to Theorem 2.9 obtained by the method of ”prolongation” of
functions of bounded variation to continuous functions along monotone functions
and using the concept of convergence under substitution instead of the emphatic
convergence were obtained by D. Fraňková in [3] (cf. also [4]), as well.
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3 . Linear GDE’s - new results

Notation 3.1. For a given function F ∈ BVn×n, the symbol S(F ) stands for the
set of the points of discontinuity of F in [0, 1], while

S+(F ) = {t ∈ [0, 1); ∆+F (t) 6= 0} and S−(F ) = {t ∈ [0, 1); ∆−F (t) 6= 0}.

If F is such that S(F ) possesses at most a finite number of points, then for an
arbitrary compact set M such that

M =
m⋃

j=1

[αj, βj] ⊂ [0, 1] \ S(F )

with [αj, βj] ∩ [αk, βk] = ∅ for j 6= k, we define

FM(t) = F (t)− F (αj) if t ∈ [αj, βj].

Provided the set S(A0) contains at most a finite number of elements, we can
extend Theorem 2.9 to the case that the functions Ak, k ∈ N ∪ {0}, need not be
left-continuous on (0, 1] in the following way.

Theorem 3.2. Let A0 ∈ BVn×n, S(A0) = {τj}m
j=1,

det
[
I−∆−A0(t)

] 6= 0 on [0, 1]

and let X0 be the fundamental matrix solution corresponding to A0. Let the sequence
{Ak}∞k=1 ⊂ BVn×n be such that

(i) supk var 1
0Ak < ∞ and det

[
I−∆−Ak(t)

] 6= 0 on (0, 1] for all k ∈ N;

(ii) limk→∞ AM
k (s) = AM

0 (s) uniformly on M for any M ⊂ [0, 1] \ S(A0) such that
M =

⋃m
j=1[αj, βj], where [αj, βj] ∩ [αk, βk] = ∅ for j 6= k;

(iii) if τ ∈ S(A0) then for any z ∈ Rn and any ε > 0 there exists δ > 0 such that
for any δ′ ∈ (0, δ) there is k0 ∈ N such that the relations

∣∣yk(τ)− yk(τ − δ′)−∆−A0(τ)
[
I−∆−A0(τ)

]−1
z
∣∣ ≤ ε

and
∣∣zk(τ + δ′)− zk(τ)−∆+A0(τ)z

∣∣ ≤ ε

are satisfied for any k ≥ k0 and yk and zk such that
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yk(t) = yk(τ − δ′) +
∫ t

τ−δ′ d[Ak(s)]yk(s) on [τ − δ′, τ ],

zk(t) = zk(τ) +
∫ t

τ
d[Ak(s)]zk(s) on [τ, τ + δ′]

and

|z − yk(τ − δ′)| ≤ δ and |z − zk(τ)| ≤ δ.

Then for any k ∈ N sufficiently large the fundamental matrix Xk corresponding
to Ak is defined on [0, 1] and

lim
k→∞

Xk(t) = X0(t) on [0, 1].

Proof. Let us restrict ourselves to the case that m = 1, i.e. let S(A0) = {τ}, where
τ ∈ (0, 1).

Let an arbitrary x̃ ∈ Rn be given and let xk for any k ∈ N ∪ {0} denote the
solution to the equation

xk(t) = x̃ +

∫ t

0

d[Ak(s)]xk(s) on [0, 1].

Our assumptions (i) and (ii) by Theorem 2.5 imply that for any α ∈ (0, τ) we
have

lim
k→∞

xk(t) = x0(t) uniformly on [0, α]. (3.1)

Consequently,
lim
k→∞

xk(t) = x0(t) for all t ∈ [0, τ). (3.2)

Furthermore, for any δ′ ∈ (0, τ) and k ∈ N we have

|x0(τ)− xk(τ)| (3.3)

≤
∣∣x0(τ)− x0(τ − δ′)−∆−A0(τ)

[
I−∆−A0(τ)

]−1
x0(τ−)

∣∣
+

∣∣∣∆−A0(τ)
[
I−∆−A0(τ)

]−1
x0(τ−)− (

xk(τ)− xk(τ − δ′)
)∣∣∣

+ |x0(τ − δ′)− xk(τ − δ′)|.

Let an arbitrary ε > 0 be given. By the assumption (iii) there exists δ ∈ (0, ε)
such that for all δ′ ∈ (0, δ) there exists k1 = k1(δ

′) ∈ N such that for any k ≥ k1

and for any solution yk of the equation

yk(t) = yk(τ − δ′) +

∫ t

τ−δ′
d[Ak(s)]yk(s) on [τ − δ′, τ ]
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such that |yk(τ − δ′)− x0(τ−)| < δ we have

∣∣∣yk(τ)− yk(τ − δ′)−∆−A0(τ)
[
I−∆−A0(τ)

]−1
x0(τ−)

∣∣∣ < ε. (3.4)

Let us choose δ′ ∈ (0, δ) in such a way that

|x0(τ−)− x(τ − δ′)| < δ

2
(3.5)

is true. Furthermore, according to (3.2) there is k0 ∈ N such that k0 ≥ k1 and

|x0(τ − δ′)− xk(τ − δ′)| < δ

2
for all k ≥ k0. (3.6)

In particular, for k ≥ k0 we have

|x0(τ−)− xk(τ − δ′)| < δ. (3.7)

Thus, if we put yk(t) = xk(t) on [τ − δ′, τ ], then the relation (3.4) will be satisfied
for any k ≥ k0, i.e. we have

∣∣∣xk(τ)− xk(τ − δ′)−∆−A0(τ)
[
I−∆−A0(τ)

]−1
x0(τ−)

∣∣∣ < ε (3.8)

for all k ≥ k0. Now, inserting (3.6)-(3.8) into (3.3), we obtain that

|xk(τ)− x0(τ)| < δ

2
+

δ

2
+ ε < 2ε

is satisfied for any k ≥ k0, i.e.

lim
k→∞

xk(τ) = x0(τ). (3.9)

Further, we will prove that there is η > 0 such that

lim
k→∞

xk(t) = x0(t)

is true on (τ, τ + η) as well. To this aim, let ε > 0 be given and let η0 ∈ (0, ε) be
such that

|x0(s)− x0(τ+)| < ε for all s ∈ (τ, τ + η0). (3.10)

By the assumption (iii) there exists η ∈ (0, η0) such that for any η′ ∈ (0, η) there is
`1 = `1(η

′) ∈ N such that for any k ≥ `1 and for any solution zk of the equation

zk(t) = zk(τ) +

∫ t

τ

d[Ak(s)]zk(s) on [τ, τ + η′]
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such that |zk(τ)− x0(τ)| < η we have
∣∣zk(τ + η′)− zk(τ)−∆+A0(τ)x0(τ)

∣∣ < ε. (3.11)

Let us choose η′ ∈ (0, η) arbitrarily. By (3.10), we have

|x0(τ − η′)− x0(τ+)| < ε. (3.12)

Furthermore, by (3.9) there is `0 ∈ N such that `0 ≥ `1 and

|xk(τ)− x0(τ)| < η for all k ≥ `0. (3.13)

Thus, by (3.11), for any k ≥ `0 we have
∣∣xk(τ + η′)− xk(τ)−∆+A0(τ)x0(τ)

∣∣ < ε. (3.14)

Making use of (3.12)-(3.14) we finally get for any k ≥ k0

|xk(τ + η′)− x0(τ + η′)|
≤

∣∣xk(τ + η′)− xk(τ)− x0(τ+) + x0(τ)
∣∣

+
∣∣x0(τ + η′)− x0(τ+)

∣∣ +
∣∣xk(τ)− x0(τ)

∣∣
=

∣∣xk(τ + η′)− xk(τ)−∆+A0(τ)x0(τ)
∣∣

+
∣∣x0(τ+)− x0(τ + η′)

∣∣ +
∣∣xk(τ)− x0(τ)

∣∣ < 3ε,

i.e.
lim
k→∞

xk(t) = x0(t) for all t ∈ (τ, τ + η).

The proof of the theorem can be completed by making use of Theorem 2.5 and
taking into account that x̃ ∈ Rn was chosen arbitrarily. The extension to a general
case m ∈ N is obvious.

Remark 3.3. Obviously, if we did not restrict ourselves to the case of only a fi-
nite number of discontinuities of A0, we should replace the assumptions (i)-(ii) in
Theorem 3.2 by assumptions of the form (i)-(ii) from Definition 2.8.

Remark 3.4. The following concept due to M. Pelant (cf. [7]) leads to another
interesting convergence effect which most probably cannot be explained by Theorem
3.2.

Let A ∈ BVn×n and let the divisions Pk = {0 = tk0 < · · · < tkpk
= 1}, k ∈ N, of

[0, 1] be such that

Pk ⊃ Dk = {t ∈ [0, 1]; t =
i

2k
, i = 0, 1, ...2k}

∪ {t ∈ (0, 1]; |∆−A(t)| ≥ 1

k
}

∪ {t ∈ [0.1); |∆+A(t)| ≥ 1

k
}.
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For a given k ∈ N, let us put

Ak(t) =





A(t) if t ∈ Pk,

A(tki−1) +
A(tki )−A(tki−1)

tki−tki−1
(t− tki−1)

if t ∈ (tki−1, t
k
i ).

Then we say that the sequence {Ak,Pk}∞k=1 piecewise linearly approximates A.

Furthermore, for a given A ∈ BVn×n, let us define A0 on [0, 1] by

A0(t) = A(t)−
∑

s∈S−(A)

∆−A(s)χ[s,1](t) (3.15)

−
∑

s∈S+
(A)

∆+A(s)χ(s,1](t)

+
∑

s∈S−(A)

(
I− [

exp
(
∆−A(s)

)]−1
)
χ[s,1](t)

+
∑

s∈S+
(A)

(
exp

(
∆+A(s)

)− I
)
χ(s,1](t).

Then, obviously
det

[
I−∆−A0(t)

] 6= 0 on [0, 1]

holds and the following assertion may be proved (cf. [7]).

Let A ∈ BVn×n, let A0 be given by (3.15), let {Ak,Pk}∞k=1 piecewise linearly
approximate A and let for a given k ∈ N, Xk denote the fundamental matrix corre-
sponding to Ak. Then

lim
k→∞

Xk(t) = X0(t) for all t ∈ [0, 1].

Furthermore, if A ∈ BVn×n is such that the relations

det
[
I−∆−A(t)

] 6= 0 and det
[
I + ∆+A(t)

] 6= 0 on [0, 1] (3.16)
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are true, then for t ∈ [0, 1] we can define

A∗
0(t) = A(t)−

∑

s∈S−(A)

∆−A(s)χ[s,1](t) (3.17)

−
∑

s∈S+
(A)

∆+A(s)χ(s,1](t)

+
∑

s∈S−(A)

ln
[
I−∆−A(s)

]−1
χ[s,1](t)

+
∑

s∈S+
(A)

ln
[
I + ∆+A(s)

]
χ(s,1](t)

and the following assertion is an immediate corollary of the above mentioned result
of M. Pelant.

Theorem 3.5. Let A ∈ BVn×n be such that (3.16) holds and let X be the fundamen-
tal matrix corresponding to A. Let A∗

0 be given by (3.17), let {Ak,Pk}∞k=1 piecewise
linearly approximate A∗

0 and let for a given k ∈ N, Xk denote the fundamental
matrix corresponding to Ak. Then

lim
k→∞

Xk(t) = X(t) for all t ∈ [0, 1].

4 . Appendix (2010)

When restricted to the linear case, Theorem 8.2 from [8] modifies to

Theorem 4.1. Let Ak ∈BVn×n, k ∈N∪{0}, and a nondecreasing function h : [0, 1]→R
be given such that

lim
k→∞

Ak(t) = A0(t) on [0, 1], (4.1)

|Ak(t2)− Ak(t1)| ≤ |h(t2)− h(t1)|
for t1, t2 ∈ [0, 1] and k ∈ N ∪ {0}.

}
(4.2)

Let Xk be the fundamental matrix solutions corresponding to Ak for k ∈ N and let

lim
k→∞

Xk(t) = X0(t) for t ∈ [0, 1].

Then X0 ∈BVn×n and X0 is the fundamental matrix solution corresponding to A0.
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Proposition 4.2. Under the assumptions of Theorem 4.1 we have

sup
k∈N

var 1
0Ak < ∞ (4.3)

and

lim
k→∞

Ak(t) = A0(t) uniformly on [0, 1]. (4.4)

Proof. i) The relation (4.3) follows immediately from (4.2).

ii) Notice that (4.1) and (4.2) imply that

|Ak(t−)−Ak(s)| ≤ |h(t−)−h(s)| for t ∈ (0, 1], s ∈ [0, 1], k ∈ N ∪ {0} (4.5)

and

|Ak(t+)−Ak(s)| ≤ |h(t+)−h(s)| for t ∈ [0, 1), s ∈ [0, 1], k ∈ N ∪ {0}. (4.6)

iii) Let ε > 0 and t ∈ (0, 1] be given and let us choose s0 ∈ (0, t) and k0 ∈ N so that

|h(t−)− h(s0)| < ε

3
and |Ak(s0)− A0(s0)| < ε

3
for k ≥ k0. (4.7)

Then, by (4.5) and (4.7),

|Ak(t−)− A0(t−)| ≤ |Ak(t−)− Ak(s0)|+ |Ak(s0)− A0(s0)|+ |A0(s0)− Ak(t−)|

< |h(t−)− h(s0)|+ ε

3
+ |h(t−)− h(s0)| < ε.

This means that

lim
k→∞

Ak(t−) = A0(t−) holds for t ∈ (0, 1]. (4.8)

Similarly, using (4.6) and (4.7), we get

lim
k→∞

Ak(t+) = A0(t+) holds for t ∈ [0, 1). (4.9)

iii) Now, suppose that (4.4) is not valid. Then there is ε̃ > 0 such that for any ` ∈ N
there exist m` ≥ ` and t` ∈ [0, 1] such that

|Am`
(t`)− A0(t`)| ≥ ε̃. (4.10)

We may assume that m`+1 > m` for any ` ∈ N and

lim
`→∞

t` = t0 ∈ [0, 1]. (4.11)
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Let t0 ∈ (0, 1] and assume that the set of those ` ∈ N for which t` ∈ (0, t0) has
infinitely many elements, i.e. there is a sequence {`k}k∈N ⊂ N such that t`k

∈ (0, t0)
for all k ∈ N and limk→∞ t`k

= t0. Denote sk = t`k
and Bk = Am`k

for k ∈ N. Then,
in view of (4.10) we have

sk ∈ (0, t0) for k ∈ N, lim
k→∞

sk = t0 (4.12)

and

|Bk(sk)− A0(sk)| ≥ ε̃ for k ∈ N. (4.13)

By (4.5), we have

|A0(t0−)− A0(sk)| ≤ h(t0−)− h(sk)

and

|Bk(t0−)− A0(sk)| ≤ h(t0−)− h(sk).

Therefore, by (4.8) and since lim
k→∞

(h(t0−)− h(sk)) = 0 due to (4.12), we can choose

k0 ∈ N so that

|Ak(t0−)− A0(t0−)| < ε̃

3

|A0(t0−)− A0(sk0)| ≤ h(t0−)− h(sk0) <
ε̃

3
and

|Bk0(t0−)− A0(sk0)| <
ε̃

3
.

As a consequence, we get finally by (4.13)

ε̃ ≤ |Bk0(sk0)− A0(sk0)|
≤ |Bk0(sk0)− Ak(t0−)|+ |Ak(t0−)− A0(t0−)|+ |A0(t0−)− A0(sk0)| < ε̃,

a contradiction.

If t0 ∈ [0, 1) and the set of those ` ∈ N for which t` ∈ (0, t0) has only finitely
many elements, then there is a sequence {`k}k∈N ⊂ N such that t`k

∈ (t0, 1] for all
k ∈ N and limk→∞ t`k

= t0. As before, let sk = t`k
and Bk = Am`k

for k ∈ N and
notice that

sk ∈ (t0, 1) for k ∈ N, lim
k→∞

sk = t0

and (4.13) are true. Arguing similarly as before we get that there is k0 ∈ N such
that

ε̃ ≤ |Bk0(sk0)− A0(sk0)|
≤ |Bk0(sk0)− Ak(t0+)|+ |Ak(t0+)− A0(t0+)|+ |A0(t0+)− A0(sk0)| < ε̃,

a contradiction.
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