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LINEAR DISTRIBUTIONAL DIFFERENTIAL EQUATIONS 

IN THE SPACE OF REGULATED FUNCTIONS 

MARTIN PELANT and MILAN TVRD*, Praha 

(Received November 11, 1992) 

Summary. In the paper existence and uniqueness results for the linear differential system 
on the interval [0,1] 

(0.1) Ax(Aox)' - A'2x = / ' 

with distributional coefficients and solutions from the space of regulated functions are ob­
tained. 

Keywords: regulated function, distribution, Perron-Stieltjes integral, Kurzweil integral, 
generalized differential equation 

A MS classification: 34 A 37, 46 F 99 

The paper deals with the linear differential system on the interval [0,1] 

(0.1) A^Aox)'- A'2x = f 

with distributional coefficients and solutions from the space of regulated functions. In 
particular, we assume that Ao and A\ are n x n-matrix valued functions continuous 
on [0,1] such that det (A0(t)Ax(t)) £ 0 for all t G [0,1], while A\ has a bounded 
variation on [0,1]. Furthermore, the n x n-matrix valued function A? has a bounded 
variation on [0,1] and / is regulated on [0,1]. Distributions are understood in the 
sense of L. Schwartz. 

It will be shown that the system (0.1) is equivalent to the integral equation 

(0.2) y(t) - »(0) - / ' [dA(*)]v(s) = M0 - M0), 
Jo 
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where y(t) as A0(t)x(t), 

A(.) = / ^ W l d A - t o l V W ^ M0-= /-VW.d/OOl. '€[0,1] 
Jo Jo 

and the integrals are the Perron-Stieltjes ones. The equation (0.2) is a generalized 
linear differential equation (in the sense of J.Kurzweil). The basic results known 
for equations of the form (0.2) (cf. e.g. [S-T-V], [Schl] and [Tv2]) make it possible 
to prove theorems on existence and uniqueness of solutions and the variation-of-
constants formula for distributional differential systems (0.1) and 

(0.3) • P 1 ( P 0 « ( m - 1 ) ) ' + P^« ( m - 1 ) + . . . + P'n«' + P/n + 1« = g'> 

where Po and Pi are n x n-matrix valued functions defined and continuous on [0,1], 
det P 0 (0 det Px(t) ^ 0 on [0,1]; Pi , P2 , . . . , Pm+i are of bounded variation on [0,1], 
q is regulated on [0,1] and an n-vector valued function u is called a solution to 
the system (0.3) if u, u', . . . , u( m - 1 ) are regulated on [0,1] and P1(Poti(m"1))' + 
P ^ " 1 - 1 ) + . . . + Pmti' + P m + i u — q' is the zero n-vector distribution. 

The study of linear differential systems with distributional coefficients was initiated 
more than thirty years ago (cf. e.g. [Ku2]). The fundamental theory for systems of 
the form 

x1 - A'x = / ' 

where A and / are of bounded variation on [0,1] and distributions are understood 
in the sequential sense has been established by J. Ligeza in [Lil]. Further general­
izations were obtained by J. Ligeza (cf. [Li2] and [Li3]), R. Pfaff (cf. [Pfl] and [Pf2]) 
and J.Persson (cf. [Pel] and [Pe2]). Linear and nonlinear distributional differential 
equations in the space of regulated functions were treated by J. Ligeza in [Li4]. Re­
lated results may be found also in [At], [Za-Se], [Pa-De] and [Mi]. In this paper we 
generalize the results of J. Ligeza and R. Pfaff concerning the systems of the first 
order. In the case of higher order systems our results are complementary to those 
from [Li2], [Li3], [Pfl] and [Pf2]. The equations treated by J. Persson in [Pel] and 
[Pe2] slightly differ from those considered in this paper. (In their equivalent integral 
form analogous to (0.2) the Lebesgue-Stieltjes integrals over the closed interval [0, t] 
appear instead of the Perron-Stieltjes integrals from 0 to t.) 
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1. PRELIMINARIES 

1.1. Basic notation and definitions. Throughout the paper Rn denotes the 

space of real column n-vectors, R1 = R, N stands for the set of positive integers. If 

—oo < a < 6 < oo, then [a, 6] and (a, 6) denote the corresponding closed and open 

intervals, respectively. Furthermore, [a, 6) and (a, 6] are the corresponding half-open 

intervals. The sets d = {i0i * i , . . . , im} of points in the closed interval [a, 6] such that 

a = <o < *i < • • < im = 6 are called divisions of [a, 6]. If M C R, then \M denotes 

the characteristic function of M. 

Given a k x n-matrix Af, its elements are denoted by m t | j , M~x denotes its inverse 

and M * stands for its transposition, i.e. 

M = (™.,i)«=i,...,fc i=i,...,n and M * = (mj|f-)i==i,...ln i=i... ,*. 

(In particular, y* = (yi, jft, • • •, 2/n)) Furthermore, 

|Л-1 = ̂ иKjEhj 

n 
is the norm of M . (In particular, |y| = max |y,| and |y*| = ]£ \yj\ for y G Rn.) 

•=i,...,n J=:1 

The symbols I and 0 stand respectively for the identity and the zero matrix of the 

proper type. 

Let — oo < a < 6 < oo. Any function / : [a, 6] -» R which possesses finite limits 

/(<+) = lim / ( r ) , / ( « - ) = lim f(r) for all i 6 [a, 6) and s e (a, 6] is said to be 

regulated on [a, 6]. Any Ar x n-matrix valued function F defined on [a, 6] and such 

that all its elements fi,j(i), i = 1,2,..., k; j = 1,2,.. . , n are regulated functions on 

[a, 6] or functions of bounded variation on [a, 6] is said to be a matrix valued function 

regulated on [a, 6] or of bounded variation on [a, 6], respectively. A Jb x n-matrix 

valued function .F defined on [a, 6] is df bounded variation on [a, 6] if and only if 

var F = sup V ) \F(tj) - .P^-OI < oo, 
D i -1 

where the supremum is taken over all divisions D = {<Q>*I,« . . ,<m} of the interval 

[a, 6]. The number var F defined above is called the variaiion of the function F 
* a 

on the interval [a, 6]. BV* , n(a,6) denotes the Banach space of k x n-matrix valued 

functions of bounded variation on [a, 6] equipped with the norm 

F e BV*'n(a, 6) - P H I B V = \F(a)\ + v | r F . 
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Instead of B Y ^ a , *) we write BVn(a,6). Let us notice that if A G BVn»n(a,6) 
is such that detA(i) ^ 0 on [a, 6] and the corresponding inverse function A""1 is 
bounded on [a,6] (|A^(0I ^ a < oo for all t G [a, 6]), then A"1 G BVn'n(a,6) as 
well. Indeed, if {a -= to < t\ < . . . < tm = 6} is an arbitrary division of [a, 6], then 

m m 

£ lA-H'i) - A"1^.!)! = X) lA-H'i)^-!) - *(«,)] A-^i-OI ^ 

^a^lA^J-A^-Ol^a^A). 

Hence var(A"1) i$ a2(var A). 
The space of column n-vector valued functions regulated on [a, 6] is denoted by 

Gn(a, 6) while GJ^a, 6) stands for the set of all functions / G Gn(a, 6) such that 
t • 

(1.1.1) / ( . ) = 1 [ / ( |_)+ /(«+)] for all . € (a, 6) 

and 

(1.1.2) /(a+) = /(a), / (*-) = /(*). 

The functions fulfilling (1.1.1) are usually called regular on (a, 6) and the functions 
fulfilling both (1.1.1) and (1.1.2) are called regular on [a, 6]. Given / G Gn(a,6), 
t G [a,6), s G (a,6] and r G (a,6), we put A+/(*) = /(<+) - /(*), A~/(s) = 
/(*) - / ( « - ) and A/(r) = /(r+) - / ( r - ) . Obviously, / G Gn(a,6) is regular on 
(a, 6) if and only if A~/(*) = A+/(t) holds for all t G (a, 6). The set of all k x n-
matrix valued functions regular on [a, 6] and of bounded variation on [a, 6] will be 
denoted by BV^n. For * G Gn(a,6) we put ||x|| = 8upt^[0li]\x(t)\. It is well known 
that Gn(a,6) is a Banach space with respect to this norm (cf. [Hoi], Theorem 3.6). 
Obviously, Gjg(a,6) is a closed subspace of Gn(a,6) and hence it is also a Banach 
space with respect to the same norm. 

For more details concerning regulated functions or functions of bounded variation 
see [Au], [H61], [Fra] or [Hi], respectively. 

As usual Ln(a,6) stands for the Banach space of measurable and Lebesgue inte­
grate column n-vector valued functions on [a, 6] equipped with the norm 

/ЄLn(a,6)-*||/||Ł = jŢł|/(ť)|d.. 

In the case [a,b] = [0,1] we write simply Gn, G% BV t , n and Ln instead of 
Gn(0,l), GJ-fO,!), BV* n (0,l) and Ln(0,l), respectively. Furthermore, G(a,b), 
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GH(a,6),BV(a,6) and Li(a,6) stand for G 1 (c,J),6J l (a ) l),BV l (a ) .) and Lj(a,6), 
respectively. 

1.2. Perron-Stieltjes integral with respect to regulated functions. The 
integrals which occur in this pap^r are the Perron-Stieltjes ones. For the original 
definition, see [Wa] or [Sa]. We use the equivalent summation definition due to 
J. Kurzweil (cf. [Kul], [Ku3], [S-T-V]). 

Given a p x g-matrix valued function F and a q x r-matrix valued function G 
defined on [a. 6] and such that all the integrals 

l fi.k(*)[*9kAt)] (« = 1,2,...,p; i = 1,2,...,r) 

exist (i.e. have finite values), the symbol 

/ F(t)[dG(t)) (or more simply / F[dG)) 
J a J a 

stands for the p x r-matrix M with the entries 

q rb 

m * . ; = H / falfaj] (**=1.2,...,p; j=l,2,...,r). 
k=iJa 

The integrals 

/ [dF]G and / F[dG\H 
Ja Ja 

for matrix valued functions F , G, H of proper types are defined analogously. The 
basic properties of the Perron-Stieltjes integral with respect to regulated functions 
were described in [Tvl] and [Tv2]. Let us mention here some of its further properties 
needed later on. We shall formulate them for scalar functions. Their extension to 
the vector or matrix valued function is obvious. 

Let functions /, g be regulated on [a, 6]. If the integral fa fdg has a finite value, 
then by Theorem 1.3.4 from [Kul] the function 

i : * Є [ a , 6 ] - / 
Ja 

fdgeR 

is regulated on [a, 6]. Let us note that the integral fa fdg has a finite value if the 
functions /, g are both regulated on [a, 6] and at least one of them has a bounded 
variation on [a, 6] (cf. [Tvl], Theorem 2.8). In this case the above mentioned Theorem 
1.3.4 from [Kul] implies that 

(1.2.1) M'+) = M') + /WA+*(0 and M«-)-*W-/WA-fW 

383 



holds for all t € [a, 6) and s £ (a, 6]. Moreover, if g € BV(a,6), then h G BV(a,6) 
as well. 

The following modifications of the integration-by-parts formula (cf. [Tvl], Theo­
rem 2.15) will be useful for our considerations. 

1.2.1. Proposition. Let a ^ c < d ^ 6, / € BV(a, 6), 

(1.2.1) 7(a) = /(a-f), 7(0 = 5[/(«+) + /(«-)] for* E (a,6), /(6) = /(6-) f 

(1.2.2) a = -A/(c) if c > a, a = 0 ifc = a 

and 

(1.2.3) / ?=^A/(d) i fd<6 , /? = 0 ifd = 6. 

T/ien 7 ^ BV/i(a, 6) and the relation 

(1.2.4) J [df]g = /(<*),(<*) - f(c)g(c) - jf 7[<W + P^'tW - aA+,(c), 

hoids for each g € G/*(a, 6). 

P r o o f . Let {to9tx,...,tm} be an arbitrary division of [a, 6]. Then 

m • • . ;» ' 

Xi/fo)-/<«i-i)i< 
m m - 1 

^ £ l/Ci) - /('i-OI + |A+/(a)| + £ •(|A+/(.i)[+ |A-/(ti)|) + |A"/(6)| 
i=i i=i 

<2var/ 
a 

b ~ b 

and hence var / ^ 2 var / . 
Let a < c < a* < 6 and let an arbitrary g € GK(O,6) be given. Let us put 

«"(*) = /(*) - I(») on [a, 6], i.e. w(a) = -A+/(a) , w(s) = £[A"/(«) - A+/(s)] 
for « € [a, 6) and tt>(6) = A"/(6). It follows easily that w(s+) = 0 on [a, 6) and 
u>(*-) = 0 on (a, 6] and consequently (cf. [S-T-V], Lemma 1.4.23) 

J [dw(8)\g(8) = A+w(c)g(c) + &-w(d)g(d). 
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In particular, 

rd 
J [dw(s))g(s) = \[A~f(d)g(d) - A+f(d)g(d) - A-f(c)g(c) + A+f(e)g(c)]. 

By the integration-by-parts formula (cf. [Tvl], Theorem 2.15) we have for any g € 
GR(a,b) 

J\df(s)]g(s)+J'f(s)[dg(s)] 

= f(d)g(d) - f(c)g(c) + A-f(d)A~g(d) - A+f(c)A+g(c) 

= \ ([f(d+) + f(d-)]g(d) - [f(c+) + f(c-)]g(c) + Af(d)A~g(d) - Af(e)A+g(c)^ 

= \ (f(d+)9(d) + f(d-)g(d) - f(c+)g(c) - f(c-)g(c) 

+ f(d+)A~g(d) - f(d-)A~g(d) - f(c+)A+g(c) + f(c-)A+g(c)\ 

= \ (f(d+Md) + A~g(d)] + f(d-)[g(d) - A-g(d)] 

- f(c+)[9(c) + A+g(c)] - f(c-Mc) - A+</(c)]) 

= \ (f(d+)9(d+) + f(d-)g(d-) - f(c+)g(c+) - f(c-)g(c-)^ . 

Hence 

J\df(*))g(*) + J' f(B)[dg(,)] 

= í\df(*)]9(*)+ f f(s)[dg(s))+ í\dw(s)]g(s) 
Je Je Je 

= \ (f(d+)9(d+) + f(d-)g(d-) - /(c+)flf(c+) - /(c-)ff(c-)) 

+ \ (f(d)9(d) - f(d-)g(d) - f(d+)g(d) + f(d)g(d)^ 

- \ (/(c)ř7(c) - f(c-)g(c) - f(c+)g(e) + f(e)g(c)^ 

= f(d)9(d) + \ [f(d+)A+g(d) - f(d-)A~g(d)] 
- f(c)9(c) - \[f(c+)A+g(c) - f(e-)A-g(e)] 

= f(d)g(d) - f(e)g(c) + \Af(d)A~g(d) - \Af(c)A+g(c). 
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The proof of the remaining assertions of the proposition can be done in a quite 
similar way. D 

1.2.2. Proposition. Let a ^ c < d ^ b and f G G(a,6). Let / , a and /3 
be defined by (1.2.1), (1.2.2) and (1.2.3), respectively Then / G GR(a,b) and the 
relation (1.2.4) holds for each g G BV*(a, 6). 

P r o o f is analogous to that of the previous proposition. D 

1.3. Distributions. The distributions are considered in this paper in the sense 
of L. Schwartz. Let us recall some basic definitions and properties of distributions 
needed later on. For more details concerning distributions see e.g. [Ha] or [Ru]. 

In what follows 9 stands for the topological vector space of functions <p: R —• R 
possessing for any j € N U {0} a derivative <pW of the order j which is continuous 
on R and such that <p^(t) = 0 for any t G R \ [0,1]. The space 9 is endowed with 
the topology in which the sequence <pt G 9 tends to <po G 9 in 9 if and only if 
lim||v?jk — ̂ o II = 0 for all j G N U {0}. Linear continuous functionals on 9 are 
called distributions on [0,1] and the elements of the space 9 are called test functions. 
The space of distributions on [0,1] (i.e. the dual space to 9) is denoted by 9*. Given 
a distribution / G 9* and a test function <p G 9, (/, <p) denotes the value of the 
functional / on <p. Any function / G In will be identified with the distribution 

f:<pe9->{f,<p)= j f(t)<p(t)At = f f<pdt. 
Jo Jo 

In particular, the zero element 0 of 9* will be identified with the function vanishing 
a.e. on [0,1]. Obviously, if / G G, then / is the zero distribution ( / = 0) if and only 
if f(t+) = / ( * - ) = 0 holds for any t G [0,1) and s G (0,1], and if / G G*, then 
/ = 0 in 9* if and only if /(*) s 0 on [0,1]. 

Given an arbitrary / G 9*% the distribution / ' defined by 

f'.<p€9-lf,V>) = -(f,rt 

is said to be the (distributional) derivative of / . Analogously, for any j € N, 

/«>.¥>€-*-> (P\ V) = (~lY(f, ¥>0)) 

defines the / t h derivative of / . For absolutely continuous functions their classical 
derivatives coincide with their distributional derivatives, of course. 
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If / G 9* then (/, <p') = 0 holds for all <p G 9 if and only if there is a c G R such 
that 

(/>¥>) = £ / ¥>(*)<-* 
Jo 

for all <p G 9 (cf. Sec. 3 in [Ha]). It means that / = c in the sense of distributions. 
In other words, (/, <p') = 0 for all <p G 9 if and only if the distribution / may be 
identified with a function / : [0,1] —• R for which there is a c G R such that f(t) = c 
a.e. on [0,1]. 

Given distributions u,v G 9*, the definition of the product tit; is well-known in 
the following two cases [cf. [Ha]): 

(i) if ti, v and tit; G Li, then 

tit;: <p G 9 —* (tit;, <p) = / (tiv)y? dt; 
Jo 

(ii) if ti G 9* and v is infinitely times continuously differentiable, then 

tit;: <p G 9 —*• (tit;, ̂ ?) = (ti, v<p). 

In addition, if / G GR and </ G BV/i, then we put as in [Pa-De] 

(1.3.1) f'9'-<pe9-+(f'9i<p)= f (g<p)df 
Jo 

and 

(13.2) fg<:(pe0-+ (fg*, <p) = / (/V?) dg. 
JO 

Let us note, that the definitions (1.3.1) and (1.3.2) are not contradictory to the 
corresponding definitions given by P.Antosik and J.Ligeza in [An-Li] cm the basis of 
the sequential approach to distributions. In particular, it is easy to verify that for 
any r G (0,1) both (1.3.1) and (1.3.2) yield HT6T = \6T for the product of the Dirac 
distribution 6T concentrated in r with the corresponding regular Heaviside function 
HT (HT(t) = 0 for t < r, HT(r) = £, HT(t) = 1 for t > r, 6T = H'T). 

The relations (1.3.1) and (1.3.2) obviously define linear continuous functionals on 
9 which are compatible with the definitions (i) and (ii) also in the case that the 
regularity of the functions / and g is not supposed. However, the usual relation 

U-3.3) (fg)' = f'g + fg' 
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then need not be true in general. Indeed, (1.3.3) holds if and only if 

/ (fg)<p'dt + f [df](g<p) + / (f<p)[dg] = 0 
JO Jo Jo 

is true for all <p 6 ®, i.e. if and only if 

(1.3.4) ^ \f(t)g(t) - j\df(s)]g(s) - j ^ f(s)[dg(s)]} <p'(t)dt = 0 for all y, € 0 . 

If both / and g are regular on [0,1], then by integration-by-parts formula (cf. Propo­
sition 1.2.1) 

f(t)g(t) - f\df]g - f f[dg] = f(0)g(0) - A~f(t)A-g(t) 
Jo Jo 

holds for each t 6 [0,1]. It means that 

f(t)g(t) - I [df]g - f f[dg] = f(0)g(0) a.e. on [0,1] 
Jo Jo 

and the relation (1.3.4) is true if both / and g are regular on [0,1]. 
The space of column n-vector valued functions <p(t) = (y>j(0)j=i,•• ,n such that 

<Pj € 9 for any j = 1,2, . . . , n will be denoted by &n and its dual space (which 
is the n-th cartesian power of 9*) will be denoted by 9n*. The elements of &n* 
will be called n-vector distributions. Given / = (/i,/2> • •-, /n) € @n* and <p = 
(^ii^2»--«>V?n)*.€ -®*1, the value of the functional / on <p is given by (f,<p) = 
( / i i^i) + (/2»^2) + --. + {fn,<Pn)- As in the scalar case, if / £ Ln, then this function 
will be identified with the n-vector distribution 

( / ,¥>)= / <P*(t)f(t)dt foranyv>€5?n . 
Jo 

Similarly, if g € Gn , then the distributional derivative g1 dig is given by 

Oi',<P) = / ¥>*(0[<tevO] for a n y v> e ® n . 
Jo 

An n-vector distribution / is said to be the n-vector zero distribution (f = 0) if all 
its entries are zero distributions. A k x n-matrix A whose entries o,*j, t = 1 ,2 , . . . , k\ 
j = 1 ,2 , . . . , n are distributions is said to be a k x n-matrix distribution. Given a k x n-
matrix distribution A = (a,-,,),-!,....* i=i....,n, the matrix A' = Kj)<«i,...,*i*if...,n 
is called the derivative of A. Analogously we define the derivatives of vector distri­
butions. 
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If a ixn-matrix distribution A = (a.,y)t=1> ..^ J=i,...f„ and an n-vector distribution 
* = (xi)j=i,...,n a r e su<* t h a t a-l products OijXj, i = 1 ,2 , . . . , k; j = 1 ,2 , . . . , n are 
defined, then the product Asu is defined as the Jb-vector distribution y with the 

n 
elements y, = £ a* j * j , 1 = 1 ,2 , . . . ,* . 

i = i 

1.3.1. Proposition. Let A G BV^ n and x G G£. Then the distributionai 
products Ax' and A!x are definedf Ax' = £' and A!x = rf', where £ G GJ and 
7/ G BVJR are given by 

(1.3.5) { ( 0 = / A(s)[dx(s)] and r,(t) = / [dA(s)]x(s) for <G [0,1], 
Jo Jo 

Ј.Є. 

Ax':<p€®n^ ľ Ч>'(t)[W)], 
Jo 

A'x: >Z®n-^ I ¥>*(<)[dr,(0]. 
Уo 

P r o o f . For any <p E @n we have by (1.3.1) 

<A*^>=£(è<«.^-,v>.>) 
•=i Ч І = I 7 

= Ś ( / [ d S ( / f l ť j ( í ) [ d í i í 5 ) 1 ) ] ^ ( < ) ) 
=ll vЧt) [d jfҖ s ) [Ms)] ì=í'*Ҷť) ldť(ť)]' 

and by (1.3.2) 

*/n ч t / n . i 

<л:t*) = £ (è«j»y.w>) = Ľ (EjҐ [«ЧłW]ђ(í)ww) 

-g(ГҚt( j f^ w ИM 
= fo vџ(t)[d|ť [dA(#)]«w] = flvЧфФ)] 
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where £(t) and TJ(*) are given by (1.3.5). By Theorem 1.3.4 of [Kul] (cf. Sec. 1.2) 

both £ and tj are regulated on [0,1]. Furthermore, given an arbitrary division {0 = 

t0 < h < . . . < tm = 1} of [0,1], we have 

£ Info) - »ifo-i)l = £ / [dA(*)]»w 
i = l i = l I • ' ' '-I 

m 

and hence vartj ^ | | A | | B V | | * | | < oo. Moreover, since rj(t+) = rj(t) + A+A(t)x(t) 

and *K*~) = f|(<) —A" A($)a5(f), it follows immediately that tj G BVJR. Analogously 

we can show that £ G G^. • 

1.3.2. Proposition. Let A G B V j ' n and iefc its inverse matrix valued function 

A"*1 be defined and bounded on [0,1]. Then the distributional equalities 

A~xAx' = AA~xx' = x' 

hold for any x G G^. 

P r o o f . Let an arbitrary * G GJR be given. Since under our assumptions 

A"1 G B V £ n (cf. Sec. 1.1), by Proposition 1.3.1 the product A~lx' is defined for 

any x G GJj and A"1x' = C', where C € G£ is given by 

<(.)= f A-X(8)[dx(s)], i€[0,l] . 
Jo 

Furthermore, by Proposition 1.3.1 Aa;' = if' € G n , where 

*(*)= / ' A W I A B W ] , .€[0,1]. 
Jo 

By (1.3.1) and by the Substitution Theorem we have for any v> € 9T* 

(A-1Ax',V)=(A-1t',V) 

= jf * *»'(«) [d jf * A"1^) [d jf' A(<r)[d«(-)]|] 

= j\*(t)^dJ*A-1(B)A{»)[M»)}] 

= /V(0[<M0] = <*',¥>> 
Jo 
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and 

<AA-V,v>) = (AC',<p) = j[V(.)[<- J* A(s)[dJ\-1(tr)[dx(a)]]^ 

+ j\*(t)[dj\(s)A-l(s)[dx(s)]] 

= f\*(t)[dx(t)]=(x',<p). 
JO 

This implies that A"1 Ax1 = AA~lx' = x' holds. • 

2. LINEAR DISTRIBUTIONAL DIFFERENTIAL EQUATIONS OF THE FIRST ORDER 

In this section we will consider the system 

(2.1) A^Aox)'- A'2x = f 

and the corresponding homogeneous system 

(2.2) A i ( A 0 * ) ' - A ,
2 a j = 0, 

where the derivatives, products and equality are understood in the sense of distribu­
tions. 

2.1. Assumptions. Ao and Ai are n x n-matrix valued functions continuous on 
[0,1] and such that det (Ao(*)Ai(0) ^ 0. Furthermore, Ai € B V £ n , A 2 € B V £ n 

and / E G£. 

2.2. Definition. An n-vector valued function x(t) is called a solution to the 
equation (2.1) on the interval [0,1] if * € G# and Ai (A0x) — A 2 * — f is the zero 
n-vector distribution. 

Let us notice that under the assumptions 2.1 the products Ai(Aox) and A 2 x 
are well defined for any x G G£. Furthermore, Af l E B V ^ (cf. Sec.1.1) and hence 
according to Proposition 1.3.2 the equality 

Ar^i(Ao*)') = (Ao*)' 

holds for any x € G^. Consequently, the equation (2.1) may be rewritten as 

(2.3) ( A o * ) ' - A i l A ' t X - A i X f ' = Q. 
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By Proposition 1.3.1 we have A'2x = tj'w, where rj« € BVjj* is given by 

»7.(i)= / [dA2(s)]x(s), <€[0,1]. 
Jo 

For any x G GJj and any <p 6 0 n we have in virtue of the Substitution Theorem 

(A71 A2x, <p) = (A^W*, <fi) = j " ¥>*(<) [d, J* A;l(s)[dr,.(s)]] 

= JX<p'(t)ATl(t)[dr,m(t)}=jX<p*(t)ATl(t)\dtj* [dA2(s)]*(s)] 

= J' <p*(t)Ail(t)[dA2(t)]x(t) = J' <p*(t)\dt j f ArH-JldA-Wl'W] 

= [X <p*(t)[dUt)} 
JO or 

l~lf A' (2.4) Ar1(A'2r)=C;> 

where 
C.(0 = / Ar^OldAaWj.W = / [dB(s)]x(s), t G [0,1] 

Jo Jo 
and 

(2.5) B(t) = / A^(s)[dA2(s)],te [0,1]. 
Jo 

Obviously, B G BVn'n, A+B(0) = 0, A+B(l) = 0 and 

A+B(<) = Ai(i)A+A2(r) = Ax(t)A~A2(t) = A~B(t) for any t G (0,1), 

i.e. B 6 BV£ n . Hence C. G G". for any a; G G">. 

Similarly, given an arbitrary <p G -?", we have 

(Ar1/', v) = jf1 *»•(<) [a. J* Arl(«)[dfwi] 

= [x<p*(t)[dh(t)] = (h',<p), 

Jo 

where h € G^ is given by 

(2.6) Ht)= f*ll(s)[df(°)], .€[0,1]. 
JO 
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By (2.4) this implies that (2.3) holds if and only if 

(Ao-5-C.-M' = 0. 

i.e. if and only if there exists a c € Rn such that 

(2.7) A0(t)x(t) - / [dB(s)]x(s) - h(t) - c = 0 
Jo 

holds for a.e. t E [0,1]. Since the left-hand side of (2.7) belongs to G^ for any 
x E Gjj, this means that x E G^ is a solution to the equation (2.1) on [0,1] if and 
only if there is a c E Rn such that (2.7) is satisfied for all t E [0.1]. Introducing 
a new unknown function y(t) = Ao(t)x(t) we complete the proof of the following 
assertion. 

2.3. Proposition. Let the assumptions 2.1 be satisfied. An n-vector valued 
function x E G^ is a solution to the equation (2.1) on [0,1] if and only if the 
function y(t) = Ao(t)x(t) satisfies on [0,1] the integral equation 

(2.8) y(t) - y(Q) - /* [dA(-s)] y(s) = h(t) - fc(0), 
Jo 

where A E BVj , n is given by 

(2.9) A(t) = / [dB(s)\ A^(s) = / A ^ O O ^ W j A o \M), ,* € [0,1] 
JO JO 

and fc E G£ is given by (2.6). 

2.4. Corollary. An n-vector valued function x E G£ is a solution to the equation 
(2.2) on [0,1] if and only if the function y(t) = Ao(t)x(t) satisfies on [0,1] the integral 
equation 

(2.10) V(t)~v(0)- f[dA(s)]y(s) = 0 
JO 

wbere A E BV£ n is given by (2.9). 

2.5. Remark. Let us notice that for any solution * E G^ of the homogeneous 
equation (2.2) on [0,1] the function y(t) = Ao(t)x(t) has to be of bounded variation 
on [0,1]. 

393 



The integral equations (2.8) and (2.10) are generalized linear differential equa­
tions which are special cases of the generalized differential equations introduced by 
J.Kurzweil (cf. e.g. [Kul]). In the case A € B V n n and h G BVn the fundamental 
results for such equations may be found in [S-T-V], Chapter III. Corollary 2.4 enables 
us to transfer directly all the results known for the homogeneous generalized linear 
differential equation (2.10) to the equation (2.2). Let us summarize some of them in 
the next two propositions. 

2.6. Proposition. Let the assumptions 2.1 be satisfied and let t0 € [0,1] be 
given. Then for any c E Rn the equation (2.2) possesses a unique solution x £ GJj 
with x(t0) = c if and only if the relations 

(2.11) det (Ax(t)Ao(t) - A"A2(0) 7- 0 for each t <= (t0) 1], 

det (Ax(t)AQ(t) + A+ A2(t)) £ 0 for each t G [0, t0) 

hold. 
If the conditions (2.11) are satisfied, then there exists a unique n x n-matrix valued 

function U(t,s) defined on 

A= {(t ,«);<Kt O ^ t o or t0 ^s^t^ 1} 

and such that the relation 

(2.12) U(t,s) = I + Jt[dA(T)]U(r,S), 

with A(t) given by (2.9), holds for all (t, s) € A. 
Given an arbitrary c € Rn, the corresponding solution of the initial value problem 

(2.2), se(.o) = c is given by 

x(t) = Aol(t)U(t,t0)Ao(to)c, t € [0,1]. 

Proof follows from Theorem IH.1.4 and Theorem III.2.2 in [S-T-V] and from 
the relations 

I - A" A(t) = I - A"B(e)A- \t) = I - Ai\t)A~ A2(f)Ao *(*) 

= A-»(0 LMOAoW - A" A2(o] A„ \t), t € (0,1] 

and 

I + A+A(0 = Ar1(0[Ai(.)Ao(0 + A+Aa(0]Ao1(0, -€[0,1). 
D 
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2.7. Proposition. Let the assumptions 2.1 be satisfied. Let 

(2.13) det (Ai(t)Ao(<) + A+A2(<)) ? 0, for each < € [0,1), 

d e t ( A i ( O A 0 ( 0 - A - A 2 ( 0 ) # 0 for each *G (0,1]. 

Then the function U(t, s) given by Proposition 2.6 is defined and fulfils (2.12) for ail 

(t,s)e [0,1] x [0,1]. Furthermore, 

(2.14) U(t,r)U(r,s) = U(t,s) for all t,s,r€ [0,1] 

and 

(2.15) v(U) + var £7(0,.) + var 17(.,0) < oo, 

where v(U) stands for the Vitali two-dimensional variation ofU on [0,1] x [0,1], 

2.8. Remark. It follows from (2.14) that under the assumptions of Proposition 
2.7 the relation U(t, s)U(s, *) = I holds for all t, s G [0,1]. Hence 

U(s,t) = U"1(t,s) and d e t l 7 ( t , s ) ^ 0 for att t,s G [0,1]. 

Furthermore, the relation (2.15) implies that U is bounded on [0,1] x [0,1] and there 
exists an M < oo such that 

v(U) + varl7(*,.) + var£7(., s) ^ M for all t,se [0,1]. 

The next assertion follows immediately from [Tv2], Proposition 2.5 whose assump­
tion that the right-hand side of the nonhomogeneous generalized differential equation 
is left-continuous on (0,1) was not utilized in the proof. 

2.9. Theorem. Let the assumptions 2.1 and (2.11) be satisfied. Then the equa­

tion (2.1) possesses for any to G [0,1] and any c G Rn a unique solution x G G£ on 

[0,1] such that x(to) = c. Tiais solution is given by 

(2.16) x(t) = Aol(t)U(t,t0)Ao(to)c+A^(t) f A^(s)[df(s)]~ 
Jto 

- Ajl(t)£ [dsU(t,s)](J* A?(r)[df(r)])t t G [0,1], 

where U(t, s) is given by Proposition 2.6. 

2.10. Remark. A theorem on existence and uniqueness of a solution to the 
equation (2.1) with A0(t) = A\(t) = I has been established by J.Lig$za in [Li4] 
(cf. Theorem 3.4). 
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2.11. Corollary. Let tJte assumptions 2.1 and (2.11) be satisfied and Jet c € R" 
be given. Then the corresponding solution of the initial vaJue problem (2.1), x(0) = c 
is given by 

(2.17) »(0) = c, 

x(t) = A^l(t)U(t,0)Ao(O)c + A^(t) [ U(t,s)A^(s)[df(s)] 
Jo 

- A-1(0[l/(t,.+) - U(t,t-))A^(t)A-f(t) forte (0,1), 

*(l) = Ao1(l)lI(l,0)A0(0)c + A0-
1(l) / U(l,s)Ar1(s)[d/(s)], 

Jo 

where U(t, s) is given by Proposition 2.6 and U(t, s) is given by 

(2.18) U(.,0) = l/(t,0+), 

U(t,s) = \[U(t,s-) + U(t,s+)} for0<s<\, 

U(t,\) = U(t,\-). 

Proof follows from Theorem 2.9 by Proposition 1 . 2 . 1 . ' • 

2.12. Remark. Let us notice that the conditions (2.13) are satisfied if 

(2.19) A+A(0) = 0, A"A(l) = 0, 

[A+A(0]2 = [A- A(0]2 = 0 if t £ (0,1). 

In this case we moreover have for any t £ (0,1) 

[I + A+A(0] [I - A- A(0] = [I - A" A(0] [I + A+A(0] = I, 

i.e. 
[i + A + A t O r ^ l l - A - A t O ] 

and the assertion (iv) of Theorem 11.2.10 in [S-T-V] implies that 

17(1,1+) - 17(1,*-) = [1 + A + A ( 0 r ' - [I - A-A(t)]-1 

= - A " A(0 - A+A(0 = ~AA(0 

holds for each t £ (0,1). Consequently, if (2.19) is true, then the formula (2.17) 
reduces in the case t £ (0,1) to 

x(t) = Ao1(<W,0)Ao(Q)c+ AZl(t)J U(.,*)A:1(s)[d/(s)]+ 

+ Ao1(<)--A(OA-1(.)A-/(0. .€(0 ,1) . 
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3. LINEAR DISTRIBUTIONAL DIFFERENTIAL EQUATIONS OF HIGHER ORDER 

Let us consider the system 

(3.1) Px ( P o u ^ - 1 ) ) ' + P ^ " - 1 ) + . . . + ! £ - . ' + P/^ .t* = q', 

where the n x n-matrix valued functions P0 , Pi, . . . , Pm+\ and the n-vector valued 
function q fulfil the assumptions 3.1 and the solutions are defined by Definition 3.2. 

3.1. Assumptions. PQ and Pi are n x n-matrix valued functions defined and 
continuous on [0,1], det (P0(*)JM0) # 0 on [0,1]; P j , JF̂ , . . . , P m + 1 £ B V £ n and 

3.2. Definition. An n-vector valued function u is called a solution to the 
system (3.1) if n, u', . . . , uC™-1) £ G£ and P ^ J W " 1 - 1 ) ) ' + P^" 1 " 1 * + . . . + 
P^u1 + Pm+\u ~~ Q1 ls *he z e r o «-vector distribution. 

Let us denote x\ = u, »2 = **', • • •> «m = tî ™""1), 

x i \ 

- ( : ; ) • - • • ( : ; ) - ' - ( : ) • 
, / 

where I stands for the unit (m — l)n x (m — 1)n-matrix and the symbol 0 denotes 
the zero matrix of the type corresponding to its position. Furthermore, let us put 

( 0 U 0 . . . 0 

0 0 B . . . 0 
—-Pm-hl —Pm — -Pm-1 • • • —ft > 

where I and 0 stand for the unit n x n- matrix and the zero n x n-matrix, respectively. 
Then Ao, Ai , Ai and / fulfil the assumptions 2.1 and the system (3.1) is equiv­

alent to the system 

(3.2) Ai (A 0 a , ) ' -A' 2 x = / ' , 

with solutions defined by Definition 2.2. 
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The next assertion is now an immediate consequence of Theorem 2.9. 

3.3* Theorem. Let the assumptions 3.1 be satisfied and let 

det [Px(t)P0(t) - A-P2(.)] ^ 0 on (0,1]. 

Then for a_J co,ci,....c™ £ Rn tie system (3.1) possesses a unique solution u 
such that tt(0) = Co, tt'(0) = c i , . . . , tt(m~1)(0) = Cm-i. This solution is given by 

(3.4) u(t) = Ultl(t, 0)c0 + Ult2(t, 0)ci + . . . + Uhm(t, 0)cm-i 

~ll [d '^"(<>5)K^ *€[o,i], 

where I7,j(t,s), t, j = 1,2,.. .,m are the n x n-matrix valued functions such that 
the mn x mn-matrix valued function 

U{it8)=(Uij{t,s)) 

is the fundamental matrix solution corresponding to the system (3.2) by Proposition 
2.6. 

Furthermore, 

«(>>(.) = UjA(t, 0)c0 + Uji2(t, 0)Cl + . . . + ULm(t, 0)c-._i 

- j f [<Ul0.m(.,«)] ( j^-T'Wld^rjj), 
.€[0,1] , j = 2 , 3 , . . . , m - l 

and 

Po(t)u(m-1\t) = UmA(t,0)c0 + Umt2(t,0)c1 + ... + Umim(t,Q)cm-1 

+ J*Pr1(s)[dq(s)]-J^ [d.C7_,3(.._)] (jf'pf^rJld^r)]), 

<€[0,1]. 
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