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Summary. The paper deals with the linear differential equation
(0.1) (pv')' +q'u=f"

with distributional coefficients and solutions from the space of regulated functions. Our aim
is to get the basic existence and uniqueness results for the equation (0.1) and to generalize
the known results due to F. V. Atkinson [At], J. Ligeza [Li1]-[Li3], R. Pfaff ([Pf1], [Pf2]),
A. B. Mingarelli [Mi] as well as the results from the paper [Pe-Tv] concerning the equation
(0.1).

Keywords: regulated function, distribution, Perron-Stieltjes integral, Kurzweil integral,
generalized differential equation

AMS classification: 34A37, 46F99

1. PRELIMINARIES

Throughout the paper R denotes the space of real numbers, T > 0, [0,T] is the
closed interval 0 < t < T, (0,7) is the open interval 0 < ¢t < T, while [0,T) and
(0,7 are the corresponding half-open intervals.

Any function f:[0,7] — R which possesses finite limits f(t+) = T1'3{14_ f(n),
f(s=) = Tl_igl_f(T) for all t € [0,T) and s € (0,T] is said to be regulated on [0, T).
The space of functions regulated on [0, T is denoted by G, while Gg stands for the
set of all functions f € G such that

(1.1) f(0+) = £(0), f(t) = %[f(t—) + f(t+)] forall ¢t € (0,T),f(T-)=f(T).
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Functions fulfilling (1.1) are usually called regular on [0, T].

Given f € G,t€[0,T),s € (0,T) and r € (0,T), we put A* f(t) = f(t+) — f(2),
A7 f(s) = f(s) — f(s—) and Af(r) = f(r+) — f(r—).

BYV denotes the space of functions of bounded variation on [0,T]. The subspace
of BV consisting of the functions of bounded variation on [0, T'] and regular on [0, T
will be denoted by BVg.

As usual, L; stands for the space of measurable and Lebesgue integrable functions
on [0,T], Loo denotes the space of measurable and essentially bounded functions on
[0,T) and AC stands for the space of functions absolutely continuous on [0, T].

The integrals which occur in this paper are the Perron-Stieltjes ones. Let us
mention here some of their further properties often needed later on.

Let the functions f, g be regulated on [0,7]. If the integral fOT f(s)dg(s) has a
finite value, then by Theorem 1.3.4 from [Kul] the function

t
h:te[O,T]—)/ fdgeR
0

is regulated on [0, T]. Let us note that the integral fOT f(s)dg(s) has a finite value
if both the functions f,g are regulated on [0,T] and at least one of them has a
bounded variation on [0, T] (cf. [Tv1], Theorem 2.8). In this case the above mentioned
Theorem 1.3.4 from [Kul] implies that

h(t+) = h(t) + f(t)A*g(t) and h(s—) = h(s) — f(s)A™g(s)
holds for all t € [0,T) and s € (0,T]. Moreover, if g € BV, then h € BV as well.

1.1. Proposition (Substitution Theorem). Let f,g,h: [0,T] = R be such
that h is bounded on [0, T] and the integral fOT f(t)[dg (t)] exists. Then the integral

T AT
/0 h(t)£(®) [dg ()]

exists if and only if the integral

| ) woa | £ [dg o]

exists, and in this case the relation

["wofa [ s @1] = [ W0r0 050
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holds.
(For the proof see [Tv1], Theorem 2.19.)

1.2. Proposition (Integration-by-parts formula). If f € BV and g € G,
then both the integrals [, f(¢)[dg ()] and Jy [df (¢)]g(t) exist and

T T
/0 F®)ldg ()] + / (4 (®)]o(t) = F(T)g(T) - £(0)9(0)
- AYF(0)A*g(0) + Y [ATF()Ag() - At f(t)ATg(t)] + AT F(T)ATG(T).

o<t<T

(For the proof see [Tv1], Theorem 2.15.)

Further properties of the Perron-Stieltjes integral with respect to regulated func-
tions were described in [Tv1] and [Tv2]. (See also [STV] and [Pe-Tv].)

Distributions considered in this paper are linear continuous functionals on the
topological vector space 2 of functions ¢: R — R possessing for any j € NU {0} a
derivative () of the order j which is continuous on R and such that ©()(t) = 0 for
any t € R\ (0,7). The space 2 is endowed with the topology in which the sequence
Yk € 2 tends to g € 2 in 2 if and only if liin “(p,(j) - go((,j) || = 0 for all non negative
integers j. The space of distributions on [0, T] (i.e. the dual space to 9) is denoted
by 2*. Given a distribution f € 2* and a test function ¢ € 2, the value of the
functional f on g is denoted by (f, ). For any f € L, the relation

T
pED /0 F(t)e(t) dt

defines a distribution on [0, 7] which will be denoted by the same symbol f, i.e.

T
(f,9) =/0 ft)p(t)dt forall p € 2.

In this sense, the zero distribution 0 € 2* on [0, T] is identified with an arbitrary
measurable function vanishing a.e. on [0,T]. Obviously, if f € G, then f =0 € 2*
only if f(t—) = f(s+) = 0 for all t € (0,T] and all s € [0,T). Consequently, if
f € Gg, then f = 0 € 2* if and only if f(t) = 0 for all ¢t € [0,7]. This means
that for a given g € L; there may exist at most one function f € Ggr such that
f(t) = g(t) a.e. on [0,T].

Given two distributions f,g € 2*, f = g means that f—g = 0 € 2*. In particular,
for given functions f,g: [0,T] — R, f = g holds if and only if f(t) = g(t) a.e. on
[0,T]. Whenever a relation of the form f = g for distributions or functions f and
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g (written without arguments) occurs in the following text, it is understood as the
equality in the above sense.
Given an arbitrary f € 2*, f' denotes its distributional derivative, i.e.

f”‘PEQ—’(f',‘P)=‘(f,<P’)-

Analogously, for j € N,
190 €D (£9,0) = (-1)7 (£,09).

For absolutely continuous functions their distributional derivatives coincide with
their classical derivatives, of course. It is well-known that if f € 2*, then f' = 0 if
and only if f € L, and there exists co € R such that f(t) = ¢o a.e. on [0, T (cf. [Ha],
Sec. 3). It follows easily that if k is a non negative integer, then f(¥) = 0 ¢ 2* if
and only if there exist cg,c1,...,ck—1 € R such that

f@)=co+at+...+ck-1t*1 ae.on [0,T)

Let us notice that if v € Gg and v € Ggr are such that 4’ = v, then u € AC. In
fact, for

w(t) = u(0) + /0 () ds

we have (w — u)’ = 0,w(0) = u(0) and consequently (as w — u € Gr) w(t) = u(t)
on [0, 7).

1.3. Definition. Let f € G and g € BV be such that
(1.2) Atf()Atg(t) = AT f(t)Ag(t) forall te (0,T).

Then we define

T
(1.3) fa: o€ D (fla.0) = /0 a(t)e(t) [4f ()]
and

T
(1.4) fd o€ D (fd o) = /0 F()e(t) [dg ().

14. Remark. Let us notice that the condition (1.2) is satisfied e.g. in the
following cases:
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(i) both f and g are regular on [0, T},
(ii) at least one of the functions f or g is continuous on (0,T),
(iii) one of the functions f,g is left-continuous on (0,T), while the other is right-
continuous on (0,T).
If f € Ly and g € G, then (1.3) implies that the product fg is given by

T
f9: 0 € D> (fg,0) = /0 F(Og(t)e(t) dt,

i.e. the product of the functions f and g is in such a case represented by the function
t €[0,T] = f(t)g().

1.5. Lemma. Let f € G and g € BV satisfy (1.2). Then

(15) ro=([ 4 (9)] g(s))'
and
(16) ¢ = ([ 1o f<s>)'-

Proof. In virtue of Propositions 1.1 and 1.2 we have for any ¢ € 2

(o0 = [ ! [a [[renae]ee=- [ ' ([ wrense)eo,

i.e. (1.5) is true. The formula (1.6) could be verified analogously. O

1.6. Remark. It follows from Definition 1.3 and from the Integration-by-parts
Theorem (cf. Proposition 1.2) that for any couple of functions f € G,g € BV
fulfilling the condition (1.2) the relation

(f9) =fd' +f'g

holds.

1.7. Remark. Itiseasy toseethat for 7 € (0,T), f(t) =0fort < 7, f(7) = 1,
f(@t) =1fort > 7 and g = f’, we obtain from Definition 1.3 fg = %g, i.e. Definition
1.3 seems not to be contradictory to the known definitions of the product of measures
and regulated functions based on the sequential approach (cf. [Li5]).
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2. HOMOGENEOUS EQUATION

Let us consider the equation

(2.1) (pu')’ + qu=0,
where
(2.2) P, €BVR, p(t)#0on [0,T] and p~' € BV.

2.1. Definition. A function u: [0,7] — R is called a solution to the equation
(2.1) on the interval [0,T) if u € Gr and (pu’)’ + ¢'u is the zero distribution on
[0,7].

2.2. Proposition. A function u € Gg is a solution to the equation (2.1) on
[0,T] if and only if u € AC,u’' € Loo and there is v € BVR such that the vector
(u,v) is a solution on [0,T] to the system of integral equations

(2.3) u(t) = u(0) + /t p 1(s)u(s)ds, te€l0,T]
0
(2.4) o(t) = v(0) - /0 [da(s)u(s), te[0,T].

Proof. a) Let u € Gr and v € BVR fulfil (2.3) and (2.4) on [0,T). Then
obviously ' = p~!v € L. By Lemma 1.5 we have v' = —q'u. Moreover, making
use of the Substitution Theorem (cf. Proposition 1.1) and of Lemma 1.5 we obtain

pul = (/:p(s)[d ["p"l(r)v(f)dr])' - (/Otv(r)dr)' =

() +du=1v"+qu=0.

Hence

b) Let u € Gp be a solution to (2.1) on [0,T]. Then

(‘/;\P(S) [du(s)] + /ot (/o’ [dg (7)) u(-r)) ds)" - 0.

Hence there are cp,c; € R such that

e [roEns [ ([ aiun)ds - at=o0
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holds for a.e. t € [0,T). The left-hand side of (2.5) being a regulated function which
is regular on [0, T, the relation (2.5) is true for a.e. ¢t € [0, T] if and only if it is true
for each t € [0, T]. In particular, inserting t = 0 we get co = 0. Moreover,

[rotwer =at- [ ([ aoiue)as

= /0 t (cl— /o ) [dq(‘r)]u(r)) ds forany t€[0,T].

Let us denote .
v(t)=a —/ [dg (s)]u(s), for te€[0,T].
0

Then v € BVR, v(0) = ¢; and the couple (u,v) fulfils the relations (2.4) and

(2.6) /0 * p(s) [du (5)] = /0 “w(s)ds te[0,T].
In particular,

/0 " p(s) [du (5)] € AC.
Furthermore, differentiating the relation (2.6) we get
(2.7) pu' =v.

Making use of the Substitution Theorem (cf. Proposition 1.1) and of Lemma 1.5 we
obtain from (2.7) that

plv=p7H(pu) =p7! ( / tp(S) [du (s)] )’

=([rofa[ (r){du(rn])
= ([ wen) =v

ie.

(2.8) v =p v

Consequently v’ = p~1v € Loo. It follows that u € AC and the relation (2.8) is true
if and only if the relation (2.3) is true. This completes the proof of the proposition.
O
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23. Remark. It follows from the proof of Proposition 2.2 that for any solution
u of the equation (2.1) on [0, T'] there exists a function w € BV such that u'(t) = w(t)
a.e. on [0,T] and p(t)w(t) = v(t) on [0, T).

The system (2.3), (2.4) may be rewritten in the vector form
(29) =(t) = 2(0) + [ [4A()]a(s),
0
where z(t) = (Zg; ) and

0 fg p~1(s)ds
q(t) 0
Obviously, A(t) is a 2 x 2-matrix valued function of bounded variation on [0, T].

The system (2.9) is a generalized linear differential equation considered e.g. in [Schw3]
(cf. also [STV] or [Schw1]). Under our assumptions A(0+) = A(0), A(T-) = A(T),

(2.10) A(t) = (_ ) , teo,T].

(2.11) det [I — A~ A(t)] = det ( A_lq(t) (1)) =1 for t€ (0,7

and

1 0

(2.12) det [I + At A(t)] = det (_A+q(t) 1

) =1 for t€[0,T).

Hence the following assertion is an immediate consequence of Proposition 2.1 and
Theorem 6.5 from [Schw3] (cf. also [STV],Theorem III.1.4).

2.4. Theorem. Let us assume (2.2). Then for any uo,vo € R and any t, € [0, T,
there exists a unique solution u € AC of the equation (2.1) on [0,T] and a unique
function v € BVR such that p(t)u'(t) = v(t) a.e. on [0, T, u(to) = uo and v(to) = vo.

2.5. Remark. It follows easily from the basic properties of the Perron-Stieltjes
integral that the relations

Aty(0) =A~v(T)=0  Av(t) = —Aq(t)u(t), te(0,T)

hold for any couple of functions u € AC,v € BV satisfying the system (2.3), (2.4)
on [0,T] (cf. e.g. [STV], Proposition III.1.6).

2.6. Remark. Theorem 2.4 could be obtained from Proposition 2.2 by making
use of a somewhat modified version of Theorem 1.3.1 from [Mi], as well.

422



2.7. Corollary. There exists a unique system of functions {u;, vy, u2,v2} pos-
sessing the following properties:

(2.13) u1,uz € AC, u},uj € Loy, v1,v2 € BVR,
(2.14) vi+qui=0 and puj=v; (i=1,2),
and

(2.15) u1(0) =1, v1(0) =0, uz(0) =0, v(0) = 1.

2.8. Definition. The system {u;,v;,uz,v2} of functions possessing the prop-
erties (2.13)—(2.15) given by Corollary 2.7 will be called the fundamental system of
solutions to (2.1) on [0,T).

2.9. Corollary. Let us assume (2.2) and let {u,v1,u2,v2} be the fundamental
system of solutions to (2.1) on [0,T). Then a function u € Gg is a solution to
the equation (2.1) on [0,T] if and only if there are a and B € R such that u(t) =
auy (t) + Buz(t) on [0,T).

2.10. Proposition. Let {u1,v1,us,v2} be the fundamental system of solutions
to (2.1) on [0,T). Then the relation

(2.16) u1 ()v2(t) — ua(t)ui(t) = 1

holds for all t € [0,T).

Proof. In virtue of (2.14) we have

(u1v2 — ugvy)' = v (puy) — ug(pu) — u1(q'uz) — ua(q'ur).

Since p € BVR and by (2.13) u},u5 € Lo, the products uj(puy) and uj(pu)) are
functions essentially bounded on [0,T] and they are given for a.e. t € [0,T] by

(u1(pu3)) () = wy ()p(t)ua(t) and  (uz(pui)) (t) = ua(t)p(t)uy(t),
respectively. Furthermore, by Definition 1.3 and Proposition 1.5 we have
@) = [Maa) = ( [ wehaelida 1)

and
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wgw) = [ g ()]s (3))' -(/ wn(s)us(s)ldg (s)l)'-

Thus
(wrv2 — ugvy)' =0,

i.e. there exists a ¢ € R such that
(2.17) w1 (t)v2(t) — uz(t)ui(t) = ¢
holds for a.e. t € [0,T]. As the left-hand side of the relation (2.17) is a regular

function of bounded variation on [0, T , it follows that (2.17) holds for each ¢ € [0, T].
Inserting ¢t = 0 we obtain ¢ = 1, i.e. the relation (2.16) is true. a

3. NONHOMOGENEOUS EQUATION

This section is devoted to the nonhomogeneous equation
(3.1) (pu')' +q'u=f",
where p and g fulfil the assumptions (2.2) and
(3.2) f € Gr.

3.1. Definition. A function u: [0,T] — R is said to be a solution to the equation
(3.1) on the interval [0,T] if u € Gr and (pu')’ + ¢'u — f” is the zero distribution
on [0,T]. ’

3.2. Remark. Let ustry similarly as in the classical case to find a particular
solution y to the equation (3.1) in the form

(33) y=au + ﬂUQ,
where u; and u; € AC are functions from the fundamental system of solutions to
the corresponding homogeneous equation (pu')’ +¢'u = 0 given by Definition 2.8 and

a and B € Gg are such that

(3.4) o'u; + f'ug =0.
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By the Substitution Theorem (cf. Proposition 1.1) and by Lemma 1.5 we have
t t ’
o = plaus +03) =p( [ ats) ldur 0} + [ B0)[dua 41

= (s[4 [ a0 (sn])'+ ([roe [ a0 [dm(s)l])'

_ ( /O " pls)as) [dus (s)] + /0 " p()B(s) [duz (3)1)'

_ (/Ota(s)[d /:p(S) (s (s)]})’+ (/otﬂ(s)[d /o‘p(S) (dus (8)]]),

= a(puy) + B(puz) = avi + Pz

and

¢y = ¢'(aus + Bus) = ( [ @l atpuste) + ﬂ(s)Uz(S)))

= ([[aw[a [waenuem])
(] tﬂ(S)[d X [dQ(T)]Uz(T)DI

= a(g'u1) + B(q'u2).
Hence by (2.14)

(y') + d'y = a(v; + ¢'w) + B(vy + ¢'uz) + a'vy + vy

N
= a'vy + f'vg,

i.e. the function y of the form (3.3) is a solution to (3.1) on [0, T] if and only if the
couple a, 3 € Gg satisfies the relations (3.4) and

(3.5) a'vy + f'vy = f.
Making use of Proposition 2.10 we could show that (3.4) and (3.5) are satisfied if
(36) a = —f”‘UQ and ,3' = f”ul.

If we had p~!v; and p~'v, € BVg or f were continuous on [0, T, then the products
flul = f'(p~'v1) and f'ub = f'(p~'v,) would be defined by

i = ([ @@ om) and s = ( [ 1es (s)]p—*(sm(s))',
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respectively. Then we would have

Fur = (Fu) - fu = (f’ux - [[1arenp o (s))
and

t
iz = (Fug) — fluy = (f’w - [ s (s)]p—l(s)vlw)

This means that we could put

(3.75 a= —f’u2+/o [df (s)] p—l(s)vz(s)
and
(38) B= fu- /0 [df ()] (s)ur (s)

and after inserting (3.7) and (3.8) into (3.3) we would get the following formula for
a particular solution y of the given equation (3.1):

(39)  y(t)= / [d4f ()] 572(5) (va(s)ur (t) — va (s)ua(t) om [0,T]

The distributions « and 3 given respectively by (3.7) and (3.8) are in general not
regular functions on [0, T, of course. Nevertheless it may be proved that under our
assumptions the formula (3.9) provides a solution to (3.1) on [0, T'] (without assuming
that p~'v; and p~lv; € BVR or f is continuous on [0, T}]).

3.3. Theorem. Let us assume (2.2) and (3.2). A function u € G is a solution
to the equation (3.1) on [0, T] if and only if there are o and 3 € R such that

(3.10) u(t) = auy(t) + Bual(t)
t
+ [ @050 a0 ~wa(s)uae) on (0.7,
whefe {u1,u2,v1,v2} is the fundamental system of solutions to the corresponding
homogeneous equation (pu’)’ + ¢'u = 0 on [0, T given by Definition 2.8.
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Proof. a) Let the function u be given by (3.10). Then obviously u € Ggr
Furthermore,

u' = auj + fuy

(/ [df ()]~ (s)va(s) ) u — (/ [df ()] p~2(s) vl(s)) us
( /o [df ()] P (s)va( s))u1 ( /0 [df (s))p~(s) vl(s))u2

In virtue of the Substitution Theorem (cf. Proposition 1.1) and of Lemma 1.5 we
have

p (( / [af ()] (s ©) 'ul)
=5( [ la [ asens e r)]ul(s)) (

[df ()] 7 ()ua(e)ua o) )

( / po)|a [ lar e l(rm(r)ul(r)]) ( / [af <s>1vz(s>u1(s>)

Analogously

. (( [ 1ar @~ o <s))'u2) = ([ wson m(s)uz(s))'.

Obviously,
o((f 47 (o) p o)) ) - » ([ 47 (o) p e (e )us )

=( [ wrensome) e - ([ 1@l 6m) o)

=(/0t [df (s)]P‘l(s)vz(s))vl - (/Ot [aF (3)117_1(8)01(8))'02.

Since by Proposition 2.10

/0 [d7 ()] (va()un(s) — va(s)ua(s)) = £(8) — £(0),

we have

(3.11) pu' = (a+ / [df(S)]p'l(S)vz(S))vl

+ (0= [0 O 0+ 1
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and consequently, taking into account the definition of the functions u;, uz, v;, vy
we obtain

('Y +q'u = (a + [lar (S)IP'I(S)vz(S)) (0 + q'w)
+ (ﬂ - [er e p-‘(s)vl(s>) (0 + q'ua)
+ ( [ 147 @157 (n(shon(s) - m(s)w(s))) . f

_— f”-
b) Let u and w be solutions to (3.1) on [0,T] and let y = u—w. Then (py')’ +4¢'y =0
and the proof of this theorem is completed by making use of Corollary 2.9. O

Similarly as the corresponding homogeneous equation (pu')’ + ¢'u = 0 treated in
the previous section the present equation can be rewritten as a system of two linear
generalized differential equations, as well.

3.4. Proposition. A function u € Gg is a solution to the equation (3.1) on
[0,T] if and only if there is a function v € BVR such that

(312)  u(t) - u(0) - / P} (s)u(s)ds = / p~Ms)[df (5)], te[0,T],

and

(3.13)  v(t) - v(0) + /0 [dg(H]u(s) =0 te [0,7]

hold. For a given solution u of the equation (3.1) on [0, T] this function v is deter-
mined uniquely.

Proof. a)Letu € Ggr be a solution to (3.1) on [0,T]. Then by Lemma 1.5 we

have ) t ’ ”
(.-/0 p(s) [du (s)] +/0 (/0 [dg (m)] 'U.(T)) ds ._f) =0,

i.e. there are cg,c; € R such that

(3.14) /(; p(s) [du (s)] +/0‘ (/08 [dg (7)] u(r)) ds —f(t)—co—c1it=0 on [0,T].

(The left-hand side of (3.14) being regular on [0, T}, it equals 0 for a:.e. t € [0,7]if
and only if it equals 0 for all ¢ € [0,T1].)
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In particular, we have co = —f(0) and

t t
619 [ o) -10+f0= [ veds, tepT
where
t
(3.16) o(t) = c1 — / [de()u(s), te€0,T].
0
Obviously, v(0) = ¢; and hence the equations (3.16) and (3.13) coincide. Moreover,

v € BVR and v given by (3.16) is the only function in BVR such that (3.15) holds.
Differentiating (3.15) we obtain

(3.17) pu' —v=f.

By (3.15) the function
t
r®) = [ o) du (o) - 10t 0]
is absolutely continuous on [0,7"] and according to Lemma 1.5 we have r' = pu' — f'.

Thus the product p~1r' = p~!(pu’ — f') is by Definition 1.3 well defined. Making
use of the Substitution Theorem (cf. Proposition 1.1) and of Lemma 1.5 we obtain

= ([rewen) = ([ men- [ mowe)
v~ ([rrouse).,

wherefrom by (3.17) the relation

(3.18) w-pto=( | o) [af (sn)'

follows. By Lemma 1.5 the relation (3.18) holds if and only if there is a d € R such
that

t t
(3.19) u(t) - / pH(s)v(s)ds — / P (9)[df ()l =d on [0,T].
0 0
(The left-hand side of (3.19) is regular on [0,T].) Obviously d = u(0) and hence the
equations (3.19) and (3.12) coincide. We have shown that for any solution u € Ggr
of (3.1) on [0, T] there is a unique v € BVRg such that (3.12) and (3.13) hold.

429



b) On the other hand, if u € Gr and v € BV fulfil (3.12) and (3.13), then by
Lemma 1.5 the relations (3.18) and

(3.20) v +qu=0

are true. It is easy to see that p(p~'v) = v. Furthermore, by the Substitution
Theorem (cf. Proposition 1.1) and Lemma 1.5

P~ f") =p(/otp—1(s) [df(s)])l = (/otp(s)[d /Osp‘l(r) [df(f)]])l
- (/Ot[df(s>1)'=f’-

Consequently, the relations (3.18) and (3.20) yield
(pu) +qu=(p(p~'v) +p(p7'f)) — '
=v'+f"-v'=f”

i.e. u is a solution to (3.1) on [0, T]. O

3.5. Remark. Results analogous to Theorem 3.3 and Proposition 3.4 for a
system similar to (3.12), (3.13) and corresponding to the case that f' € BV and f’
is right-continuous on (0, T'] were given in [Mi], Theorem 1.3.4.

The system (3.12), (3.13) may be rewritten in the vector form

2(t) - 2(0) - / [dA(s)] z(s) = g(t) - 9(0), ¢ € [0,T],
where x(t) = (u(t) ),

u(t)
0= (F7 WO o

and the 2 x 2-matrix valued function A(t) is given by (2.10), i.e.
0 fopis)ds
q(t) 0

A has a bounded variation on [0, T}, det [I — A~ A(t)] = 1 (cf. (2.11)) and g is regu-
lated and regular on [0,T]. Moreover, A and g are regular on [0,7]. Consequently,
Proposition 2.5 from [Tv2] (whose assumption on the left-continuity of A(t) and

A(t)=(_ ), tel0,T).
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f(t) on (0,T] was not exploited in the proof) ensures the existence and uniqueness
of solutions of the corresponding initial value problems. This enables us to prove the
following assertion.

3.6. Theorem. Let us assume (2.2) and (3.2) and let {uy,uz,v1,v2} be the
fundamental system of solutions to the corresponding homogeneous equation (pu')’ +
¢'uv = 0 on [0, T] given by Definition 2.8. Then for any ug,vo € R there exists a unique
solution u € Gr of (3.1) on [0,T] and a unique function v € BVR such that (3.15),
u(0) = up and v(0) = vy hold. This solution u(t) is given by (3.10), where a = ug
and 8 = vg. Furthermore,

(3.21)

o(t) = (uo 4 /0 [af (s)]p-l(s)vz(s)) n(t)
+(vo- / [df(s)]P—l(S)vl(S))vz(t)—A_f(t)P_l(t)A—Q(t), te(0,T)

Proof. It remains to show that in the formula (3.10) for u(t) we may put
a = ug and B = u; and that the formula (3.21) is true, By (2.12) we have u;(0) =1
and u3(0) = 0. Hence (3.10) implies that u(0) = a = ug. Furthermore, by (3.11)
and (3.17)

(322) o(t) = wi()or(t) + wa(t)va(t) ae. on [0,T),
where

(329 wn(®) =+ [ W @I 6u(s) t€0T]
and

(329 w®) =6~ [ WO Oue, teb,T)

It is easy to see that under our assumptions w; and w,; € Ggr and hence (cf. also
(2.12))

v(0) = v(0+) = w1 (0)v1(0) + w2(0)v2(0) = Bv2(0) = B,

i.e. we may put 3 = v in (3.24). Furthermore, for a given t € (0,T) we have by
(3.22)-(3.24)

v(t-) = wi(t)vr(t=) + we(t)vz(t-) — A7 f(E)p™ (t) (w1 (=) — va(t-)).
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Analogously

w(t+) = wy (v (t+) + w2 (t)vz(t+)
+ At f(t)p 1 (t) (vi(t+) — v2(t+)) for any t € (0,T).

Since A~ f(t) = At f(t) on (0,T) (f is regular on [0,T)), it follows that
o(t) = 5 [0(=) + v(t+)] = wi (B0r () + wa(E)oal)
+ %A" F(t)p~1(t) (va(t)Avy (t) — va(t)Avy(t)) for any t € (0,T).
Furtfxermore, we have
Avy () = —ui(t)Ag(t) and  Awvp(t) = —ua(t)Aq(t)
on (0,T) (cf. Remark 2.5) and
up (t)v2(t) — uz(t)vi(t) =1
on [0, T] (cf. Proposition 2.10). Hence the relation
(t) = wi(B)un (1) + walt)oa(t) — 38~ FEp~ (DA)
and consequently also the formula (3.21) hold for any t € (0,T). (Let us recall that
the regularity of q implies that Aq(t) = 2A~¢(t) holds for all ¢t € (0,T").)
Obviously, v(T') = w1 (T)v1(T) + wa(T')v2(T'), which completes the proof. O
4. EXAMPLE

In this section we will consider the boundary value problem

N
(4.1) . v +du= Zg,-é’,j,
i=1
(4.2) u(0) = uo, u(T) = ur,

where0 <71 <72 <...<7n <T,ug € R, ur € R and functions g; (j = 1,2,...,N)
continuously differentiable on [0, T] are given, é,, = k., ( =1,2,...,N) and h;,
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j = 1,2,...,N stand for the regular Heaviside functions with jumps at ¢t =
(hr;(t) = 0 for t < 7j, hr;(t) = L for t = 7; and hr(t) =1for t > 7;). A special
case of the problem (4.1), (4.2) (with ¢' = b, where b € Lo, is piecewise continuous
and N = 1) was treated in [Ho), where a procedure of its numerical solution was
suggested.

Let us put

(43) f(t)=i‘( / 95(5) [dh, (5)] - / ([ si@ tannton ) as)

=1
[ 4

for ¢t € [0,1]. It is easy to verify that

ﬁ:: (058 | " g1(s) [dh, (4] )

and

N
=Y g;0,
j=1
It means that the equation (4.2) is a special case of the equation (3.1) treated in the
previous section.

Let {u1,u2,v1,v2} be the fundamental system of solutions to the corresponding
homogeneous equation u"” + ¢'u = 0 on [0, T'] defined by Definition 2.8. By Theorem
3.6, for any ug,v0 € R there exists a unique solution u € Gr, v € BVR of the
system

(4.4) v +q'u=0,
ul -0 — fl
on [0,T] such that u(0) = up and v(0) = vo hold. (The function u(t) is then a

solution to the equation (4.1), of course.) Inserting (4.3) into (3.10) and (3.21),
where p(t) = 1 on [0, T, we obtain that this solution is given for ¢ € [0, T] by

(4.5) u(t) = (uo + a(t))ur(t) + (vo — b(t))uz(t) on [0,T]

and

(4.6) v(t) = (uo + a(t))vi(t) + (vo — b(t))va(t) +(t) on [0,T]
where
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N
a(t) = Y hey (t)(95(75)v2(75) + g (75)ua(73)),

=1
. N
b(t) = Y hey (8)(g5(r5)01(75) + g} (73)ua (7))
ji=1
and
N
(1) = Y (hey (0)95(75) = A™hey (B)95()A™(2)) -
j=1
In particular, it is easy to see that Au(t) = 0 for ¢ ¢ {n,72,...,7n}. Furthermore,

it follows from (4.4) and (4.5) that Au(r) = gi(7x) for k =1,2,..., N. Moreover,
we have A*v(0) = A~v(T) = 0 and Av(t) = —Aq(t)u(t) for t € (0,T).
Obviously, the function (4.5) fulfils (4.1) if and only if vo € R is such that

ug(T)vo = ur — (uo + a(T))ur(T) + b(T)ua(T).

Hence under the assumption that uz(T) # 0 for any up € R and any ur € R the
function u(t) given on [0,T] by

(4.7) u(t)= (uo+a(t))us(?)
+ (™)™ (ur = (uo +a(T))w(T)) + (B(T) - b(t)) )ua(t)

is the unique solution of the boundary value problem (4.1), (4.2).

The formula (4.7) enables us to get respectively precise or approximate values
of the solution u(t) of the boundary value problem (4.1), (4.2) once the precise or
approximate values u;(t), uz(t), t € [0,T] and v(7;), j = 1,2,..., N are available.
For example, the following numerical values and the graph of the solution u(t) were
obtained from the formula (4.7) by means of the software system MATHEMATICA in
thecase N =1,y = ur =0, 1-1—450 T = 600, g1(t) = Mp = 108, ¢'(t) =
103 for ¢ < 300, ¢'(t) = 57571073 for t > 300, considered in [Ho]:

2. 85><2 1

t u(t) | ¢ u (1)
0 0 350 |- 706107 .543
50 |-119379 .035 | 449 |-830379 .019
100 |-236269 .111 | 450 |-331468 .874
150 |-348233 .159 | 451 | 167442 .655
200 |-452936 .817 | 500 | 113340 .584
250 |-548197 .095 | 525| 85265 .310
300 |-632027 .890 | 550 | 56967 .483
400 |-772819 .890 | 600 -5 .82 x 10711
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u(t)

\
100 200 300 400 500 600 ¢
~200000
-400000
-600000
-800000

Let us recall that according to [Ho] the solution u(t) of the boundary value problem
(4.1), (4.2) with ¢'(¢) = E‘_(W’ uo = ur = 0 and f"” = Mypd. describes the binding
moment in the beam of the length T subjected to the pressure (or pull) P at the
ends t =0 and ¢t = T and to the revolution moment My at the point ¢t = 7.
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