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LINEAR INTEGRAL EQUATIONS IN THE SPACE 

OF REGULATED FUNCTIONS 

MILAN TVRDÝ, Praha 

(Received March 27, 1997) 

Abstract. In this paper we investigate systems of linear integral equations in the space 
G£ of n-vector valued functions which are regulated on the closed interval [0,1] (i.e. such 
that can have only discontinuities of the first kind in [0,1]) and left-continuous in the 
corresponding open interval (0,1). In particular, we are interested in systems of the form 

/ : x(t) - A(t)x(0) - J B(t, s)[dx(s)] = f(t), 

where / 6 GJ, the columns of the n x n-matrix valued function A belong to G£, the 
entries of B(t,.) have a bounded variation on [0,1] for any t 6 [0,1] and the mapping 
t G [0,1] -¥ B(t,.) is regulated on [0,1] and left-continuous on (0,1) as the mapping with 
values in the space of n x n-matrix valued functions of bounded variation on [0,1]. The 
integral stands for the Perron-Stieltjes one treated as the special case of the Kurzweil-
Henstock integral. 

In particular, we prove basic existence and uniqueness results for the given equation and 
obtain the explicit form of its adjoint equation. A special attention is paid to the Volterra 
(causal) type case. It is shown that in that case the given equation possesses a unique 
solution for any right-hand side from G£, and its representation by means of resolvent 
operators is given. 

The results presented cover e.g. the results known for systems of linear generalized dif­
ferential equations 

x(t) - x(0) - J [dA(s)]x(s) = f(t) - f(0) 

as well as systems of Stieltjes integral equations 

x(t)- [ [dsK(t,s)]x(s)=g(t) or x(t) - [ [dsK(t, s)]x(s) = g(t). 
Jo Jo 

Keywords: regulated function, Fredholm-Stieltjes integral equation, Volterra-Stieltjes 
integral equation, compact operator, Perron-Stieltjes integral, Kurzweil integral 
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The paper is devoted to linear operator equations of the form 

(0.1) x-3fx = f, 

where Jf is a linear compact operator on the space G£ of column n-vector valued 

functions x: [0,1] —> Rn which are regulated on [0,1] and left-continuous on (0,1), 

and / e G£ is given. Due to Schwabik (cf. [Sch4, Theorem 5] it is known that 

.if is a linear compact operator on GJ if and only if there are n x n-matrix valued 

functions A(t) and B(t, s) respectively defined on [0,1] and [0,1] x [0,1] and such 

that 

/ : (0.2) (&x)(t) = A(t)x(0) + I B(t,s)d[x(s)] for x e G'[ and * e [0,1], 
Jo 

while the columns of A belong to G£ (A e G 2 x n ) , the entries of B(t,.) have 

a bounded variation on [0,1] for any t e [0,1] (B(t,.) e B V n x n ) and the mapping 

MB : t € [0,1] -> mB(t) = B(t,.) e B V n x n 

is regulated on [0,1] and left-continuous on (0,1) (i.e. B e J f " " , see Definitions 2.1 

and 2.2). The integral on the right-hand side of (0.2) stands for the Perron-Stieltjes 

one treated as the special case of the Kurzweil-Henstock integral. 

In Sections 3 and 4 we prove basic existence and uniqueness results for the equation 

(0.1) and Obtain the explicit form of its adjoint equation. An important tool for the 

proofs of our main results is in particular the theorem on the interchange of the 

integration order for Stieltjes type integrals (i.e. the Bray Theorem). Its proof for 

the Perron-Stieltjes integral is given in Sec. 2 (cf. Theorem 2.13). 

Special attention (cf. Sec. 5) is paid to the causal case, i.e. to the Volterra-Stieltjes 

integral equations of the form 

x(t) - A(t)x(0) - [ B(t, s) d[x(s)] = / ( . ) , t e [0,1], 
Jo 

where A(0) = 0. 

Similar problems in the space of regulated functions were treated e.g. by Ch. 

S. Honig [Hoi], [H62], L. Fichmann [Fi] and L. Barbanti [Ba], where the interior 

(Dushnik) integral was used. 
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1. PRELIMINARIES 

1.1. N o t a t i o n . Throughout the paper Rpx« denotes the space of real p x q-

matrices, Rn = R n x l stands for the space of real column n-vectors, R l x l = R1 = R. 

Given a p x (/-matrix M, its elements are denoted by mtj, i.e. M = (nnj)i=l 2 , 

\M\ = max V | m i , j | and MT = (mjA)j=1 2 
i-1,2,...,, . = i i=l,'2,'.'.'.','P 

In particular, 

1*1 = ^ 1 ^ 1 for i e R " , 
1=1 

yT = {yi,V2,-..,yn) and \y\ = max |ty| for j £ R " . 
i=l »> 

Furthermore, for a given matrix M e Rpxi!, its columns are denoted by mbl and 

we write M = (m'^)j=i,2,...,,- Obviously, we have 

| A f | = max lmW| for all A / e Rpx". 
j = l , 2 , . . . , 9 

The symbols / and 0 stand respectively for the identity and the zero matrix of the 

proper type. Given an n x ?i-matrix M, det M denotes its determinant. 

If - c o < a < b < co, then [a,b] and (a,b) denote the corresponding closed and 

open intervals, respectively. Furthermore, [a, b) and (a, b] are the corresponding half-

open intervals. The sets d = {t0,h,... ,tm) of points in the closed interval [a,b] such 

that a = to <ti < ... < /„, = b are called divisions of [a,b]. The set of all divisions 

of the interval [a, b] is denoted by V(a, b). 

Given M C R, XM denotes its characteristic function. 

1.2. R e g u l a t e d funct ions . Any function / : [a,b] -> R which possesses finite 

limits 

/ ( / + ) = T lnn + / ( r ) and f{s-) = r_m_ f(r) 

for all t e [a, b) and s e (a, b] is said to be regulated on [a, b]. A p x ^-matrix valued 

function F: [a, b] -> Rpx'7 is said to be regulated on [a, b] if all its components / ; j (i = 

1,2, . . . ,p, j = 1,2, . . . ,9) are regulated on [a, 6], The linear space of p x (/-matrix 

valued functions regulated on [a, b] is denoted by Gp x , J(a, 6), Gp
L

xq(a,b) denotes the 

space of all functions from Gpx<i(a,b) which are left-continuous on (a,b). It is easy 
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to see that' any function regulated on [a, b] is bounded on [a, b]. For F £ Gpxq(a, b) 

we put 

\\F\\ = sup \F(t)\. 
te[a,b) 

It is well known that both Gpx''(a,b) and Gp
L

Xq(a,b) are Banach spaces with respect 

to this norm (cf. [Hoi, Theorem 1.3.6]). Given F 6 G' , x ' '(o, b), t e [a, b) and s £ (o, b], 

we put 

A+F(t)=F(t+)-F(t) and A~F(s) = f (s) - f (s-) . 

A function F e G J , X ' is said to be a /mite siep function on [0,1], if there exist 

a division d = {to,<i, • • • , 'm} of the interval [0,1] and real numbers q j and d£j, 

r = 1 ,2 . . . ,m , i = 1 ,2 , . . . ,p , j = l , 2 , . . . , o , such that 

/*_(*) = E 4;V,i] W + £ <]x(t,.,i](*) on [0,1] 
r=0 r=0 

for any component / ; j , i = 1,2,. . . ,p, j = 1,2,... ,q, of the function E. It is well-

known (cf. [Hoi, Theorem 1.3.1]) that F e Gpxq if and only if there is a sequence 

{ E k } ^ ! of finite step functions on [0,1] such that 

Um \\Fk - E|| = 0. 

1.3. Func t ions of b o u n d e d var ia t ion . For a given function E: [a, b] —> Rpxq 

and a given division d = {to, h, •.. , t m } of [a, 6] (d e X>(a, 6)) we define 

s(f,_)=Eif(ti)-f(tJ_1)|. 
3 = 1 

var^F = sup S(F,d) < oo, 
deX>(a,6) 

we say that the function E has a bounded variation var£ E on the interval [a,b]. 

BV p x , (a ,6) denotes the Banach space of p x g-matrix valued functions of bounded 

variation on [a, b] equipped with the norm 

F e BVpxq(a,b) -4 HEIIev = |E(o) | + varj F. 

For a given E € BVpxq(a,b), we define 

vF(t) = var|,E for t € [ o , 6 ] . 



It is well known (cf. [Hi, II.4.7, II.6.1 and the introduction to Section II.7]) that the 

relations 

(1.1) A+vF(t) = A+F(t) for all t G [a, b) 

and 

(1.2) A-vF(s) = A~F(s) for all s 6 (a,b] 

are true. 

For more details concerning regulated functions or functions of bounded variation 

see [Au], [Hoi], [Fra] or [Hi], respectively. 

1.4. N o t a t i o n . In the case [a,b] = [0,1] we write simply V, Gpxq, Gp
L

Xq 

and BVpX9 instead of X>(0,1), Gpxq(0,l), G^X ' (0,1) and BV p x ? (0 , l ) , respectively. 

Furthermore, G n X l = G", G £ x l = G", and B V n x l = BVn. 

1.5. Functions of two real variables. If a p x (/-matrix valued function K is 

defined on [0,1] x [0,1] and t,s e [a, b] are given, then the symbols K(t,.) and K(., s) 

denote the functions 

K(t,.): r 6 [0,1] ^K(t,T) £ Upxq 

and 

K(.,s):Te [0,1]-+ K(T,S) G Rpx", 

respectively. Furthermore, if s G [0,1] and K(., s) ~ Gpxq, then we put 

A-K(T,S) = K(T,S)-K(T-,S) for r G (0,1] 

and 

A+K(T, S) = K(T+, S) - K(T, S) for r G [0,1). 

Similarly, if t G [0,1] and K(t,.) G G p x ' , then we put 

A^K(t, a) = K(t, a) - K(t, a-) for a G (0,1] 

and 

A+K(t,a) = K(t,a+) - K(t,a) for a G [0,1). 

1.6. N o t a t i o n . For given linear spaces X and Y, the symbols .5f(X,Y) and 

J^(X, Y) denote the linear space of all linear bounded mappings of X into Y and the 
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linear space of linear compact mappings of X into Y, respectively. If X = Y we write 

jSf(X) and JtT(X). If j * € -S?(X, Y), then R.K), A^(^) and .</* denote its range, 

null space and adjoint operator, respectively. 

1.7. Integrals. The integrals which occur in this paper are the Perron-Stieltjes 

ones. For the original definition, see [Wa] or [Sa]. We use the equivalent summation 

definition due to Kurzweil (cf. [Kul], [Ku2], [STV]). 

Let the functions / , g be regulated on [a,b]. If the integral fa f(s)d[g(s)] has 

a finite value, then by Theorem 1.3.4 from [Kul] the function 

M]^ Í h:t<E[a,b]^ / / (s)d[o(s)] 6 R 

is regulated on [a, b]. Let us note that if both the functions / , g are regulated on [a, b] 

and at least one of them has a bounded variation on [a, b], then the integral 

j f(s)d[g(s)] 

has a finite value (cf. [Tv2, Theorem 2.8]). In this case the above mentioned Theorem 

1.3.4 from [Kul] implies that 

h(t+) = h(t) + f(t)A+g(t) and h(s-) = h(s) - f(s)A~g(s) 

holds for all t e [a, b) and s e (o, b]. Moreover, if g E BV then h e BV, as well. 

Further basic properties of the Perron-Stieltjes integral with respect to scalar 

regulated functions were described in [Tv2]. 

Given a p x g-matrix valued function F and a g x n-matrix valued function G 

defined on [a, 6] and such that all the integrals 

j kk(t)d[gk,j(t)] (t = l , 2 , . . . , p ; fc = l , 2 , . . . , g ; j = l , 2 , . . . , n ) 

exist (i.e. they have finite values), then 

f F(t) d[G(t)] = (J2 f /,,* (*) dfoy (*)]) 
Ja H = l J" ' i=l,2,...,p 

j=l,2,. . . ,n 

The integrals 

j d[F(t)]G(t) and J F(t)d[G(t)]H(t) 



for matrix valued functions F, G, H of proper types are defined analogously. The 

extension of the results obtained in [Tv2] for scalar functions to vector valued or 

matrix valued functions is obvious and hence for the basic facts concerning integrals 

with respect to regulated functions we will refer to the corresponding assertions from 

[Tv2]. 

In particular, the following lemma follows easily from [Tv2, Theorem 3.8]. 

1.8. L e m m a . $ is a linear bounded mapping of G£ into R"1 if and only if there 

exists an in x n-matrix M and an m x n-matrix valued function K(t) of bounded 

variation on [0,1] sucii that 

r(0) + I K(t)d[x(t)] $ x = Mx(0) + I K(t) d[x(t)\ for all x&Gn
L. 

Furthermore, for a given m x n-matrix M and an m x n-matrix valued function K(t) 

of bounded variation on [0,1], the relation 

Mx(0)+ f K(t)d[x(t)\ = 0 for all x e Gn
L 

Jo 

holds if and only if 

M = 0 and K(t) = 0 on [0,1]. 

By a slight modification of Corollary 2 from [Sch4], we can obtain a result analo­

gous to Lemma 1.8 also for linear bounded mappings of GL into G n . 

1.9. L e m m a , i f is a linear bounded mapping of GL into Gn if and only if 

there exist n x n-matrix valued functions A € G n x " and B: [0,1] x [0,1] - t P " 

such that 

(1.3) B(. , s) 6 G n x n for all s 6 [0,1], 

(1.4) B(t,.) 6 BV"X" for all t e [0,1], 

(1.5) there is a (i < oo such that varj B(t,.) ^ 3 for all t € [0,1] 

and J£ is given by (0.2). Furthermore, for given n x n-matrix valued functions A 6 

G „ x n and B(t,s) fulfilling (1.3) (1.5) the relation 

A(t)x(0)+ I B(t,s)d[x(s)\ = 0 on [0,1] 
Jo 

holds for all x e Gn if and only if 

A(t) = 0 on [0,1] and B(t,s)=0on [0,1] x [0,1], 
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2. FUNCTIONS OF THE CLASS J T n x " AND THE BRAY T H E O R E M 

In this section we shall study the properties of the class JtnXn
 0f n x n-matrix 

valued functions which will play a crucial role in our investigations 0f equations of 

the form (0.1). 

2 . 1 . N o t a t i o n . For a given function K: [0,1] x [0,1] -> H5«xn g , ^ t ha t 

K(t,.) 6 B V n x n for any t G [0,1], we denote by $tlK the mapping of [0,1] into 

BV n X n defined by 

(2.i) <mK •. t e [o, i] -+ <mK(t) = K(t,.) e BVn X n . 

2.2. Def in i t ion . We say that a matrix-valued function K: [0,1] x [0,1] -+ R n x n 

belongs to the class J ^ n x n if it satisfies the following hypothesis: 

(Hi) K(t,.) G BV n X n for any t G [0,1]; 

(H2) 

(i) for any t G [0,1) there exists a function J Y + = (MK(t+) G BV n X n
 s u ch that 

T_m+\\mK(T) -K+\\m = 0 , 

(ii) for any t G (0,1] there exists a function K~[ = 9K/c(t-) G BV n X n
 s u c h that 

X_m_\\mK(T) - Kl\\»j = 0 . 

2 .3 . Def in i t ion . We say that a matrix-valued function K: [0,1] x [0,1] -> R n x n 

belongs to the class Jtnxn if K G Xnxn and the mapping mK: [o, 1] _> BVnX71 

given by (2.1) is left-continuous on (0,1), i.e. 

ta_ l|jsr(T,.)-*(t,.)Bw =o 

holds for any t e (0,1). 

2 .4. R e m a r k . Let a matrix-valued function K: [0,1] x [0,1] ->• R n x n be such 

that K(t,.) G B V n x n for any t G [0,1] and let the mapping mK: [0,1] -+ BV n X" 

be defined by (2.1). We say that MK is regulated on [0,1] if the condition (H2) 

from Definition 2.2 is satisfied. Obviously, (H2) is true if and only if the following 

assertions are true: 

(i') for any t G [0,1) and any e > 0 there exists a S > 0 such that 

r. + <5<l and \\K(T2,.) - K ^ , .)\\BV < s for all TY,T2 & (t,t +S) 

and 
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(ii') for any t 6 (0,1] and any e > 0 there exists a 5 > 0 such that 

t-S>0 and \\K(r2,.) - A ' ( n , . ) | |BV < e for all n , r2 £ (t - 5, t) . 

The following assertion due to Schwabik (cf. [Sch4, Theorem 4]) has been already 

mentioned in the introduction. 

2 .5 . T h e o r e m . _£? is a linear compact mapping of G£ into G" if and only if 

there exist n x n-matrix valued functions A £ G " x " and B: [0,1] x [0,1] -* R" x " 

such that B £ J T " X " and ££ is given by (0.2). Furthermore, Ji? is a linear compact 

mapping of GJ into G£ if and only if there exist n x n-matrix valued functions 

A £ G'2x n and B: [0,1] x [0,1] -> R" x " such that B £ JTL"X" and i f is given by 

(0.2). 

Let us summarize some of the further properties of functions of the class Jfn x " . 

2 .6. L e m m a . If K £ JT"X"•, then K(., s) £ G " x " for any s £ [0,1]. 

P r o o f . Let t £ [0,1) and e > 0 be given. By (H2)(i') (cf. Remark 2.4) there 

exists 5 > 0 such that t + 5 < 1 and 

\\K(T2,.)-K(n..)\\f,v < £ forall n . * - € ( M + <*)• 

Consequently, if s £ [0,1] and TI,T2 £ (t, t + <5), then 

|A: ( r 2 > s ) -A- (Ti , s ) | 

^ |A'(T2 ,0) - A'(n,0)| + |A'(T2,S) - K(n,s) - K(r2,0) + A(n,0) | 

< HJSTC--.,.) — J i f (n , . )H-w <^ -

This implies that K(.,s) possesses a limit lim A'(r, s) = A'( t+,s) £ Rn for any 

t £ [0,1) and any s £ [0,1]. Analogously, K(.,s) possesses a limit lim K(T,S) = 

K(t-,s) £ R" for any t £ (0,1] and any s £ [0,1]. D 

2.7. L e m m a . If K £ J T " X " , then 

x := sup ||AT(t, . ) | |BV < oo. 
.€[0,1] 

P r o o f . It follows directly from Definition 2.1 by means of the Vitali Covering 

Theorem (cf. also Remark 2.3). D 
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2.8. Lemma. If K e XnMn and OTK is given by (2.1), then 

(2.2) mK(t+) = K(t+, •) 6 BVnXn for all t e [0,1) 

and 

(2.3) <mK(t-) = K(t-, •) £ BVnx?l for all t e (0,1], 

P r o o f . Let t e [0,1) be given. By (H2)(ii) there exists H e BV n x « s u c h that 

lim | | A ' ( T , . ) - # | | B V = 0 , 

i.e. H = 9JlK(t+). In particular, in virtue of Lemma 2.6 we have 

K(t+, s) = lim K(T, S) = H(s) for all s £ [0,1] 

wherefrom the relation (2.2) immediately follows. Analogously we c a n prove that 

the relation (2.3) is true, as well. • 

As a direct consequence of Lemma 2.8 we have the following 

2.9. Corollary. If K e Xnxn, then the relations 

l™+\\K(T,.)-K(t+,.)\\w = 0 for all te[0,l) 

and 

Tlim_ \\K(T, .) - K(t-,. )||BV = 0 for all t e (0,1] 

are true. 

2.10. Lemma. Let K e X w ^ tben for any x e Gn the integrals 

(2-6) j o K(t,s)d[x(s)], t e [o , i ] , 

(2-7) JQ
 K(t+,s)d[x(s)], te [0,1) 

and 

(2-8) I K(t-,s)d[x(s)], te(0,l] 

have sense and the relations 

( 2 ' 9 ) } % L K ^ s ) d^)} = f K(t+, s) d[x(s)] for t e [0, l) 
J - ! 0 

and 
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(2.10) lim f K(т,s)d[x(s)]= f K(t-,s)d[x(s)[ foт t Є (0,1] T_>í_ Л Л 

Proof. All the integrals (2.6)-(2.8) have sense according to Theorem 2.8 from 
[Tv2]. The relations (2.9) and (2.10) follow then immediately by [Tv2, Theorem 2.7], 
from Corollary 2.9. • 

2.11. Corollary. If K 6 JCnxn, then the integral 

j K(t,s)d[x(s)} 

is defined for any i e G " and any t 6 [0,1] and tiie function h: [0,1] -» Rn defined 
by 

h(t)= f K(t,s)d[x(s)} 
Лi 

is regulated on [0,1] (h £ Gn). 

Moreover, if K £ W£*n, then heG'l-

2.12. Lemma. If K £ Xnxn, then the integrals 

(2.11) / yT(s)ds[K(s,t)}, t£[0,l} 
Jo 

are defined for any y G BV" and the function h: [0,1] -> R" defined by 

hT(t)= fyT(s)ds[K(s,t)} 
Jo 

has a bounded variation on [0,1] for any y e BVn. 

Proof, a) The existence of the integrals (2.11) follows from [Tv2, Theorem 2.8]. 

b) To prove that h € BVn, let us first assume that n = 1, k £ Jtfnxn and 
d = {t0,t1,...,tm} e V. Then for all xt £ R, i = 1,2 ,m such that |xi| ^ 1 we 
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have by [Tv2, Theorem 2.8] and Lemma 2.7 

|f>(*i)-M*i-i)]*i| = I / l / W d i f f ^ t i ) - ^ ^ ! ) ) 
1 ;=i I. ° L fei 

<2||y||BVf sup I £(*(*. «t) - *<•• «*~i))a-,n 
Vse[o,i] ' i=i 7 

Ы < i 

< . 2 | Ы | в v ( sup ( ] [ > ( * , ť . ) - * ( * , * . . . 1 ) | | x , 
s£[0,l] V .= l 
|-.l<i 

<_ 2||J/||BV sup (var0 fc(s,.)) = 2||I/||BV X < oo. 
»6[0,1] 

In particular, if we put 

Xi = sign [/.(*.) -A(*<-i)] 

for i = 1 ,2 , . . . , m we obtain that the inequality 

5(*,tD-=£|ft(t,)-*(-i-i)l<-*lly||»v 
i= l 

holds for any division d = {io,*i, • • •, tm} 6 D of the interval [0,1] and any y e BV, 
i.e. 

varj h ^ 2x||y||8v < oo for any y e BV. 

c) In the general case of n £ N. n ^ 1, we have for any j = 1,2,. . . , n , any y e BV" 

and any t e [0,1] 

**(*) = E l " i*w <-.[*«(-.-)]. 
;=i ° 

Consequently, by the second part of the proof of this lemma the inequalities 

var0 /», < 2 (^VJ Hwdi-Bv J * = 2||V||BV * 

are true. It follows easily that ft 6 BV" for any y e BV". D 

2.13. T h e o r e m . (Bray Theorem) If K e Xny'n. then for any x e G" and any 

y 6 BV" the relation 

(2.12) J y
T(t)d, [jT A-(*,*)d[*(«)]| = jf Qf I/T(*)d«[if(«,-)]) d[x(*)] 

is true. 

l»s 



P r o o f , a) Both iterated integrals occurring in (2.12) have sense by Corollary 

2.11, Lemma 2.12 and [Tv2, Theorem 2.8]. 

b) Let us first assume n = 1, k e J f " x " and y 6 BV. Let / e G be a finite step 

function, i.e. there is a division {t0, h,..., u} of the interval [0,1] such that / is on 

[0,1] a linear combination of the functions 

{X[t,.,i), r = 0 , l , . . . , m , X(tjAh j = 0 , l , . . . , m - l } . 

To show that the relation 

(2.13) J1 y(t) d. [ £ k(t, s) d [/(«)]] =Jo[J »(*) d« [*(*. *)]) d [/(«)] 

is true for any finite step function / on [0,1], it is sufficient to show that (2.13) is 

true for any function from the set 

{X[T,i],re[0,l]}u{x<<r,i],<re[0,l)}. 

If / = X[o,i], i-e. f(t) = 1 on [0,1], then obviously both sides of (2.13) equal 0. 

Furthermore, let r e (0,1] and / = X[T,I]- Then by [Tv2, Proposition 2.3], 

1: k(t,s)d[f(s)} = k(t.т), 

i.e. 

J »(*)d,[jf *(*,*)d[/(«)]] = J y(t)dt[k(t,T)}. 

On the other hand, we have by [Tv2, Proposition 2.3], 

J Qf V(t)d,[*(«,»)]) d/(«)] = jf »(t)d,[t(t,r)], 

as well. 

Analogously we would prove that (2.13) holds also for / = X(IT,I]I a € [0, !)• Now, 

if ~ e G, let {a ; r }^ , 1 be a sequence of finite step functions on [0,1] such that xr 

tends to x uniformly on [0,1] as r -» oo. By the previous part of the proof, we have 

J y(t)dt y fc(tlS)d[~r(*)]] = J^ (J\(t)dt[k(t,s)]j d[xT(s)] 

for any r e N. According to [Tv2, Corollary 2.9] it follows that 

rhm Qf ^ v(<) d* [*(t, «)]) d [".(«)]) 

= I ( 1 «'Wd*W'<!)])dt*W]-
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On the other hand, by Lemma 2.7 and by [Tv2, Theorem 2.8] we have for any r € H 

and any t G [0,1] 

I f k(t, s) d [xr(s)] - f k(t, s) d[x(>)]I = I / fc(t, >) d [xr(s) - x(s)\ I 
|Jo Jo I \Jo I 

s: 2||fc(t,. )||BV | |X, - x\\ sj 2x\\xr - x\\ 

and consequently 

Urn (jf fc(t,s)d[xr(>)])=jf fc(t.-)d[x(«)] 

uniformly with respect to t € [0,1]. Thus, making use of [Tv2, Corollary 2.9] once 

more, we obtain that the relation 

Bm jf y(t)djjf fc(t,>)d[xr(>)]]=jj !/(*)dt[jJ k(t, >) d[x(>)]] 

is true. It follows immediately that the relation (2.13) is true for any y e BV and 

any / e G. 

c) The proof can be extended to the general case n e N, ti ^ 1, similarly as it was 

done at the end of the proof of Lemma 2.12. D 

2.14. R e m a r k . For the proof of the Bray Theorem in the case of the interior 

Dushnik integral see [Hoi, Theorem II . l . l ] . 

In the following text we shall make use of the following assertion, as well. 

2 .15. L e m m a . Let /{ £ X " " " and Jet 

' K(t,s+) for i £ [ 0 , l ] and s € [ 0 , l ) , 
H(t,s)= , 

1 K(t,l-) for ( £ [0,1] and s= 1. 

Then H 6 J T n X n . Moreover, if A' e j r L
n x n , then H e l ^ L

n x n . as well. 

P r o o f . Analogously as in the proofs of Lemma 2.12 and of Theorem 2.13 it is 

sufficient to show that the assertion of the lemma is true in the scalar case n = 1. 

Let n = 1, fc € J ^ n x n and 

(k(t,s+) for ( £ [ 0 , 1 ] and s 6 [ 0 , l ) , 
h(t,s) = < 

I f c ( M - ) for t € [ 0 , l ] and s = 1. 



a) Let d = {s0,si,... ,sm} be an arbitrary division of the interval [0,1] (d 6 V). 
Then 

S(h,d) = f^\h(t,sj)-h(t,sj-1)\ 
i=\ 

m-\ 

= VJ \k(t,Sj + ) - k(t,Sj-i+)\ + 1*0,1-) - fcO,Sm-l+)|-
3 = 1 

Let S > 0 be such that 
sm_i + 6 < 1 - 6 

and let us denote 

(2.14) o-o = 0, Oj = Sj-i + <5 for j = 1,2,... ,m, am+i = 1 - S, a m + 2 = 1. 

Then 

(2.15) <fc =={-_,0_,...,0-m+a} 6 P 

and according to (H2), for any S > 0 sufficiently small we have 

m - i 

S(k,ds) = \k(t,S)-k(t,Q)\+ VJ |fc(t,s^+(5)-*0,Sj_i +(5)| 
j=i 

+ \k(t, 1-S)- k(t, sm_i + S)\ + \k(t, 1) - k(t, 1 - „)| 

^ varj fc(t,.) < oo. 

Thus 
oo> lim 5(/c,ds) = 5(/г,d) + |Д+/c(ř,0)| + |Д2-/c(í,l)| 

5—ł-0-Һ 

and consequently the inequality 

S(h,d) s? var j*( t , . )- |A+*(f,0)| - |AJ*(t,l) | 

holds for any division deV. Hence 

| |A0,.) | |BV = | * 0 , 0 + ) | + varo/ l0,.) 

^ |*(t,0)| + |A+fc(*,0)| + varj fc(t, •) - |A+fc(t, 0)| - |A2"/c(i, 1)| 

<||fc(t,.)ll-v, 

i.e. h fulfils (Hi). 
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b) Let ,t £ [0,1) and e > 0 be given. According to (H2)(i') there is a c50 > 0 such 

that t + 50 < 1 and 

l|fc(T2,.)-fc(Ti,.)||BV <S 

holds for any couple n , T 2 e (t,t + S0). In particular, 

(2.16) S ( f c ( T 2 , . ) - f c ( T i , . ) , A ) < £ 

for any division A e V and any couple T I , T 2 6 (t,t + S0). Now, let an arbitrary 

division d = {so, s i , . . . , s m } e P be given and let 5 > 0 be such that 6 < S0 and 

sm_i + S < 1 - S. Let us define the division ds = {cro,<Ti, • • • ,<rm} £ V as in (2.14) 

and (2.15). Making use of (2.16) we obtain 

S(h(T2,.)-h(TU.),cr> 

= |fc(T2,si+) - fc(n,si+) - fc(T2,o+) + fc(n,o+)| 
m - l 

+ V^ | fc(-T 2 ,S j+)-fc(T 1 ,S j+)-fc(T 2 ,S j - l+) + fc(Ti,sj-l+)| 

j = 2 

+ | f e ( T 2 , l - ) - f c ( T 1 , l - ) - f c ( T 2 , S m _ l + ) + fc(Tl,Sm_l+)| 

= j 1 " ? ( __! |fc(T2,Tj+l) -fc(Tl,<Tj + l) - fc(T2,<Ti) +fc(Ti,(Tj) 

= lim (S(fc(T2 , . )-fc(T!, .) ,d4)) 

- |A+(fc(T2,0) - fc(ri,0))| - |A2"(fc(T2,l) - fc(ri,l))| < e. 

This means that for any couple n , T 2 _ (i, ( + S) we have 

| | M 7 2 , . ) - M n , . ) l l u v < « , 

i.e. ft fulfils (H2)(i '). Similarly we could show that h fulfils also (H2)(ii). Thus 

h e J T l x l . 

c) Let OTfc: t e [0,1] -+ fc(t,.) e BV be left-continuous on (0,1) and let e > 0 be 

given. Then there is a S0 > 0 such that t - S0 > 0 and 

(2.17) S ( f c ( t , . ) - f c ( r , . ) ,A) < e 

holds for any r _ (t — <5o,<) and any A e D. Let an arbitrary division d = 

{ s 0 , s i , . . . , s m } e V be given and let ds = {<To,ffi,... ,<rm+2} e X> be given for 

S e (0,min{f50, 1 " s
2 - ' } ) by (2.14) and (2.15). Then making use of (2.17) we obtain 
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similarly as in part b) of this proof 

S(h(t,.)-h(T,.),d) 

= ,"» ( g l f e ( ^ + x ) - k(T,aj+1) - k(t,ai) + fc(T>< 

= to+(S(fc(.,.)-fc(r,.)(d.)) 

- |A+(fc«,0) - fc(r, 0 ) ) | - |A2-(fc(t, 1) _ fc(Ti m < £_ 

wherefrom the desired relation 

r |MD_l |A( ' , . ) -h(T , . ) | |Bv = 0 

easily follows. 

2.16. R e m a r k . Analogously we C o u ld show that if K € J f n x n ___ i f 

^ . __ f ""(*. °+) for . 6 [0,1] and s = o, 

( J _ ( . , s - ) for t _ [ 0 , l j and s <E (0,1], 

then H E XnXn. Moreover, if A' e JTL
nXn , then H e JfTnxn, as well. 

2.17. L e m m a . Let K e Jtnxn and let 

K(t+, s) for t e [0,1) and s e [0,1], 
H(t,s) = 

K(l-,s) for t = \ and s e [0,1] 

and 
(K(0+,s) for . = 0 and s G [ 0 , l ] , 

~{K(t-,s) for t e ( 0 , l ] and s g [ 0 , l ] . 

Then H 6 Jfnxn and G e JfL"xn. 

P r o o f . We shall prove that under the assumptions of the lemma H e JAfnxn. 

The proof of the latter relation would be quite similar. 

Let f. < 1 and let d e V be an arbitrary division of [0,1], Then for any S € (0,1 — t) 

we have by Lemma 2.7 

S(K(t + 6,.),d) «$ var jK(t + 8,.) ^ x < oo. 

Letting S -> 0+ we immediately obtain that the inequality 

S(H(t,.),d) <^x < o o 
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is true fqr any d € V. It means that 

vurl H(t,.) <. x < oo. 

Now, let an arbitrary e > 0 be given. By (H2)(i') there is a <5 > 0 such that 

| |A ' (T 2 , . ) - / f ( r i , . ) | |B V < f 

holds whenever t < T\ < r2 < f + <5. It means that for all h,t2 € (t, t + | ) and any 

r 6 (0, f) we have 

\\K(t2 + T,.)-K(h + T . . ) | | B V < f . 

In particular, we have for any division rfeP 

| # ( t 2 + T,o)-.fi:(t , + r , o ) | < § 

and 

S(K(t2 + r , . ) - tf(ti + r , . ) , d) < | 

wherefrom we obtain easily that the relation 

| | f f ( t2 , . ) - . f f( t l , . ) | |BV <£ 

is true whenever t < h < h < ' + § • 

Analogously we would prove that if t > 0, then for any £ > 0 there is a S > 0 such 

that 

\\H(t2,.)-H(h,.)\\BV <e 

is true whenever t - | < h < h < t. O 

2.18. L e m m a . Let K £ <Tnxn, f , , s , e [0,1), and t 2 ,« 2 6 (0,1]. Then all the 
limits 

A'(«i + , s i + ) = lim A'(r,<r), K(ti+,s2-) = lim K(T,G), 
(T,<7)^(t„«) (T,<T)-Ktl,S2) 

T>(, ,<T>S, T>d,<T<S 2 

A ( i 2 - , s i + ) = lim A'(T,<J), A ( f 2 - , s 2 - ) = lim A ( r , a ) 
(T,<r)-t(ta,»i) (T,o-)->(t2,S2) 

T<(2 ,<T>Sl T<£2,<T<S2 

are defined in R"x". 

P r o o f . We will restrict ourselves to proving the existence of the limits 

A'(t"i+,si+) in R" x " for h,s\ e [0,1). The modifications of the proofs in the 

remaining cases are obvious. . 
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Let tj 6 [0,1) and si £ [0,1) be given. By Lemma 2.15 there exists M e 

such that 

lim K(h + ,a)= lim ( lim A ' ( T , < T ) ) = M . 

Furthermore, since in virtue of Corollary 2.9 

lim \\K(T,.)-K(t1 + ,.)\\ = 0, 

lim K(T,a) = K(t,+,a) uniformly with respect to < r6 [0 , l ] , 

it follows that 

lim K(т, a) = M. 
( r , . r ) - ł ( t l , , 1 ) 

r>t i , .r>«i 

2.19. L e m m a . Let K e Jfnxn, s £ (0,1] and t 6 [0,1). Then 

lim i Y ( r , T - ) = lim K(T,T+) = K(t+,t+), 

lim K(T-,T)= lim K(T+,T) = K(t+,t+), 

Tlim_ K(T, T-) = lim_ K(T, T + ) = K(s-,s-) 

and 

lim K(T-,T)= lim K(T+,T) = K(s-,s-). 

P r o o f . We will restrict ourselves to the proof of the relations 

lim K(T,T-) = K(t+, t+), t e [0,1). 

The proofs of the remaining assertions of the lemma would be quite analogous. By 

Lemma 2.18 there exists a <5 6 (0,1 — t) such that 

\K(T,a) -K(t+,t+)| < | 

holds whenever t < T < t + 6 and t < a < t + 5. Furthermore, for any T <E (t, t + S) 

we may choose a <rr e (t, T) such that 

\K(T,T-)-K(T,aT)\<l 

is true. Thus for any T e (t,t + 5) we have 

\K(T,T-) - K(t+,t+)\ <. \K(T,T-) - K(T,aT)\ + \K(T,aT) - K(t+,t+)\ < s. 

D 
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2.20. R e m a r k . A matrix valued function K: [0,1] x [0,1] -> R" x" is said to 

be of bounded Vitali variation on [0,1] x [0,1] if 

«[o,i]x[o,i](-K') 

= sup V J \K(U,Sj) - K(ti-USj) - K(U,SJ-I) + K(t(-u ^_ j , ) | < oo, 
D W-l 

where the supremum is taken over all net subdivisions 

D = {0 = t0 < fi < • • • < tm = 1; 0 = s0 < Si < . .. < sm = 1} 

of the interval [0,1] x [0,1]. A matrix valued function K: [0,1] x [0,1], -4 R" x" is 

said to be of strongly bounded variation on [0,1] x [0,1] if 

«[0,l]x[o,l](*0 + v a i o /s-'(0. •) + varj K(Q,.) < oo. 

Let us denote the set o f n x n-matrix valued functions of strongly bounded variation 

on [0,1] x [0,1] by SBVnxn. It follows from [STV], Corollaries 1.6.15 and 1.6.16, that 

SBVnxn C Xnxn. 

On the other hand, the set Q.BVnXn o f n x ?i-matrix valued functions K of the 

form 

K(t,s) = F(t)G(s), ( t , s ) e [ 0 , l ] x [ 0 , l ] , 

where F e Gnxn and G e BV"X", provides the simplest example of the class of 

kernels which satisfy the assumptions of this paper, but do not belong in general to 

the class SBVnxn. In fact, it is easy to verify that Q.BVnxn c XnXn holds. 

2 .21 . L e m m a . Let K g Xnxn and t 6 [0,1). Then 

(2.18) for any e > 0 there exists a 5 € (0,1 - t) such that 
varJ= K(h, •) < e holds whenever 0 < t < t, < t2 < t + S <. 1. 

P r o o f (due to I. Vrkoc). Let f e [0,1) be given and let us assume that there is 

a 7 > 0 and s e q u e n C es {t\} and {t2
k} of points in (t, 1] such that 

t < 4 + 1 < t2
k+1 < t\ < t\ < 1 holds for any k e N, 

lim t\ = lim t\ = t 

and 

v a r | A ' ( t * , . ) > 2 7 . 
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On the other hand, by (H2HH) there is a natural number fc0 such that 

varj(lir(t* ,.)-K{t$>,.))< 7. 

This means that in the case that (2.18) does not hold we obtain 

var0 K{1%>, .)>Y1 var$ K{t%>,.) 
k^k0 

2 J^ [var|^(t*,.)-var|(ii-(t2
fc,.)-ii-(t*°,.))]^ VJ 7 = 00. 

(C ĵfc,, /t^fco 

This being impossible in virtue of the assumption (Hi), it follows that the assertion 

(2.18) is true and this completes the proof of the lemma. • 

Analogously we could prove the following assertion, as well. 

2.22. L e m m a . Let K € Xnxn and t 6 (0,1]. Then 

(2.19) for any e>0 there exists a S e (0,t) such that 

var£ K(t2,.) < e holds whenever 0 <. t - S < tx < t2 < t. 

3. FREDHOLM-STIELTJES INTEGRAL EQUATIONS IN THE SPACE G£ 

In this section we will consider linear integral equations of the form 

(3.1) x(t) - A(t)x(0) - [ B(t, s) d[x(s)] = f(t), t g [0,1], 
Jo 

where A G Gn
L*n and B e X£Xn. 

3 . 1 . R e m a r k . Let us recall that the operator J<? given by (0.2), i.e. 

(3.2) (Sex){t) = A(t)x(0)+ J B(t,s)d[x(s)]. x G G £ , t 6 [0,1] 
Jo 

is the general form of a linear compact operator on the space G£ (cf. Theorem 2.5). 

The equation (3.1) may be written as the operator equation 

(3.3) x - &x = / , 

as well. 
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3.2. R e m a r k . It is also known (cf. [Tv2, Theorem 3.8]) that the dual space 

(62)* to G'2 is isomorphic to the space BVn x Rn, while for a given couple (j/,7) e 

BV" x Rn the corresponding linear bounded functional on G£ is given by 

(3.4) x e Gn
L -> (x, (y, 7)) : = 7

Tx(0) + [ yT(s) d[x(s)] e R. 
Jo 

The compactness of the operator J? immediately implies that the following Fred-

holm alternative type assertions 3.3-3.5 are true. 

3 .3 . Proposi t ion. Let A <E G L
X " and B £ J'r"

xn. Then the given equation 

(3.1) possesses a unique solution x 6 G". for any / e G J if and only if the corre­

sponding homogeneous equation x - Jfx = 0, i.e. 

x(t) - A(t)x(0) - [ B(t, s) d[x(s)] = 0 , te [0,1], 
Jo 

possesses only the trivial solution. 

3.4. P r o p o s i t i o n . Let A e G £ x " , B e JfL
nxn and f € G'L. Then the equation 

(3.1) possesses a solution in G'L if and only if 

(3.5) iTf(o) + Joy
T(s)d[f(s)] = o 

holds for any solution (y, 7) e BVn x Rn of the operator equation 

(3.6) (y,y)~y*(y,i) = oe BV" x or 

adjoint to (3.1). 

3.5. P r o p o s i t i o n . Let A e Gn
L*n a"d B g JfL

xn. Then the relations 

dim AT (I -Jf)= dim M(I -.'£*)< 00 

hold for the dimensions of the null spaces N(I — Jf) and Af(I — Jf*) corresponding 

to the operator Jz? and its adjoiut J?*, respectively. 

3.6. Corollary. Let A € G £ x " and B £ JfL
Xn. Then the given equation (3.1) 

possesses a unique solution x e G£ for any f £ G'[ if and only if the corresponding 

homogeneous equation 

X - Jfx = 0 
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possesses only the trivial solution. 

Making use of the above mentioned explicit representation (3.4) of the dual space 
to G'2 and of the Bray Theorem we can derive the explicit form of the adjoint operator 
if* to if. 

3.7. Theorem. Let A G G','*" and B £ Jf£xn. Then the adjoint operator if* 
to the operator J£ is given by 

J£*: (y,7) 6 BV" x R" -> (jjf,* (y,7),if; (y,7)) G BV" x R", 

where 
(jĄҶy,7))(t) = Б т (0, t )7+ ( d s[B т( S,t)]y(s), tЄ[0,l] 

Һ 

(y,7) = A т ( 0 ) 7 + í d[Aт(s)]y(s). 
Jo 

and 

Proof . Given i £ 6 J , i / 6 BV" and 7 G R", we have by (3.4) and by Theorem 
2.13 

<i-x , (t/,7)> = 7T (A(O)Z(O) + J B(0, t) d [x(t)]" 

+ | yT(t)d sUf)x(0) + y B(t,s)d[x(s)]l 

= (~<TA(0) + f yr(s)d[A(s)])x(0) 

+ f (7
TB(0,t) + jf yT(s)ds[B(s,t)])d[x(t)} 

= (JS?2*(y,7))Tx(0) + f (J£l(y, 7))T(t) d [x(t)] 
Jo 

= (x,(if1*(y,7),if2*(y,7))) 

wherefrom the proof of the theorem immediately follows. • 
Proposition 3.4 and Theorem 3.7 immediately yield the following assertion. 

3.8. Theorem. Let A G G^*", B G JT/;*" and / G G£. Then the equation 
(3.1) possesses a solution x G GJ if and onJy if (3.5) holds for any solution (y,7) £ 
BV" x R" of the system 

y(t) - BT(0,t)7 - [ d. [BT(s,t)] y(s) =0 , / 6 [0,1], 
•Jo 

7 - A T ( 0 ) 7 - f d [AT(s)] !/(s) = 0. 
Jo 
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3.9. R e m a r k . Let us notice that in virtue of Corollary 2.9, for any solution 
x € G" of (3.1) on [0,1] w e have 

x(t+) = A(t+)x(p) + / B(t+,s) d[x(s)] + f(t+) for all t € [0,1), 
Jo 

x(t-) = A(t-)x(p) + [ B(t-,s) d[x(s)] + f(t~) for all t e (0,1]. 
Jo 

In particular, if A £ G £ X n , B £ JTL
n x n and / e G"., then any solution x of (3.1) on 

[0,1] is left-continuous on (0,1). 

3.10. E x a m p l e . Let us consider a linear Stieltjes integral equation 

(3-7) x(t)- I ds[P(t,s)]x(s) = f(t), t e [ 0 , l ] 
Jo 

with P e JfL
nXn and / e GL . Such equations with kernels P of strongly bounded 

variation on [0,1] x [0,1] (cf. Remark 2.20) were treated in [STV], 

Let t e [0,1] and i ? 6 " be given. Let us put 

(P(t,s+) for s < l , 
Q(t,s)-\ ' 

[P(t,l~) for s = l 

and 

Z(t,s)=P(t,s)-Q(t,s) for (t,s) e [0,1] x [0,1]. 

Then 
'-A+P(t,s) for s < l , 

Z(t,s) = . 
{ A2P(t,l) for 8 = 1. 

Since obviously Q(t,.) and Z(t,.) G BV n x n , lim P(t, a+) = P(t, s+) if s e [0,1) 

and lim_ P(«, cr+) = P( t , s - ) if s € (0,1], it is easy to verify that 

Z(t,s-) = 0 for all s € [0,1) and Z(t,s+)=0 for all s 6 ( 0 , 1 ] . 

Since Z(t,.) 6 B V n x n , this implies that there is an at most countable set W C [0,1] 

of points in [0,1] such that Z(t, s) = 0 holds for any s 6 [0,1] \ W. Making use of 

Proposition 2.13 from [Tvl] we obtain that 

J de[Z(t,s)]x(s) = Z(t,l)x(l) - Z(t,Q)x(0). 
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This implies that the relation 

/ d,[P(t,s)]x(s) 
Jo 

= / ds[Q(t,s)]x(s) + A+P(t,0)x(0)+A^P(t,l)x(l) 
Jo 

is true. Furthermore, according to the integration-by-parts formula (cf. [Tv2, Theo­

rem 2.15]) we have 

/ ds[P(t,s)]x(s) 
Jo 

= Q(t,l)x(l)-Q(t,0)x(0)- f Q(t,s)d[x(s)] 
Jo 

+ [P(t,0+) - P(t,0)]x(0) + [P(t, 1) - P(t,l-)]x(l) 

= P(t,l)x(l)-P(t,0)x(0)- f Q(t,s)d[x(s)] 
Jo 

= [P(t, 1) - P(t, 0)] x(0) + f (P(t, 1) - Q(t, s)) d{x(s)] 
Jo 

/•i (P(t,i)-p(t,8+), s < n 
= [P(t,l)-P(t,0)]x(0)+ / { \d[x(s)] 

Jo F(,1)-«M-I .9 = 1 .P(t,l)-P(t,l-), s = i 

and hence 

/ d,[P(t,s)]x(s) = C(t)x(0)+ f D(t,s)d[x(s)}, 
Jo Jo 

where 

and 

C(t)=l + P(t,l)-P(t,0) 

P(t,l)-P(t,8+) for 5Є[0,1) , 
D(t,s)= , 

\P(t,l)-P(t,l-) for s = l 

Obviously, under our assumptions we have C 6 G ' / x " and D 6 Jffnxn (cf. Lemma 

2.15). Thus, if P 6 J T L

n x " and / € G j , then the given equation (3-7) may be 

transformed to an equation of the form (3.1) with coefficients A, B and / fulfilling 

the assumptions of Theorem 3.8. 
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4. T H E RESOLVENT COUPLE FOR THE F R E D H O L M - S T I E L T J E S INTEGRAL EQUATION 

In this section we will consider the special case when the equation (3.1) possesses 

a unique solution x ' G£ for any / e G£. In particular, in addition to A e G'2x n , 

B e JC£xn we will assume that 

(4.1) dimti(I-X)=0 

(cf. Corollary 3.6). 

Under these assumptions the Bounded Inverse Theorem (cf. e.g. [Sche, III.4.1]) 

implies that the linear bounded operator I - Jif: G^ -» G" possesses a bounded 

inverse operator (/ - J£)~x : Gn
L -» G\. Furthermore, as 

(I-^Y1 =l + (l~X)~lJ£, 

it follows immediately that the inverse operator (/ - .if)~l may be expressed in the 

form 

(4.2) (i-^Yl=i + r, 

where r is a linear compact operator (T e X(G\, G™J). By Theorem 2.5 there exist 

functions U £ G £ x " , V e X£Xn such that F is given by 

(4.3) r:feGn^U(t)f(0)+[ V(t,s)d[f(s)]. 
Jo 

The following assertion now follows from Lemma 1.9 and Theorem 2.5. 

4 . 1 . T h e o r e m . Let us assume that A e G2* n and B e Jt^xn are such that 

(4.1) holds. Then there exists a uniquely defined couple of functions U e G £ x n , 

V e Jtr
nxn such that for any f e G£ tije con-espondijjg solution x e GJ to (3.1) is 

given by 

(4 4) x(t) = f(t) + U(t)f(Q) + í V(t, s) d[f(s)] for t Є [0,1]. 
io 

4.2. T h e o r e m . Let us assume that A £ G",x" and B e Jfi
T"<" are such 

that (4.1) jjoids. Then the functions U, V given by Theorem 4.1 satisfy the matrix 

equations 

(4.5) U(t) - A(t)U(0) - f B(t, T) d[U(r)] = A(t) 
Jo 

and 
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,s)- í B(t,r)dт[V(т,s)} = B(t,: 

Jo 
(4.6) V(t,s)-A(t)V(0 

forallt,se [0,1]. 

P r o o f . Let T be a linear compact operator defined by (4.2). Inserting (4.2) 

into (3.1) we obtain that under our assumptions T has to satisfy the relation 

(4.7) rf-Jf(rf)=Jff for all / e Gn

L. 

Inserting (4.3) into (4.7) and making use of the Bray Theorem (cf. Theorem 2.13) 
we obtain furthermore that 

U(t) - A(t)U(0) - J B(t, T) d[U(r)]j f(0) 

+ J (V(t,s) - A(t)V(0,s) - jf B(t,r)dT[V(T,s)}^j d[f(s)} 

= A(t)f(0)+ I B(t,s)d[f(s)] 
Jo 

has to be true for any / e G£, wherefrom by Lemma 1.9 the assertion of the theorem 

immediately follows. • 

4 . 3 . Def in i t ion . We say that a couple of functions U € Gn
L

xn, V e JffL
Xn is the 

resolvent couple for the equation (3.1) if for any / 6 G£ the unique solution x 6 GJ 

is given by (4.3). 

5. V O L T E R R A - S T I E L T J E S INTEGRAL EQUATIONS IN GL 

It is natural to expect that the linear operator equation (3.3) could possess for 

any / 6 G£ a unique solution if the operator _5f is causal. 

5 . 1 . Def in i t ion . An operator _£f £ _S?(G£) is said to be causal if 

(5.1) ( J Z ? . T ) ( 0 ) = 0 f o r a n y x e G J , 

and for a given t e (0,1) 

(5.2) (l?x)(t)=0 whenever x 6 G J and X(T) - 0 on [0,t]. 

5.2. L e m m a , ffi 6 G';'*" and B 6 J^L
nxn, then the linear operator J? £ 

_Sf(G£) given by (3.2) is causal if and only if 

(5.3) A(0)=0 and B(f ,s) = 0 for aJJ t e [0,1) and s 6 [ . , l ] . 
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P r o o f , a) If (5.3) is satisfied, then obviously the relation 

f B(t,s)d[x(s)]= f B(t,s)d[x(s)] 
Jo Jo 

is true for any x £ G£ and any t £ [0,1] whence the causality of Jz? immediately 

follows. 

b) On the other hand, let us assume that Jz? is causal. Then by (5.1) the relation 

^(0)rc(0) + / B(0, s) d[x(s)] = 0 
Jo 

has to be satisfied for any x £ G£. By Lemma 1.8 this means that the relations 

A(0) = 0 and B(0, s) = 0 for all s £ [0.1] 

have to be satisfied, as well. Furthermore, if t £ (0,1), then (5.2) is true if and only 

if 

J B(t, s) d[x(s)] = 0 for all x £ G£. 

An obvious modification of Lemma 1.8 implies that this may hold only if 

B(t,s)=0 for all s 6 [ t , l ] , 

wherefrom the assertion of the lemma immediately follows. • 

5 .3 . R e m a r k . Let us notice that the condition (5.3) does not necessarily imply 

that B ( l , 1) = 0. On the other hand, it is easy to verify that the operator i f £ i f (G£) 

given by (3.2) fulfils a somewhat stronger causality properties (5.1) and 

(5.2') (Sfx)(t) = 0 for all t £ (0,1] and x £ G£ such that X(T) = 0 on [0, t) 

if and only if 

A(0) = 0 and B(t, s) = 0 whenever 0 < t ^ S *J 1. 

In fact, if X(T) = 0 on [0,1), then 

( i f i ) ( l ) = fl(l,lWl) = 0 

holds for any x(l) £ R" if and only if B(l, 1) = 0. 
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5.4. R e m a r k . As noticed in the proof of Lemma 5.2, if the assumptions of 

Lemma 5.2 and the conditions (5.3) are satisfied, then the Fredholm-Stieltjes equa­

tion (3.1) reduces to the Volterra-Stieltjes equation 

(5.4) x(t) - A(t)x(Q) - J B(t, s) d[x(s)) = f(t), t e [0,1]. 

To show that the equation (5.4) possesses a unique solution x £ G£ for each / 6 

GJ, it is by Proposition 3.4 sufficient to show that the corresponding homogeneous 

equation 

(5.5) x(t) = A(t)x(0) + ( B(t, s) d[x(s)\, t £ [0,1] 
Jo 

possesses only the trivial solution x = 0. 

Let x e G£ be an arbitrary solution of (5.5) on [0,1]. Then obviously x(0) = 0. 

Furthermore, since by (5.3) B(0+,s) = 0 whenever s > 0, we have by Lemma 2.10 

x(0+) = lim J B(t.s)d[x(s)}= lim / B(t,s)d[x(s)] 

= f B(0+,s)d[x(s)] = B(0+,0)A + x(0) = B(0+,0)a;(0+), 
Jo 

i.e. 

[I - B(0+,0)]x(0+) = 0. 

Thus we have x(0+) = 0 whenever 

d e t [ / - B ( 0 + , 0 ) ] ^ 0 . 

Analogously, if we assume that X(T) = 0 on [0, t] holds for a given t G (0,1), then 

c(t+) = Í B(t+,s)d[x(s)] = B(t+, t)x(t+), 

and thus necessarily x(t+) = 0 whenever det [I - B(t+, t)] ^ 0. Finally, if we assume 

that X(T) = 0 on [0,1), then the equation (5.5) reduces to 

[/-.B(l,l)]*(l)-.*(1). 

This indicates that it is possible to expect that the equation (5.5) will possess only 

the trivial solution x = 0 on [0,1] if the relations 

(5.6) d e t [ / - B ( l , l ) ] # 0 and de t [ / - B(t+,t)] + 0 for all t € [0,1) 

will be satisfied. 
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5.5. Theorem. Let A g G' I X ' \ B £ JP£xn and let the condition (5.3) be 

satisfied. Then the Volterra-Sticltjes equation (5.4) possesses a unique solution x e 
G"_ for any / G G£ if and only if tlie relations (5.6) are satisfied. 

P r o o f . First, let us assume that the relations (5.6) are satisfied. We shall show 

that then the equation (5.5) possesses only the trivial solution. Indeed, let x 6 GJ 

be a solution of (5.5). Then x(0+) = x(0) = 0 and as in Remark 5.4 we have 

/ B(0+, s) d[x(s)] = B(0+, 0) A + . T ( 0 ) = 0 for all t e [0,1]. 
Jo 

Consequently, the equation (5.5) can be rewritten as 

x(t)= I {B(t,s)-B(0+,s))d[x(s)]. 
Jo 

In virtue of [Tv2, Theorem 2.8], this yields that the inequality 

| * ( t ) | < 2 | | B ( * , . ) - B ( 0 + , . ) | | m ( sup |x(s)|) 
.e[o,t] 

is true for any t e [0,1]. Furthermore, by Corollary 2.9 there is a <5 > 0 such that 

\\B(t,.) - B(0+,. )||BV < \ whenever t G (0,5] 

and hence also 

sup |x(s)| < \ sup |x(s)| , 
*6[0,<5] te[0,6] 

wherefrom the relation 

x = 0 on [0,<5] 

follows. Now, let us put 

t* =sup{<5 6 [0,1]: x(t) = 0 o n [0,S]}-

We know that t* € (0,1] and x(t) = 0 on [0,t*). Since x is left-continuous on (0,1) 

(cf. Remark 3.9), it follows that if t* < 1, then x(t*) = x(t*—) = 0, as well. We close 

the first part of the proof by showing that t* = 1 and s ( l ) = 0. 

Indeed, if t* < 1, taking into account the hypothesis (5.3) and Lemma 2.10 we 

would obtain 

x ( t * + ) = lim / B(t,s)d[x(s)]= I B(t* + ,s)d[x(s)] 
' - x ' + J o J0 

= B(t* + ,1')x(t*+) 
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and consequently 

[I-B(t*+,t*)]x(t*+) = 0. 

Hence according to (5.6) we would have x(t*+) = 0. By an argument analogous to 

that used above for 0 in the place of t*, we can get that there exists S > 0 such 

that x(t) = 0 on [0, t* + <5], which contradicts the definition of t*. Finally, as we have 

obviously x(t) = 0 on [0,1) and hence also x ( l - ) = 0, the relation (5.5) reduces to 

x(l) = £ ( l , l ) x ( l ) or 

[ / - B ( l , l ) ] x ( l ) = 0 , 

wherefrom the desired relation x( l ) = 0 immediately follows taking into account our 

assumption (5.6). 

To show the necessity of the conditions (5.6) for the unique solvability of (5.4) for 

any / e G",, let us assume that the set 

SB •= {*e [0,1): d e t f J - B ( t + , t ) ] = 0 } 

is nonempty. Let us denote 

r* = i n f S B . 

Then t* is not a point of accumulation of <SB. In fact, if this were not true, then 

there would exist a sequence {'(,}Jli of points in <SB such that tk > t* for any k € N 

and lim tk = t*. Since in virtue of (5.3) we have for any a > t* 

lim B(T,a) = 0 , 

it follows by Lemma 2.18 that 

B(t* + ,t* + )= lim B(Tta)= lim ( lim B(r,a))=0 
(T,<r)-*(t*,t*) - - » . • + r-if + 

T>f ,<7>4* 

and consequently 

0 = lim de t [ / - B(tk+,tk)] ^ de t [ / - B(t*+,t*+)] = d e t / . 

In particular, t* e 5 B and d e t [ / - B(t*+, V)] = 0. Hence there is a d e R" such 

that there is no c e R" such that 

[ / - £ ( * * + , c*)]c = d. 

Now, let us put 
[ 0 for t < r , 

m = \d for t>r, 
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By the first part of the proof, for any possible solution x e G'[ of the equation (5.4) 

on [0,1] we have x(t) = 0 on [0, t*) and thus 

x(t*) = lim x(t) = 0. 

By an argument analogous to that used above we can further deduce that the limit 

x(t* + ) of any possible solution x of (5.4) has to verify the relation 

[/ - B(t*+,t*+)}x(t*+) = /(**+) = d. 

However, by the definition of d this is not possible and consequently the set SB is 

empty. This completes the proof of the theorem. • • 

5.6. Corollary. Let A € G".xn , B € JTL
n x" and let the condition (5.3) be 

satisfied. Then the homogeneous equation (5.5) possesses only the trivial solution 

x = 0 if and only if the relations (5.6) are satisfied. 

P r o o f . It follows immediately from Proposition 3.3 and Theorem 5.5. • 

Similarly, the proof of the following assertion is an easy consequence of Theorems 

4.1 and 4.2 and Corollary 5.6. 

5.7. Corollary. Let A e G".x", B e J ^ " x " and let the conditions (5.3) and 

(5.6) be satisfied. Then there exists a resolvent couple U e G2 X " , V 6 J ^ " x " for 

the equation (5.4). The functions U and V satisfy in addition the relations 

(5.7) U(0) = 0 and V(t, s) = 0 for all s e [0,1), t e [0, s], 

(5.8) U(t)~ ! B(t,T)dT[U(T)] = A(t) for all ( £ [ 0 , 1 ] , 
Jo 

and 

(5.9) V(t,s)- f B(t,T)dr[V(T,s)} = B(t,S) forall « , a e [ 0 , l l . 
Jo 

P r o o f . Let A e G£ X n , B G J ^ * " and let the conditions (5.3) and (5.6) be 

satisfied. Then by Theorems 4 1 and 4.2 and Corollary 5.6 there exists a resolvent 

couple U € G £ x n , V € Jf t"
x" for the equation (5.4) and the functions U, V satisfy 

the matrix equations (4.5) and (4.6). Furthermore, as in virtue of (5.3) we have 

A(0) = 0, it follows easily from (4.5) that U(0) = 0 holds. Consequently, the relation 

(4.5) reduces to (5.8). 

208 



Furthermore, let an arbitrary s € (0,1) be given. Since by (5.3) we have B(t, s) = 0 

whenever t ^ s, it follows easily that the function V(. ,s) fulfils the relation 

V(t,s) = A(t)V(0,s)+ f B(t,r)dr[V(T,s)] for all i e [ 0 , s ] . 
Jo 

By an argument analogous to that used in the proof of Corollary 5.6 we can deduce 

now that V(t,s) = 0 has to be true for any t e [0,s]. Finally, as by the assumption 

(5.3) we have B(0, s) = 0 for any s e [0,1], it follows immediately from (4.6) that 

K(0,0) = 0 on [0,1], as well. Thus the relations (5.7) are true and consequently the 

relation (4.6) reduces to (5.9). D 

5.8. R e m a r k . It is easy to verify that under the assumption of Corollary 5.7 

the resolvent couple (U,V) of (5.4) satisfies in addition to the relations (5.7)-(5.9) 

the following relations, as well. 

V(t,l) = 0 on [0,1) and V( l , 1) = [I - J 3 ( l , l ) ] _ 1 £ ( l , l ) . 

To show that the results of this section cover also the Volterra analogue of the 

equation mentioned in Example 3.10 the following lemma is essential. 

5.9. Lemma. Let K e JfnXn and let KA be given by 

K(t,s) for ( £ [ 0 , 1 ] and se[0,t], 
(5.10) KA(t,s) = , 

1 K(t,t) for t e [0,1] and s e [t, 1] 

Then KA <= J T " X " . Moreover, if K £ JT ;"
X" and 

(5.11) K(t,t-) = K(t,t) for all * e ( 0 , l ) , 

then KA 6 JTL"X", as well. 

P r o o f . Let t € (0,1] and e > 0 be given. Then by assumption and by Lemma 

2.21 there exists a S e (0, t) such that 

\\K(t2,.) - K(tu . ) | |BV < | and vax\l K(t2..) < | 

whenever 0 <^ t - S < ti <. t2 < t. Now, let an arbitrary couple t1,t2 € [0,1] such 

that t - 6 < t! < t2 < t be given. Then by (5.10) we have 

' K(t2, s) -K(h, s) for 0 < s < *i, 
K*(h,s) ~ KA(h,s) = { K(t2,s) - K(ti,h) for h < s < t2, 

K(t2,t2) - K(ti,h) for t2 s j s 



and it is easy to see that this implies that 

\\K&(t2,.)-K*(h,.)\\m 

<. \K(t2,0) - K(h,0)\ + varf,' (K(t2,.) - K(h,.)) + var£(#(* . , , . ) - K(h,h)) 

<. \\K(t2,.) - K(h,. )||BV + var£ A'(t2 , . ) < £ 

holds for any couple *i , i2 e [0,1] such that t - S < tt <. t> < t. Analogously we 

would show that for any e > 0 there exists a S e (0, t) such that 

\\K*(t2,.)-K*(h,.)\\m <£ 

holds for any couple h,t2 € [0,1] such that t < t{ <. t2 < t + <5, wherefrom the 

relation A'A € J f n x " immediately follows. 

Furthermore, if A'A 6 JTL
n x" and (5.11) holds, then we obviously have 

rlim_ \\KA(t,.) - KA(r,. ) | |B V <; Thm_ \\K(t,.) - K(T, . )||BV + }ny_ varT A'(«,.) = 0 

for any t € [0,1]. D 

5.10. R e m a r k. It follows easily from Lemmas 2.18 and 2.19 that if K e X[ x ", 

then for any x 6 G£ the function z(t) given by 

z(t) = / ds [K(t, s)] x(s) for i G [0,1] 
Jo 

is left-continuous on (0,1) if and only if (5.11) holds. 

5 .11 . E x a m p l e . Lot us consider the linear Volterra-Stieltjes integral equation 

(5.12) x(t) - / «i„ [K(t,»)] x(s) = f(t), t e [0. l] 
^o 

with A' e JTL"x n fulfilling the relation (5.11) and / e GJ . (Such equations with 

kernels K of strongly bounded variation on [0,1] x [0,1] (cf. Remark 2.20) were 

treated in [STV].) 

Let us define the function A'A : [0,1] x [0,1] -> K"x" again by (5.10). Then by 

Lemma 5.9 we have A'A G J ^ " x n . Obviously, 

(5.13) / d. [K(t, s)] x(s) = / ds [KA(t. s)} ,•(,) 
J0 Jo 
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holds for any X e G". Let t e [0, ,j a n d % £ G ^ g i v ( , n A n a k ) g o u s l y a s i n Example 

3.10 we could show that then 

(5.14) 

where 

and 

I - . [Л'Л M ] * ( , ) = A(t)x(0) + ţ B(ť,s)d[x(s)], 

Ж t ) = -t + Л - д ( U ) - Л л ( ř , 0 ) for ÍЄ[0.1] 

щ s ) = U<ЧtЛ)-KҢt,s+) for t Є [ 0 , l ] шкl SЄ[0,1) , 

KҢt,l) - Л ' û ( ť , l - ) for ť Є [ 0 , l ] and s = 1. 

It is easy to verify that A e G)'x" a n f i g e j r / / x n (cf. Lemma 2.15 and Lemma 5.9) 

and 

.4(ř) = / + K(t, 0 - K(t, 0) for t e [0.1] 

and 

B(t,s) = 

' K(t,t) - K{t,s+) if 0 < s < ť < 1, 

K(t,t) -K(t,ť) if 0 < ť < s < l , 

K(t,t) -K(t,t) if 0 < ť < s = l, 

l Л ( l . i ) - Л ( l , l - ) if t = s= 1. 

In particular, we have 

.4(0) = 0 and B(t,s)=0 whenever 0 < t < s < l and t < 1, 

Furthermore, for an arbitrary t e [0,1) we have 

B(t+, 0 = Tlim (K(T, r) - K(r, t+)) = K(t+. t+) - K(t+, t+) = 0 

(cf. Lemma 2.18). It means that under the above assumptions the Volterra-Stieltjes 

integral equation (5.12) may lie converted to the causal integral equation of the 

form (5.4) whose coefficients A and B satisfy the assumptions of Corollary 5.7 if in 

addition we would assume that the relation 

d e t [ / - ( A " ( l , l ) - A ' ( l , l - ) ] # 0 

is satisfied. 
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