Outline		Definitions of Models	Conclusions
	000	000	

\mathcal{PT} -symmetric models in curved manifolds

Petr Siegl

Nuclear Physics Institute, Řež, Czech Republic Faculty of Nuclear Sciences and Physical Engineering, Prague, Czech Republic Laboratoire Astroparticule et Cosmologie, Paris, France

Outline	Definitions of Models 000	Spectral results 000000	Conclusions
Outline			

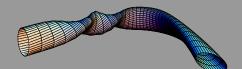
- 1 Introduction
 - Geometrical effects in quantum models
 - Hamiltonian
 - $\circ \mathcal{PT}\text{-symmetric models in 2D curved manifolds}$
- **2** Definitions of Models
 - Cylinder K = 0
 - Sphere K = 1
 - Pseudosphere K = -1
- **3** Spectral results
 - General properties
 - Cylinder $K = 0, \alpha_0$
 - Sphere K = 1
 - Pseudosphere K = -1
- **4** Conclusions

Spectral result: 000000 Conclusions

Geometrical effects in quantum models

Waveguides

- bending acts as an attractive interaction
 - Exner, Šeba 1989, Goldstone, Jaffe 1992, etc
- twisting acts as a repulsive interaction
 - Ekholm, Krejčiřík, Kovařík 2005



Quantum strips on surfaces

- positive curvature acts as an attractive interaction
- negative curvature acts as a repulsive interaction
 - Krejčiřík 2002

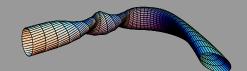
Spectral results

Conclusions

Geometrical effects in quantum models

Waveguides

- bending acts as an attractive interaction
 - Exner, Šeba 1989, Goldstone, Jaffe 1992, etc
- twisting acts as a repulsive interaction
 - Ekholm, Krejčiřík, Kovařík 2005



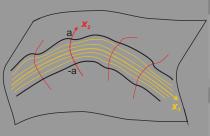
Quantum strips on surfaces

- positive curvature acts as an attractive interaction
- negative curvature acts as a repulsive interaction
 - Krejčiřík 2002

Introduction
000

Spectral result: 000000 Conclusions

Fermi coordinates and Hamiltonian



Metric tensor
$$g$$

 $g_{ij} = \begin{pmatrix} f(x_1, x_2) & 0 \\ 0 & 1 \end{pmatrix}$
 $g = det(g_{ij})$
Jacobi equation
 $\partial_2^2 f + Kf = 0$
 $f(\cdot, 0) = 1, \partial_2 f(\cdot, 0) = k$

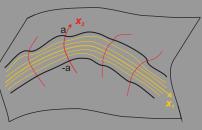
Laplace-Beltrami operator

$$\begin{split} H &= -g^{-1/2}\partial_i g^{1/2} g^{ij} \partial_j \\ \mathrm{Dom}(H) &= W^{2,2} + \mathrm{boundary\ conditions} \\ d\Omega &= g^{1/2} dx_1 dx_2 \end{split}$$

Introduction
000

Spectral result: 000000 Conclusions

Fermi coordinates and Hamiltonian



Metric tensor
$$g$$

 $g_{ij} = \begin{pmatrix} f(x_1, x_2) & 0 \\ 0 & 1 \end{pmatrix}$
 $g = det(g_{ij})$
Jacobi equation
 $\partial_2^2 f + Kf = 0$
 $f(\cdot, 0) = 1, \partial_2 f(\cdot, 0) = k$

Laplace-Beltrami operator

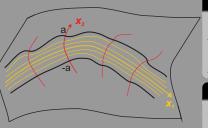
$$\begin{split} H &= -g^{-1/2} \partial_i g^{1/2} g^{ij} \partial_j \\ \mathrm{Dom}(H) &= W^{2,2} + \mathrm{boundary\ conditions} \\ d\Omega &= g^{1/2} dx_1 dx_2 \end{split}$$

Introduction	
000	

Spectral result

Conclusions

Fermi coordinates and Hamiltonian

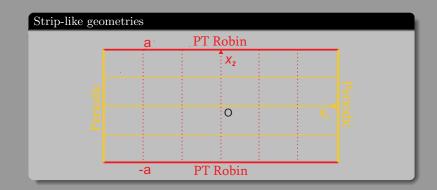


Metric tensor
$$g$$

 $g_{ij} = \begin{pmatrix} f(x_1, x_2) & 0 \\ 0 & 1 \end{pmatrix}$
 $g = det(g_{ij})$
Jacobi equation
 $\partial_2^2 f + Kf = 0$
 $f(\cdot, 0) = 1, \ \partial_2 f(\cdot, 0) = k$

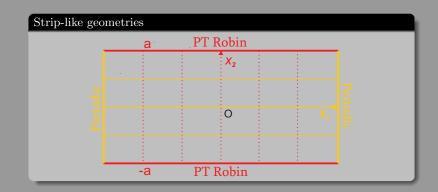
Laplace-Beltrami operator

$$\begin{split} H &= -g^{-1/2}\partial_i g^{1/2} g^{ij}\partial_j\\ \mathrm{Dom}(H) &= W^{2,2} + \mathrm{boundary\ conditions}\\ d\Omega &= g^{1/2} dx_1 dx_2 \end{split}$$



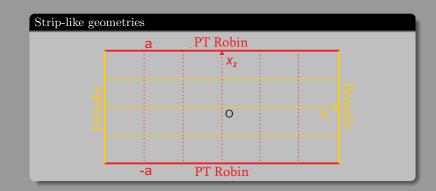
$$\mathcal{PT}$$
 Robin boundary conditions
 $\partial_2 \Psi(x_1, a) + i\alpha(x_1)\Psi(x_1, a) = 0$
 $\partial_2 \Psi(x_1, -a) + i\alpha(x_1)\Psi(x_1, -a) = 0$

$$\begin{array}{lll} \mathcal{PT} \text{ symmetry} \\ (\mathcal{P}\Psi)(x_1, x_2) &= & \Psi(x_1, -x_2) \\ (\mathcal{T}\Psi)(x_1, x_2) &= & \overline{\Psi(x_1, x_2)} \end{array}$$



\mathcal{PT} Robin boundary conditions
$\partial_2 \Psi(x_1, a) + i\alpha(x_1)\Psi(x_1, a) = 0$
$\partial_2 \Psi(x_1, -a) + i\alpha(x_1)\Psi(x_1, -a) = 0$

 $\begin{array}{ll} \mathcal{PT} \text{ symmetry} \\ (\mathcal{P}\Psi)(x_1, x_2) &= & \Psi(x_1, -x_2) \\ (\mathcal{T}\Psi)(x_1, x_2) &= & \overline{\Psi(x_1, x_2)} \end{array}$



\mathcal{PT} Robin boundary conditions
$\partial_2 \Psi(x_1, a) + i\alpha(x_1)\Psi(x_1, a) = 0$
$\partial_2 \Psi(x_1, -a) + i\alpha(x_1)\Psi(x_1, -a) = 0$

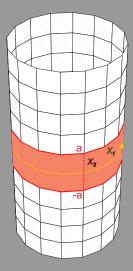
\mathcal{PT} symmetry	,	
$(\mathcal{P}\Psi)(x_1,x_2)$	=	$\Psi(x_1, -x_2)$
$(\mathcal{T}\Psi)(x_1,x_2)$	=	$\overline{\Psi(x_1,x_2)}$

Outline		Definitions of Models	
		000	
Cylind	$\mathbf{er} \ K = 0$		
Oyimu	$\mathbf{CI} \mathbf{I} \mathbf{I} = 0$		

Hamiltonian for cylinder

 $H_0^{\alpha} = -\partial_1^2 - \partial_2^2$ \mathcal{PT} Robin BC

$$g_{ij} \text{ for cylinder}$$
$$g_{ij} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$d\Omega = dx_1 dx_2$$



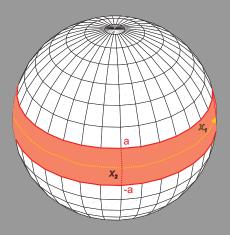
Outline		Definitions of Models	Conclusions
		000	
Sphere	K = 1		

Hamiltonian for sphere

$$H_1^{\alpha} = -\frac{1}{\cos^2 x_2} \partial_1^2 - \partial_2^2 + \tan x_2 \partial_2$$

$$\mathcal{PT} \text{ Robin BC}$$

g_{ij} for sphere
$g_{ij} = \begin{pmatrix} \cos^2 x_2 & 0\\ 0 & 1 \end{pmatrix}$ $d\Omega = \cos x_2 dx_1 dx_2$



0			

introduction

Definitions of Models $\circ \circ \bullet$

Spectral results

Conclusions

Pseudosphere K = -1

Hamiltonian for pseudosphere

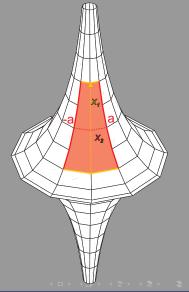
$$H^{\alpha}_{-1} = -\frac{1}{\cosh^2 x_2} \partial_1^2 - \partial_2^2 - \tanh x_2 \partial_2$$

 \mathcal{PT} Robin BC

 g_{ij} for pseudosphere

$$g_{ij} = \begin{pmatrix} \cosh^2 x_2 & 0 \\ 0 & 1 \end{pmatrix}$$

 $d\Omega = \cosh x_2 dx_1 dx_2$



introduction

Definitions of Model

Spectral results

Conclusions

General properties

	-	
α	Lii	3
α)

m-sect	orial
m-secu	Joriar

H_K^{α} are	\mathcal{PT} -symmetric:	$\mathcal{PT}H_K^\alpha = \mathcal{PT}H_K^\alpha$
Π_K are	\mathcal{P} -pseudo-Hermitian:	$(H_K^\alpha)^* = \mathcal{P} H_K^\alpha \mathcal{P}$
	\mathcal{T} -selfadjoint:	$(H_K^\alpha)^* = \mathcal{T} H_K^\alpha \mathcal{T}$
$\sigma_r(H_K^\alpha)$	$= \emptyset$	
$\sigma(H_K^\alpha) =$	$= \sigma_d(H_K^{lpha}),$	$K \in \{-1, 0, 1\}$

 α is a real constant function, $\alpha(x_1) = \alpha_0$

$$H_0^{\alpha_0} = \bigoplus_{m \in \mathbb{N}_0} \left(-\partial_2^2 + m^2 \right)$$

$$\prod_{m \in \mathbb{N}_0} \left(-\partial_2^2 + \tanh x_2 \partial_2 + \frac{m^2}{\cos^2 x_2} \right)$$

Outline		Definitions of Models 000
Genera	d properties	
$\alpha \in I$	Lip	
	m-sectorial	

 $\begin{array}{ll} H_{K}^{\alpha} \mbox{ are } & \begin{array}{ll} \mathcal{P}\mathcal{T}\mbox{-symmetric:} & \mathcal{P}\mathcal{T}H_{K}^{\alpha}=\mathcal{P}\mathcal{T}H_{K}^{\alpha}\\ & \begin{array}{ll} \mathcal{P}\mbox{-pseudo-Hermitian:} & (H_{K}^{\alpha})^{*}=\mathcal{P}H_{K}^{\alpha}\mathcal{P}\\ & \begin{array}{ll} \mathcal{T}\mbox{-selfadjoint:} & (H_{K}^{\alpha})^{*}=\mathcal{T}H_{K}^{\alpha}\mathcal{T} \end{array} \\ & \sigma_{r}(H_{K}^{\alpha})=\emptyset\\ & \sigma(H_{K}^{\alpha})=\sigma_{d}(H_{K}^{\alpha}), & K\in\{-1,0,1\} \end{array}$

 α is a real constant function, $\alpha(x_1) = \alpha_0$

$$H_0^{\alpha_0} = \bigoplus_{m \in \mathbb{N}_0} (-\partial_2^2 + m^2)$$

$$\begin{aligned} H_1^{\alpha_0} &= \bigoplus_{m \in \mathbb{N}_0} \left(-\partial_2^2 + \tan x_2 \partial_2 + \frac{m^2}{\cos^2 x_2} \right) \\ H_{-1}^{\alpha_0} &= \bigoplus_{m \in \mathbb{N}_0} \left(-\partial_2^2 - \tanh x_2 \partial_2 + \frac{m^2}{\cosh^2 x_2} \right) \end{aligned}$$

Petr Siegl *PT*-symmetric models in curved manifolds

Spectral results

Outline				
	()	t. I		

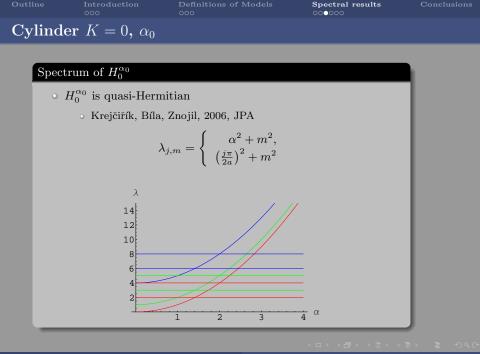
Introduction

Definitions of Models

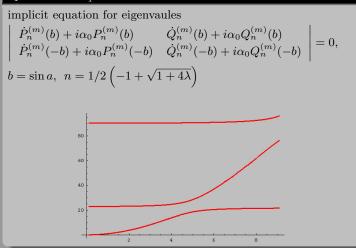
Spectral results

Conclusions

Width of the strips



Spectrum of $H_1^{\alpha_0}$



Outline	

Introduction

Definitions of Models

Spectral results

Conclusions

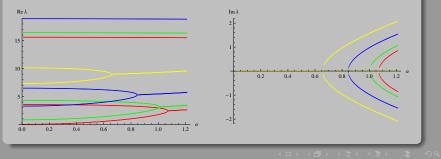
Pseudosphere $K = -1, \alpha_0$

Spectrum of $H_{-1}^{\alpha_0}$

implicit equation for eigenvaules

$$\begin{vmatrix} \left(\frac{P_k^{(l)}}{\sqrt{\cosh}}\right)(c) + i\alpha_0 \frac{P_k^{(l)}}{\sqrt{\cosh}}(c) & \left(\frac{Q_k^{(l)}}{\sqrt{\cosh}}\right)(c) + i\alpha_0 \frac{Q_k^{(l)}}{\sqrt{\cosh}}(c) \\ \vdots \\ \left(\frac{P_k^{(l)}}{\sqrt{\cosh}}\right)(-c) + i\alpha_0 \frac{Q_k^{(l)}}{\sqrt{\cosh}}(-c) & \left(\frac{Q_k^{(l)}}{\sqrt{\cosh}}\right)(-c) + i\alpha_0 Q_k^{(l)}(-c) \end{vmatrix} = 0,$$

$$c = \tanh a, \ k = \sqrt{1 - 4\lambda}, \ l = mi - 1/2$$



Outline	Definitions of Models

Spectral results

Conclusions

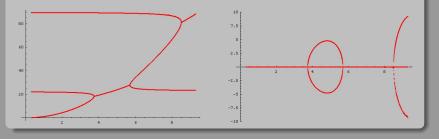
Pseudosphere $K = -1, \alpha_0$

Spectrum of $H_{-1}^{\alpha_0}$

implicit equation for eigenvaules

$$\begin{array}{c} \left(\frac{P_k^{(l)}}{\sqrt{\cosh}}\right)(c) + i\alpha \frac{P_k^{(l)}}{\sqrt{\cosh}}(c) & \left(\frac{Q_k^{(l)}}{\sqrt{\cosh}}\right)(c) + i\alpha \frac{Q_k^{(l)}}{\sqrt{\cosh}}(c) \\ \vdots \\ \left(\frac{P_k^{(l)}}{\sqrt{\cosh}}\right)(-c) + i\alpha \frac{Q_k^{(l)}}{\sqrt{\cosh}}(-c) & \left(\frac{Q_k^{(l)}}{\sqrt{\cosh}}\right)(-c) + i\alpha Q_k^{(l)}(-c) \end{array} \right| = 0,$$

$$c = \tanh a, \ k = \sqrt{1 - 4\lambda}, \ l = mi - 1/2$$



Outline		Definitions of Models 000	Spectral results 000000	Conclusions
Conclus	sions			

Presented models

- three strip-like models were presented
 - strip on a cylinder, sphere and pseudosphere
 - $\circ\,$ all models possess only discrete spectrum
 - $\circ\,$ all models are exactly solvable for constant α
- $\circ~$ curvature essentially influences the spectrum of $\mathcal{PT}\text{-symmetric}$ models

Curvature effects

Outline		Definitions of Models 000	Spectral results 000000	Conclusions
Conclus	ions			

Presented models

- three strip-like models were presented
 - strip on a cylinder, sphere and pseudosphere
 - $\circ\,$ all models possess only discrete spectrum
 - $\circ\,$ all models are exactly solvable for constant α
- $\circ~$ curvature essentially influences the spectrum of $\mathcal{PT}\text{-symmetric}$ models

Curvature effects

K	realization	$\sigma(H_K^{\alpha_0})$	eigenvalues
0	cylinder	\mathbb{R}	only some α -dependent, crossing
1	sphere	\mathbb{R}	all α -dependent, no crossing
-1	pseudosphere	\mathbb{C}	all α -dependent, crossing