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Geometrical effects in quantum models

Waveguides

bending - acts as an attractive interaction
Exner, Seba 1989, Goldstone, Jaffe 1992, etc
twisting - acts as a repulsive interaction

Ekholm, Krejcifik, Kovarik 2005
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Geometrical effects in quantum models

Waveguides

bending - acts as an attractive interaction
Exner, Seba 1989, Goldstone, Jaffe 1992, etc
twisting - acts as a repulsive interaction

Ekholm, Krejcifik, Kovarik 2005

Quantum strips on surfaces

positive curvature - acts as an attractive interaction
negative curvature - acts as a repulsive interaction

Krejcirik 2002
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Fermi coordinates and Hamiltonian
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Fermi coordinates and Hamiltonian

Metric tensor g

[ flzi,22) O
()

g = det(gij;)

Jacobi equation

Bf+Kf=0
f(,0) =1, 02f(-,0) =k
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Fermi coordinates and Hamiltonian

Conclusions

Metric tensor g

[ flzi,22) O
()

g = det(gi;)

Jacobi equation
Bf+Kf=0
f(,0)=1,0:f(-,0) =k

Laplace-Beltrami operator

H = —gY28,g"/2gi3 9,
Dom(H) = W?? + boundary conditions
dQ) = gl/Qd:Eldacg
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PT-symmetric models in 2D curved manifolds

ike geometri

a PT Robin
: : ?Xz
0

T
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PT-symmetric models in 2D curved manifolds

ip-like geometries

a PT Robin
: : ?Xz
0

T

PT Robin boundary conditions

»Y(z1,a) + ia(z1)¥(z1,a) = 0
0V (1, —a)+ia(z1)V(x1, —a) =0
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PT-symmetric models in 2D curved manifolds

Strip-like geometr

a PT Robin
: : ?Xz
0

T

PT Robin boundary conditions PT symmetry

»Y(z1,a) + ia(z1)¥(z1,a) = 0 (PO)(z1,22) = Y(z1,—2)
82¥(z1,~a) +ia(@)¥(er,~0) =0 | (7w)(er.00) — T(orzd)
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Cylinder K =0

Hamiltonian for cylinder

HY = -0 — 03
P7T Robin BC

- 1 0
5=\ 0 1
dQ = dl’ldxg
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Sphere K =1

Hamiltonian for sphere

1
HY = —#Bf — 02 + tan z20,
cos? xo

P7T Robin BC

- cos’za 0
9 = 0 1

d) = cos xodx1dxs
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Pseudosphere K = —1

Hamiltonian for pseudosphere

1
Hgl =73 8% — (9% — tanha:gag
cosh” x5
PT Robin BC

gij for pseudosphere

- cosh’zs 0
o = 0 1

dQ = COSh xzdl‘ldl‘g
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General properties

m-sectorial
o PT-symmetric: PTHz =PTHg%
Hy are . "
P-pseudo-Hermitian: (Hg)* = PHEP
T -selfadjoint: (Hg) =THxT
or(Hg) =10
o(Hg) = ca(H%), K e {-1,0,1}
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General properties

m-sectorial

HS are PT-symmetric: PTHz =PTHg%
P-pseudo-Hermitian: (Hg)* = PHEP
T -selfadjoint: (Hg) =THxT

or(Hz) =0

o(Hg) = ca(H%), K e {-1,0,1}

a is a real constant function, a(z1) = ao

Hy® = @ (-85 +m?)
meNg
2 m?
H = —
1 @ ( 05 + tan 202 + P x2)
m€ENqg
2 m?
H® = @ (—82 — tanh 205 + 72)
meN, cosh” z2
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Width of the strips
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Cylinder K =0, «y

Hg® is quasi-Hermitian
Krejciitk, Bila, Znojil, 2006, JPA
A\ o + m2,
Jym = jm\2 2
(%) +m
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Sphere K =1, «ag

Spectrum of H{®

implicit equation for eigenvaules
B{™ (b) + i PS™ (b) QL™ (b) + i Q™ (b)
P (=b) +iao P™ (=) Q5™ (=b) + ico Q™ (—b)

b=sina, n=1/2 (—1—&—\/@)
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Pseudosphere K = —1,q,

ctrum of

implicit equation for eigenvaules

PO p® Qif) QW
Vv cosh ( )+2a0\/cos ( ) Vv cosh (C) +’La0\/cosh (C)

=0
p® ) O] O] ’
(V55 o +ia i -a () (-0 +ianQ(-0)
c=tanha, k=V1—4\, l=mi—1/2
Red Ima
A
15 s /

02 04 06 083 10 '\1.2

0.0 0.2 04 06 08 10 12
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Pseudosphere K = —1,q,

Spectrum of

implicit equation for eigenvaules

P . p® Q;(cl) ;
Vv cosh (C) - Vcosh (C) Vv cosh (C) o G

PO QW Qg)
V/cosh (_C) + o V/cosh (_C) v/ cosh (_C)

c=tanha, k=V1—4X\, l=mi—1/2

Spectral results
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Conclusions

Petr Siegl
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Conclusions

Presented model

three strip-like models were presented

strip on a cylinder, sphere and pseudosphere
all models possess only discrete spectrum
all models are exactly solvable for constant o

curvature essentially influences the spectrum of P7-symmetric models
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Conclusions

Presented models

three strip-like models were presented

strip on a cylinder, sphere and pseudosphere
all models possess only discrete spectrum
all models are exactly solvable for constant o

curvature essentially influences the spectrum of P7-symmetric models

Curvature effects

’ K ‘ realization ‘ o(HZ) ‘ eigenvalues
0 cylinder R only some a-dependent, crossing
1 sphere R all a-dependent, no crossing
-1 | pseudosphere C all a-dependent, crossing
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