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Geometrical effects in quantum models

Waveguides

bending - acts as an attractive interaction

Exner, Šeba 1989, Goldstone, Jaffe 1992, etc

twisting - acts as a repulsive interaction

Ekholm, Krejčǐŕık, Kovař́ık 2005

Quantum strips on surfaces

positive curvature - acts as an attractive interaction

negative curvature - acts as a repulsive interaction

Krejčǐŕık 2002
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Fermi coordinates and Hamiltonian

x
1

x
2

-a

a

Metric tensor g

gij =

(
f(x1, x2) 0

0 1

)
g = det(gij)

Jacobi equation

∂2
2f +Kf = 0

f(·, 0) = 1, ∂2f(·, 0) = k

Laplace-Beltrami operator

H = −g−1/2∂ig
1/2gij∂j

Dom(H) = W 2,2 + boundary conditions

dΩ = g1/2dx1dx2
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PT -symmetric models in 2D curved manifolds

Strip-like geometries

x
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PT Robin

PT Robin
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PT Robin boundary conditions

∂2Ψ(x1, a) + iα(x1)Ψ(x1, a) = 0

∂2Ψ(x1,−a)+ iα(x1)Ψ(x1,−a) = 0

PT symmetry

(PΨ)(x1, x2) = Ψ(x1,−x2)

(T Ψ)(x1, x2) = Ψ(x1, x2)
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Cylinder K = 0

Hamiltonian for cylinder

Hα
0 = −∂2

1 − ∂2
2

PT Robin BC

gij for cylinder

gij =

(
1 0

0 1

)
dΩ = dx1dx2

-a

a x
1

x
2
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Sphere K = 1

Hamiltonian for sphere

Hα
1 = − 1

cos2 x2
∂2
1 − ∂2

2 + tanx2∂2

PT Robin BC

gij for sphere

gij =

(
cos2 x2 0

0 1

)
dΩ = cosx2dx1dx2
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Pseudosphere K = −1

Hamiltonian for pseudosphere

Hα
−1 = − 1

cosh2 x2

∂2
1 − ∂2

2 − tanhx2∂2

PT Robin BC

gij for pseudosphere

gij =

(
cosh2 x2 0

0 1

)
dΩ = coshx2dx1dx2

x
2

x
1

a-a
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General properties

α ∈ Lip

Hα
K are

m-sectorial

PT -symmetric: PT Hα
K = PT Hα

K

P-pseudo-Hermitian: (Hα
K)∗ = PHα

KP
T -selfadjoint: (Hα

K)∗ = T Hα
KT

σr(H
α
K) = ∅

σ(Hα
K) = σd(H

α
K), K ∈ {−1, 0, 1}

α is a real constant function, α(x1) = α0

Hα0
0 =

⊕
m∈N0

(−∂2
2 +m2)

Hα0
1 =

⊕
m∈N0

(
−∂2

2 + tanx2∂2 +
m2

cos2 x2

)

Hα0
−1 =

⊕
m∈N0

(
−∂2

2 − tanhx2∂2 +
m2

cosh2 x2

)
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Width of the strips
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Cylinder K = 0, α0

Spectrum of Hα0
0

Hα0
0 is quasi-Hermitian

Krejčǐŕık, B́ıla, Znojil, 2006, JPA

λj,m =

{
α2 +m2,(

jπ
2a
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+m2
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Sphere K = 1, α0

Spectrum of Hα0
1

implicit equation for eigenvaules∣∣∣∣∣ Ṗ (m)
n (b) + iα0P

(m)
n (b) Q̇

(m)
n (b) + iα0Q

(m)
n (b)

Ṗ
(m)
n (−b) + iα0P

(m)
n (−b) Q̇

(m)
n (−b) + iα0Q

(m)
n (−b)

∣∣∣∣∣ = 0,

b = sin a, n = 1/2
(
−1 +

√
1 + 4λ

)

Petr Siegl PT -symmetric models in curved manifolds



Outline Introduction Definitions of Models Spectral results Conclusions

Pseudosphere K = −1,α0

Spectrum of Hα0
−1

implicit equation for eigenvaules∣∣∣∣∣∣∣∣
˙(
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(l)
k (−c)

∣∣∣∣∣∣∣∣ = 0,

c = tanh a, k =
√

1− 4λ, l = mi− 1/2
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Pseudosphere K = −1,α0

Spectrum of Hα0
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Conclusions

Presented models

three strip-like models were presented

strip on a cylinder, sphere and pseudosphere

all models possess only discrete spectrum

all models are exactly solvable for constant α

curvature essentially influences the spectrum of PT -symmetric models

Curvature effects

K realization σ(Hα0
K ) eigenvalues

0 cylinder R only some α-dependent, crossing

1 sphere R all α-dependent, no crossing

-1 pseudosphere C all α-dependent, crossing
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