Complete list of publications

SUMMARY
Original papers (international journals): 166
Review articles (international journals): 5
Monographs and textbooks: 5

Original papers (international journals)

  1. Nezbeda I.: On solution of the Percus-Yevick equation for finite-range potential with a hard core. Czech. J. Phys. B24, 703-704 (1974).
  2. Nezbeda I.: Analytic solution of Percus-Yevick equation for fluid of hard spheres. Czech. J. Phys. B24, 55-62 (1974).
  3. Nezbeda I.: The statistical mechanics of systems with generalised nonspherical pair potential. Czech. J. Phys. B25, 843-853 (1975).
  4. Nezbeda I., Boublik T., Trnka O.: Monte Carlo study of the two-dimensional hard spherocylinder system. Czech. J. Phys. B25, 119-122 (1975).
  5. Boublik T., Nezbeda I., Trnka O.: Monte Carlo study of hard spherocylinders. Czech. J. Phys. B26, 1081-1087 (1976).
  6. Jelinek J., Nezbeda I.: Analytic solution of the Percus-Yevick equation for sticky hard sphere potential. Physica A84, 175-187 (1976).
  7. Nezbeda I.: Approximate hard convex body equations of state and boundaries of their validity. Czech. J. Phys. B26, 355-358 (1976).
  8. Nezbeda I.: Virial expansion and an improved equation of state for the hard convex molecule system. Chem. Phys. Lett. 41, 55-58 (1976).
  9. Boublik T., Nezbeda I.: Equation of state for hard dumb-bells. Chem. Phys. Lett. 46, 315-316 (1977).
  10. Nezbeda I.: Percus-Yevick theory for the system of hard spheres with a square-well attraction. Czech. J. Phys. B27, 247-254 (1977).
  11. Nezbeda I.: On liquid-gas phase transition in the PY theory. Czech. J. Phys. B27, 1067-1070 (1977).
  12. Nezbeda I.: Soft nonspherical repulsions and properties of non-polar liquids. Czech. J. Phys. B27, 910-919 (1977).
  13. Nezbeda I.: Statistical thermodynamics of interaction-site molecules. the theory of hard dumb-bells. Mol. Phys. 33, 1287-1299 (1977).
  14. Nezbeda I.: On the asymptotic decay of pair correlations. Czech. J. Phys. B27, 481-486 (1977).
  15. Nezbeda I., Boublik T.: Hard heteronuclear dumb-bell fluid. Czech. J. Phys. B27, 1071-1074 (1977).
  16. Nezbeda I., Boublik T.: Hard oblate spherocylinders: Monte Carlo virial coefficients. Czech. J. Phys. B27, 953-956 (1977).
  17. Nezbeda I.: Properties of a hard spherocylinder fluid from the blip function theory. Czech. J. Phys. B28, 1071-1080 (1978).
  18. Nezbeda I., Boublik T.: Monte Carlo study of hard spherocylinders. II. Czech. J. Phys. B28, 353-356 (1978).
  19. Smith W. R., Nezbeda I., Melnyk T. W., Fitts D. D.: Reference system selection and the average Mayer-function perturbation theory for molecular fluids. Faraday Discussion Chem. Soc. 66, 130-137 (1978).
  20. Nezbeda I., Leland T. W.: Conformal theory of hard nonspherical molecule fluids. J. Chem. Soc. Faraday Trans. II 5, 193-200 (1979).
  21. Nezbeda I., Pavlicek J., Labik S.: Thermodynamic properties of pure hard sphere, spherocylinder, and dumbell fluids. Coll. Czech. Chem. Commun. 44, 3555-3565 (1979).
  22. Nezbeda I., Smith W. R.: The RAM perturbation theory and the hard dumbell fluid. Chem. Phys. Lett. 64, 146-149 (1979).
  23. Nezbeda I., Smith W. R., Boublik T.: Conjectures on fluids of hard spherocylinders, dumbells, and spheres. Mol. Phys. 37, 985-989 (1979).
  24. Pavlicek J., Nezbeda I., Boublik T.: An accurate equation of state of a hard convex body fluid mixture. Czech. J. Phys. B29, 1061-1070 (1979).
  25. Boublik T., Nezbeda I.: Monte Carlo study of the equimolar mixture of hard spheres and spherocylinders. Czech. J. Phys. B30, 121-127 (1980).
  26. Nezbeda I.: Monte Carlo study of hard spherocylinders. III. The angular correlation functions. Czech. J. Phys. B30, 601-612 (1980).
  27. Nezbeda I.: Simple pair potential model for real fluids. Czech. J. Phys. B30, 481-487 (1980).
  28. Nezbeda I., Boublik T.: Monte Carlo studies of mixtures of hard spheres and spherocylinders II. Czech. J. Phys. B30, 953-956 (1980).
  29. Nezbeda I., Labik S., Malijevsky A.: Simple pair potential model for real fluids. II. Transport properties of dilute gases. Czech. J. Phys. B30, 862-869 (1980).
  30. Cummings P., Nezbeda I., Smith W. R., Morriss G.: Monte Carlo simulation results for the full pair correlation function of the hard dumbell fluid. Mol. Phys. 43, 1471-1475 (1981).
  31. Labik S., Malijevsky A., Nezbeda I.: The radial distribution function of a soft-repulsive hard core particle system. Czech. J. Phys. B31, 8-15 (1981).
  32. Nezbeda I.: Simple pair potential model for real fluids. III. Parameter determination and a revised model for spherical molecules. Czech. J. Phys. B31, 563-571 (1981).
  33. Nezbeda I., Smith W. R.: The use of a site-centered coordinate system in the statistical mechanics of site interaction molecular fluids. Chem. Phys. Lett. 81, 79-82 (1981).
  34. Nezbeda I., Smith W. R.: Equation of state of site-interaction fluids from the site-site correlation function. J. Chem. Phys. 75, 4060-4063 (1981).
  35. Smith W. R., Nezbeda I.: Computation of the pair correlation function of a repulsive finite-intercept hard-core simple fluid. Chem. Phys. Lett. 82, 96-99 (1981).
  36. Smith W. R., Nezbeda I.: Perturbation theory for molecular fluids. II. Accurate structural and thermodynamic properties of the hard spherocylinder fluid. Mol. Phys. 44, 347-361 (1981).
  37. Melnyk T., Smith W. R., Nezbeda I.: Perturbation theories for molecular fluids. III. RAM theory results for Lennard-Jones diatomic and quadrupolar fluids. Mol. Phys. 46, 629-640 (1982).
  38. Nezbeda I., Labik S.: Fluid of general hard triatomic molecules. I. Virial coefficients. Mol. Phys. 47, 1087-1096 (1982).
  39. Nezbeda I., Smith W. R.: The site-site correlation functions of molecular fluids. I. Computation via zeroth-order perturbation theory. Mol. Phys. 45, 681-694 (1982).
  40. Aim K., Nezbeda I.: Perturbed hard sphere equations of state of real liquids. I. Examination of a simple equation of the second order. Fluid Phase Equil. 12, 235-251 (1983).
  41. Labik S., Nezbeda I.: Fluid of general hard triatomic molecules. II. Monte Carlo simulation results for a non-linear molecule model. Mol. Phys. 48, 97-109 (1983).
  42. Nezbeda I., Smith W. R., Labik S.: Perturbation theory for the Lennard-Jones diatomic fluid. I. Site-centered spherical harmonic coefficients. J. Chem. Phys. 79, 6242-6253 (1983).
  43. Smith W. R., Nezbeda I.: The reference average Mayer-function (RAM) perturbation theory for molecular fluids. in Molecular-Based Study of Fluids, Vol. 204, Haile, J., and Mansoori, G. A., Eds., Am. Chem. Soc., Washington, D. C., pp. 235-279 (1983).
  44. Labik S., Nezbeda I., Smith W. R.: The site-site pair correlation functions of molecular fluids. II. RAM theory results for hard heteronuclear diatomics. Mol. Phys. 52, 815-825 (1984).
  45. Nezbeda I., Aim K.: Perturbed hard sphere equations of state of real fluids. II. Effective hard sphere diameters and residual properties. Fluid Phase Equil. 17,1-18 (1984).
  46. Nezbeda I., Boublik T.: On the possible eqivalence of hard convex molecule fluids. Mol. Phys. 51, 1443-1447 (1984).
  47. Nezbeda I., Smith W. R., Labik S.: Perturbation theory for the Lennard-Jones diatomic fluid. II. Thermodynamic and quasithermodynamic properties. J. Chem. Phys. 81, 935-943 (1984).
  48. Smith W. R., Nezbeda I.: A simple model for associated fluids. J. Chem. Phys. 81, 3694-3699 (1984).
  49. Smith W. R., Nezbeda I., Labik S.: A simple pseudo-molecular fluid model. Exact and approximate structural properties. J. Chem. Phys. 80, 5219-5229 (1984).
  50. Smith W. R., Nezbeda I., Reddy M. R.: The ram perturbation theory for inhomogeneous molecular fluids: hard dumbells at a hard wall. Chem. Phys. Lett. 106, 575-578 (1984).
  51. Nezbeda I.: Towards a new spherical reference for molecular fluids. Mol. Phys. 54, 1009-1014 (1985).
  52. Nezbeda I.: Hard body fluids again: virial coefficients and equations of state. Czech. J. Phys. B35, 752-767 (1985).
  53. Nezbeda I., Reddy M. R., Smith W. R.: Computer simulation studies of molecular fluid mixtures. I. Hard spheres, heteronuclear dumbells and linear triatomics. Mol. Phys. 55, 447-462 (1985).
  54. Nezbeda I., Voertler H. L.: MC simulation results for a hard core model of carbon tetrachloride. Mol. Phys. 57, 909-918 (1986).
  55. Boublik T., Nezbeda I.: P-V-T behaviour of hard body fluids. Theory and experiment. Coll. Czech. Chem. Commun. 51, 2301-2432 (1986).
  56. Kolafa J., Nezbeda I.: Monte Carlo simulations on primitive models of water and methanol. Mol. Phys. 61, 161-175 (1987).
  57. Labik S., Malijevsky A., Nezbeda I.: Correlation functions of hard-body fluids from thermodynamic properties of their mixtures. Mol. Phys. 60, 1107-1120 (1987).
  58. Labik S., Smith W. R., Nezbeda I.: The ram perturbation theory for molecular fluid mixtures. I. Site-centred correlation functions. Mol. Phys. 62, 775-784 (1987).
  59. Nezbeda I., Aim K.: Perturbed hard sphere equations of state. Fluid Phase Equil. 34, 171-188 (1987).
  60. Strnad M., Nezbeda I.: The second virial coefficient of quadrupolar dumbells. Czech. J. Phys. B37, 1261-1276 (1987).
  61. Nezbeda I., Triska B., Malijevsky A.: The fifth virial coefficients of hard body fluids. Czech. J. Phys. B38, 1234-1242 (1988).
  62. Aim K., Nezbeda I.: Thermodynamic properties of the Lennard-Jones fluid. I. Simulation data, rigorous theories and parametrized equations of state. Fluid Phase Equil. 48, 11-22 (1989).
  63. Kolafa J., Nezbeda I.: Implementation of the Dahl-Andersen-Wertheim theory for realistic water-water potentials. Mol. Phys. 66, 87-95 (1989).
  64. Nezbeda I., Aim K.: On the way from theoretical calculations to practical equations of state for real fluids. Fluid Phase Equil. 52, 39-46 (1989).
  65. Nezbeda I., Aim K., Kolafa J.: On volume-explicit equations of state: hard-body and real fluids. Z. phys. Chem. (Leipzig) 270, 533-539 (1989).
  66. Nezbeda I., Kolafa J., Kalyuzhnyi Y. V.: Primitive model of water. II. Theoretical results for the structure and thermodynamic properties. Mol. Phys. 68, 143-160 (1989).
  67. Nezbeda I., Kolafa J., Labik S.: The spherical harmonic expansion coefficients and multidimensional integrals in theories of liquids. Czech. J. Phys. B39, 65-79 (1989).
  68. Voertler H. L., Kolafa J., Nezbeda I.: Computer simulation studies of hard body fluid mixtures. II. Mol. Phys. 68, 547-561 (1989).
  69. Nezbeda I., Labik S., Malijevsky A.: Structure of hard body fluids. Critical compilation of selected computer simulation data. Coll. Czech. Chem. Commun. 54, 1137-1202 (1989).
  70. Kalyuzhnyi Y. V., Holovko M. F., Nezbeda I.: Analytic solution of the RISM equation for n-atomic symmetric molecules. Czech. J. Phys. B40, 1098-1106 (1990).
  71. Nezbeda I., Iglesias-Silva G. A.: Primitive model of water. III. Analytic theoretical results with anomalies for the thermodynamic properties. Mol. Phys. 69, 767-774 (1990).
  72. Nezbeda I., Kolafa J.: On perturbation expansion for associated liquids. Czech. J. Phys. B40, 138-150 (1990).
  73. Nezbeda I., Kolafa J., "Towards a molecular theory of water," in Properties of water and steam, edited by M.Pichal and O.Sifner (Hemisphere Publ. Co., New York, 1990), pp. 539-546.
  74. Nezbeda I., Reddy M. R., Smith W. R.: Monte-Carlo study of hard-body fluids at a hard wall: pure fluids and mixtures of spheres, heteronuclear dumbbells and linear triatomics. Mol. Phys. 71, 915-929 (1990).
  75. Voertler H. L., Nezbeda I.: Volume-explicit equation of state and excess volume of mixing of fused-hard-sphere fluids. Ber. Bunsenges. Phys. Chem. 94, 559-563 (1990).
  76. Kalyuzhnyi Y. V., Nezbeda I.: Analytic solution of the Wertheim's OZ equation for the Smith-Nezbeda model of associated liquids. Mol. Phys. 73, 703-713 (1991).
  77. Kolafa J., Nezbeda I.: Primitive models of associated liquids: equation of state, liquid-gas phase transition and percolation threshold. Mol. Phys. 72, 777-785 (1991).
  78. Nezbeda I., Kahl G.: First order correction to the three-body correlation function. Chem. Phys. Lett. 183, 337-339 (1991).
  79. Nezbeda I., Kolafa J.: A new version of the insertion particle method for determining the chemical potential by Monte Carlo simulation. Mol. Simul. 5, 391-403 (1991).
  80. Nezbeda I., Smith W. R.: Theory of the glass transition and the amorphous state. I. The hard-sphere fluid. Mol. Phys. 75, 789-803 (1992).
  81. Aim K., Kolafa J., Nezbeda I., Voertler H. L.: The Lennard-Jones fluid revisited: new thermodynamic data and new equation of state. Fluid Phase Equil. 83, 15-22 (1993).
  82. Kolafa J., Voertler H. L., Aim K., Nezbeda I.: The Lennard-Jones fluid revisited. I. Computer simulation results. Mol. Simul. 11, 305-319 (1993).
  83. Nezbeda I.: Molecular-thermodynamic reference equations of state. Fluid Phase Equil. 87, 237-253 (1993).
  84. Nezbeda I., Voertler H. L.: Volume-explicit perturbed hard-sphere equation of state for gases at high pressures. Ber. Bunsenges. Phys. Chem. 97, 128-133 (1993).
  85. Kolafa J., Nezbeda I.: The Lennard-Jones fluid: an accurate analytic and theoretically-based equation of state. Fluid Phase Equil. 100, 1-34 (1994).
  86. Nezbeda I., Smith W. R., Kolafa J.: Molecular theory of phase equilibria in model associated mixtures: I. Binary mixtures of water and a simple fluid. J. Chem. Phys. 100, 2191-2201 (1994).
  87. Kolafa J., Nezbeda I.: The hard tetrahedron fluid: a model for the structure of water. Mol. Phys. 85, 421-434 (1995).
  88. Nezbeda I., Kolafa J.: The use of control quantities in computer simulation experiments: application to the exp-6 potential fluid. Mol. Simul. 14, 153-163 (1995).
  89. Nezbeda I., Kolafa J., Pavlicek J., Smith W. R.: Molecular theory of phase equilibria in model and real associated mixtures. II. Binary aqueous mixtures of inert gases and n-alkanes. J. Chem. Phys. 102, 9638-9646 (1995).
  90. Nezbeda I., Strnad M.: Monte Carlo simulations in the vicinity of the critical point: vapor-liquid coexistence curve. Czech. J. Phys. B45, 793-798 (1995).
  91. Strnad M., Nezbeda I.: Equation of state and chemical potential of ternary mixtures of hard spheres and heteronuclear diatomics. Mol. Phys. 85, 91-101 (1995).
  92. Nezbeda I., Slovak J.: Can Lennard-Jones particles with four bonding sites realistically model water. Chem. Phys. Lett. 260, 336-340 (1996).
  93. Pavlicek J., Nezbeda I.: Application of primitive models of association: a simple theoretical equation of state of water. Fluid Phase Equil. 116, 530-536 (1996).
  94. Nezbeda I.: Fluids of pseudo-hard bodies. Mol. Phys. 90, 661-664 (1997).
  95. Nezbeda I., Kolafa J., Smith W. R.: Molecular theory of phase equilibria in model and real associated mixtures: III. Binary solutions of inert gases and n-alkanes in ammonia and methanol. Fluid Phase Equil. 130, 133-156 (1997).
  96. Nezbeda I., Kolafa J., Smith W. R.: On global phase diagrams of binary mixtures. I. Systematic basis for describing types of phase equilibrium phenomena. J. Chem. Soc. Faraday Trans. 93, 3073-3080 (1997).
  97. Nezbeda I., Slovak J.: A family of primitive models of water: three- four-, and five-site models. Mol. Phys. 90, 353-372 (1997).
  98. Slovak J., Nezbeda I.: Extended 5-site primitive models of water: theory and computer simulations. Mol. Phys. 91, 1125-1136 (1997).
  99. Voertler H. L., Nezbeda I., Lisal M.: The exp-6 potential fluid at very high pressures. Computer simulations and theory. Mol. Phys. 92, 813-824 (1997).
  100. Nezbeda I.: Simple short-ranged models of water and their application. A review. J. Mol. Liquids 73,74, 317-336 (1997).
  101. Kolafa J., Nezbeda I., Pavlicek J., Smith W. R.: Global phase diagrams of model and real binary fluid mixtures: Lorentz-Berthelot mixture of attractive hard spheres. Fluid Phase Equil. 146, 103-121 (1998).
  102. Nezbeda I.: Structure of water: short-ranged versus long-ranged forces. Czech. J. Phys. B48, 117-122 (1998).
  103. Predota M., Nezbeda I., Kalyuzhnyi Y. V.: Fluids of pseudo-hard bodies. II. Hard-body reference systems for water, methanol, and ammonia. Mol. Phys. 94, 937-948 (1998).
  104. Smith W. R., Nezbeda I., Strnad M., Triska B., Labik S.: Generalized thermodynamic perturbation theory for polyatomic fluid mixtures. I. Formulation and results for chemical potentials. J. Chem. Phys. 109, 1052-1061 (1998).
  105. Strnad M., Nezbeda I.: Extended primitive models of water revisited. Mol. Phys. 93, 25-30 (1998).
  106. Kolafa J., Nezbeda I., Pavlicek J., Smith W. R.: Global phase diagrams of model and real binary fluid mixtures. Part II. Non-Lorentz-Berthelot mixture of attractive hard spheres. Phys. Chem. Chem. Phys. 1, 4233-4240 (1999).
  107. Lisal M., Nezbeda I.: Pure fluids of homonuclear and heteronuclear square-well diatomics. I. Computer simulation study. Mol. Phys. 96, 335-347 (1999).
  108. Lisal M., Nezbeda I., Smith W. R.: The reaction ensemble method for the computer simulation of chemical and phase equilibria. II. The Br2+Cl2+BrCl system. J. Chem. Phys. 110, 8597-8604 (1999).
  109. Lisal M., Nezbeda I., Voertler H. L.: Fluid-solid boundary of the compressed exp-6 fluids. Fluid Phase Equil. 154, 49-54 (1999).
  110. Lisal M., Smith W. R., Nezbeda I.: Accurate computer simulation of phase equilibrium for complex fluid mixtures. Application to binaries involving isobutene, methanol, methyl tert-butyl ether, and n-butane. J. Phys. Chem. B 103, 10496-10505 (1999).
  111. Nezbeda I., Kolafa J.: Effect of short- and long-range forces on the structure of water: temperature and density dependence. Mol. Phys. 97, 1105-1116 (1999).
  112. Nezbeda I., Pavlicek J., Kolafa J., Galindo A., Jackson G.: Global phase behavior of model mixtures of water and n-alkanols. Fluid Phase Equil. 158-160, 193-199 (1999).
  113. Predota M., Nezbeda I.: Hydrophobic hydration at the level of primitive models. Mol. Phys. 96, 1237-1248 (1999).
  114. Strnad M., Nezbeda I.: An extended Gibbs ensemble. Mol. Simul. 22, 193-198 (1999).
  115. Lisal M., Smith W. R.,Nezbeda I.: Computer simulation of the thermodynamic properties of high-temperature chemically-reacting plasmas. J. Chem. Phys. 113, 4885-4895 (2000).
  116. Lisal M., Smith W. R.,Nezbeda I.: Molecular simulation of multicomponent reaction and phase equilibria in MTBE ternary system.. AIChE J. 46, 866-875 (2000).
  117. Kolafa J., Nezbeda I.: Effect of short- and long-range forces on the structure of water. II. Orientational ordering and the dielectric constant. Mol. Phys. 98, 1505-1520 (2000).
  118. Strnad M., Nezbeda I.: Parallelized sampling of the Gibbs ensemble. Mol. Phys. 98, 1887-1894 (2000).
  119. Nezbeda I.: On the role of short- and long-range forces in aqueous systems. J. Mol. Liquids 85, 249-255 (2000).
  120. Nezbeda I.: Solubility of apolar fluids in water: A simple molecular model and theory. Fluid Phase Equil. 170, 13-22 (2000).
  121. Nezbeda I.: Can we understand (and model) aqueous solutions without any electrostatic interactions?. Mol. Phys. 99, 1631-1639 (2001).
  122. Nezbeda I.: On dispersion force correction terms in perturbed equations of state. Fluid Phase Equil. 180, 165-171 (2001).
  123. Nezbeda I., Lisal M.: Effect of short and long range forces on the thermodynamic properties of water. A simple short range reference system. Mol. Phys. 99, 291-300 (2001).
  124. Kolafa J., Nezbeda I., Lisal M.: Effect of short- and long-range forces on the properties of fluids. III. Dipolar and quadrupolar fluids. Mol. Phys. 99, 1751-1764 (2001).
  125. Kettler M., Voertler H. L., Nezbeda I., Strnad M.: Coexistence properties of higher n-alkanes modelled as Kihara fluids: Gibbs ensemble simulations. Fluid Phase Equil. 181, 83-94 (2001).
  126. Nezbeda I.: On molecular-based equations of state. Rigor versus speculations. Fluid Phase Equil. 182, 3-15 (2001).
  127. Nezbeda I., Weingerl U.: A molecular-based theory for the thermodynamic properties of water. Mol. Phys. 99, 1595-1606 (2001).
  128. Lisal M., Smith W. R., Nezbeda I.: Accurate vapor-liquid equilibrium calculations for complex systems using the reaction Gibbs ensemble Monte Carlo simulation method. Fluid Phase Equil. 181, 127-146 (2001).
  129. Vlcek L., Nezbeda I.: Size and shape dependence of the hydrophobic hydration at the level of primitive models. PCCP 4, 3704-3711 (2002).
  130. Lisal M., Kolafa J., Nezbeda I.: An examination of the five-site potential (TIP5P) for water. J. Chem. Phys. 117, 8892-8897 (2002).
  131. Predota M., Nezbeda I., Cummings P. T.: Hydrophobic hydration at the level of primitive models. II. Large solutes and water restructuring. Mol. Phys. 100, 2189-2200 (2002).
  132. Kettler M., Nezbeda I., Chialvo A. A. , Cummings P. T.: Effect of the range of interactions on the properties of fluids. Phase equilibria in pure carbon dioxide, acetone, methanol, and water. J. Phys. Chem. B 106, 7537-7546 (2002).
  133. Nezbeda I.: Modeling of aqueous electrolytes at a molecular level: Simple short-range models and structure breaking and structure enhancement phenomena. J. Mol. Liquids 103-104C, 309-317 (2003).
  134. Slovak J., Nezbeda I.: On accuracy of Wertheim's thermodynamic perturbation theory for primitive models of water. Mol. Phys. 101, 789-798 (2003).
  135. Predota M., Ben-Naim A., Nezbeda I.: On independence of the solvation of interaction sites of a water molecule. J. Chem. Phys. 118, 6446-6454 (2003).
  136. Vlcek L., Nezbeda I.: From realistic to primitive models: A primitive model of methanol. Mol. Phys. 101, 2987-2996 (2003).
  137. Vlcek L., Slovak J., Nezbeda I.: Thermodynamic perturbation theory of the second-order: Implementation for models with double-bonded sites. Mol. Phys. 101, 2921-2927 (2003).
  138. Lisal M., Nezbeda I.: Conformations of attractive, repulsive, and amphiphilic polymer chains in a simple supercritical solvent: Molecular simulation study. J. Chem. Phys. 119, 4026-4034 (2003).
  139. Nezbeda I., Smith W. R.: On the calculation of the critical temperature from the second virial coefficient. Fluid Phase Equil. 216, 183-186 (2004).
  140. Lisal M., Nezbeda I., Smith W. R.: Vapor-liquid equilibria in five-site (TIP5P) models of water. J. Phys. Chem. B 108, 7412-7414 (2004).
  141. Vlcek L., Nezbeda I.: From realistic to simple models of associating fluids. II. Primitive models of ammonia, ethanol, and models of water revisited. Mol. Phys. 102, 385-497 (2004).
  142. Lisal M., Nezbeda I.: Conformations of homopolymer chains and their phase behavior in a simple supercritical solvent. Fluid Phase Equil. 222-223C, 247-254 (2004).
  143. Nezbeda I.: Role of the range of intermolecular interactions in fluids. Curr. Opinion in Colloid and Interface Sci. 9, 107-111 (2004).
  144. Vlcek L., Nezbeda I.: Thermodynamics of simple models of associating fluids: Primitive models of ammonia, methanol, ethanol, and water. Mol. Phys. 102, 771-781 (2004).
  145. Nezbeda I., Vlcek L.: Thermophysical properties of fluids: From realistic to simple models and their applications. Int. J. Thermophys. 25, 1037-1049 (2004).
  146. Nezbeda I.: Towards a unified view of fluids. Mol. Phys. 103, 59-76 (2005).
  147. Moucka F., Nezbeda I.: Detection and characterization of structural changes in the hard-disk fluid under freezing and melting conditions. Phys. Rev. Lett. 94, 040601 (2005).
  148. Vlcek L., Nezbeda I.: From realistic to simple models of fluids. III. Primitive models of carbon dioxide, hydrogen sluphide, and acetone, and their properties. Mol. Phys. 103, 1905-1915 (2005).
  149. Chialvo A. A., Kettler M., Nezbeda I.: Effect of the range of interactions on the properties of fluids. Part II. Structure and phase behavior of acetonitrile, hydrogen fluoride, and formic acid. J. Phys. Chem. B 109, 9736-9750 (2005).
  150. Vlcek L., Nezbeda I.: Potential of mean force between ions in infinitely diluted simple short-range models of aqueous electrolytes. Cond. Matter Phys. 8, 261-270 (2005).
  151. Trokhymchuk A., Nezbeda I., Jirsak J., Henderson D.: Hard-sphere radial distribution function again. J. Chem. Phys., 123, 024501-10 (2005).
  152. Gonzales-Salgado D., Nezbeda I.: Excess properties of aqueous mixtures of methanol: Simulation versus experiment. Fluid Phase Equil. 240, 161-166 (2006).
  153. Lisal M., Nezbeda I., Ungerer P., Teuler J. M., Rousseau B.: Low-temperature vapor-liquid equilibria from parallelized molecular dynamics simulations. Application to 1- and 2-methylnaphthalene. J. Phys. Chem. B, 110 , 12083-12088 (2006).
  154. Jedlovszky P., Predota M., Nezbeda I.: Hydration of apolar solutes of varying size. A systematic study. Mol. Phys., 104 , 2465-2476 (2006).
  155. Nezbeda I., Kolafa J., Lisal M.: Molekularni simulace klasickych tekutin. Ces. cas. fyz. A, 2006 , 148-151 (2006).
  156. Smith W. R., Lisal M., Nezbeda I.: Molecular-level Monte Carlo simulation at fixed entropy. Chem. Phys. Lett., 426 , 436-440 (2006).
  157. Vega C., Abascal J. L. F., Nezbeda I.: Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P like models: TIP4P/Ew, TIP4P/2005, and TIP4P/Ice. J. Chem. Phys., 125 , 034503 (2006).
  158. Vlcek L., Nezbeda I.: Excess properties of aqueous mixtures of methanol: Simple models versus experiment. J. Mol. Liq., 131-132, 158-162 (2007).
  159. Jirsak J., Nezbeda I.: Molecular mechanisms underlying the thermodynamic properties of water. J. Mol. Liq., 134, 99-106 (2007).
  160. Rouha M., Nezbeda I.: Lower virial coefficients of primitive models of polar and associating fluids. J. Mol. Liq., 134, 107-110 (2007).
  161. Moucka F., Rouha M., Nezbeda I.: Efficient multi-particle sampling in Monte Carlo simulations on fluids: Application to polarizable models. J. Chem. Phys., 126, 224106-13 (2007).
  162. Jirsak J., Nezbeda I.: Molecular-based equation of state for TIP4P water. J. Mol. Liq., 136, 310-316 (2007).
  163. Melnyk R., Moucka F., Nezbeda I., Trokhymchuk A.: A novel perturbation theory for the structure factor of the attractive hard-core Yukawa fluid. J. Chem. Phys., 107, 094510-8 (2007).
  164. Jirsak J., Nezbeda I.: Towards a statistical mechanical theory of water: Analytical theory for a short-ranged reference system. J. Chem. Phys., 127, 124508-7 (2007).
  165. Figueroa-Gerstenmaiera S., Francova M., Kowalski M., Lisal M., Nezbeda I., Smith W. R.: Molecular-level computer simulation of a vapor-compression refrigeration cycle. Fluid Phase Equil., 259, 195-200 (2007).
  166. Skvor J., Nezbeda I., Brovchenko I., Oleinikova A.: Percolation transition in fluids: Scaling behavior of the spanning probability functions. Phys. Rev. Lett., 99, 127801-4 (2007).


Review articles (international journals)

  1. Smith W. R., Nezbeda I.: The reference average Mayer-function (RAM) perturbation theory for molecular fluids. In MOLECULAR-BASED STUDY OF FLUIDS (Eds. Haile J., Mansoori G. A.) Adv. Chem. Ser. (Amer. Chem. Soc.) 204, 235-279 (1983).
  2. Boublik T., Nezbeda I.: P-V-T behaviour of hard body fluids. Theory and experiment. Coll. Czech. Chem. Commun. 51, 2301-2432 (1986).
  3. Nezbeda I., Labik S., Malijevsky A.: Structure of hard body fluids. Critical compilation of selected computer simulation data. Coll. Czech. Chem. Commun. 54, 1137-1202 (1989).
  4. Nezbeda I.: Simple short-ranged models of water and their application. A review. J. Mol. Liquids, 73,74, 317-336 (1997).
  5. Nezbeda I., Kolafa J.: On the role of the range of intermolecular interactions in fluids. In IONIC SOFT MATTER: MODERN TRENDS IN THEORY AND APPLICATIONS (Eds. Henderson D., Holovko M.). Springer (Dordrecht), 2005.


Monographs and textbooks

  1. Boublik T., Nezbeda I., Hlavaty K.: Statisticka termodynamika kapalin a kapalnych smesi. (in Czech). Statistical thermodynamics of liquids and liquid mixtures. Academia, Praha (1974).
  2. Boublik T., Nezbeda I., Hlavaty K.: Statistical thermodynamics of simple liquids and their mixtures. Elsevier, Amsterdam (1980); Academia, Prague (1980).
  3. Nezbeda I, Kolafa J., Kotrla M.: Uvod do pocitacovych simulaci: metody Monte Carlo a molekularni dynamiky. (in Czech). Introduction to computer simulations: Monte-Carlo and molecular dynamics methods. Karolinum, Praha (1999).
  4. Nezbeda I, Kolafa J., Kotrla M.: Uvod do pocitacovych simulaci: metody Monte Carlo a molekularni dynamiky. (in Czech). Introduction to computer simulations: Monte-Carlo and molecular dynamics methods. (Revised and extended second edition.) Karolinum, Praha (2003).
  5. Nezbeda I: The Art of Molecular Simulations. From Principles to Applications. Edicni stredicko PF UJEP, Usti n. Lab. (2007).



(back-to-Zrzek's-home-page)

Last update: January 2, 2008