
Library of parallel PCG solvers
Version 1.0 Draft

Radim Blaheta, Ondřej Jakl, Jiř́ı Starý

Department of Applied Mathematics and Computer Science

Institute of Geonics AS CR, Ostrava-Poruba, Czech Republic

Chapter 1

Introduction

1.1 About this document

This technical report provides a more detailed information about the software,
namely the library of parallel PCG solvers, partly developed in framework of
the project MSTeP [10]. It has two parts: Part I covers the mathematical
background, methods and algorithms employed, Part II describes the library
itself and includes also information about its performance.

1.2 The GEM32 package

The work is tightly connected with the research programme of the Division of
Applied Mathematics of the Institute of Geonics Ostrava, which are the authors
members of. Since its very beginning in the late seventies, an important di-
rection in the research activities of the Division has been the development of
software for mathematical modelling both for experimental purposes and prac-
tical modelling, primarily with applications in mining geomechanics. The latest
generation of this software is called GEM32. It addresses 3-D finite element (FE)
analysis of elasticity and plasticity problems and its (traditional) characteristics
include

• regular structured grids,

• iterative solvers based on the preconditioned conjugate gradient (PCG)
method,

• displacement decomposition (DiD) applied in the preconditioning.

As every package of this kind, GEM32 in its coarsest segmentation consists
of three modules: The preprocessor attends to the generation of the computer
model, the solver performs the major computations and postprocessor assists
with the processing of the results. The main deal of the computational work is
carried out by the solver when it solves the systems of linear equations arising
form the FE discretization — the solution of systems of millions degrees of
freedom can take many hours to complete. That is why the solvers attract
the research interests directed towards the development and implementation of

2

1.3. PARALLEL LIBRARY 3

more efficient numerical methods, which would shorten the computation time
and allow to manage larger models.

1.3 Parallel library

One of the possibilities in this respect is the parallelization, a widely accepted
method to improve performance of demanding applications. It boasts an in-
creasing popularity due to the general availability of computer systems with
more processors and a better support for the application programmers. In the
GEM32 case, the development of the parallel PCG solvers was further encour-
aged by the requests to compute large models coming from the geomechanical
practice. However, parallelization is not a straightforward procedure — many
approaches, techniques, alternatives and trade-offs can be considered. In our
case, the development proceeded in several directions and resulted in a collection
of computer codes which are now presented in a form of a programme library.
That library is the subject of in this document.

Part I

Methods and Algorithms

4

Chapter 2

Problem formulation

Let us consider a 3D domain Ω and the solution u (the displacement) to the
following elasticity problem

∑

j

∂

∂xj

τij = fi, τij =
∑

kl

cijklekl, ekl =
1

2

(

∂ul

∂xk

+
∂uk

∂xl

)

in Ω

with appropriate boundary conditions. This problem can be expressed in the
variational form: find the displacement u : Ω → R3 that

u − u0 ∈ V, V = {v ∈ [H1(Ω)]3 : v = 0 on Γ0},

∫

Ω

∑

ijkl

cijkl

∂ui

∂xj

∂vk

∂xl

dΩ =

∫

Ω

fv dΩ +

∫

Γ1

Tv dS ∀v ∈ V.

Details about elasticity problems and different ways of their formulations are
described, for example, in [7].

Numerical solution of the elasticity problem is based on the discretization
of the studied domain Ω by a regular grid and on the application of the finite
element method arising from the variational form and leading to the solution of
a large linear system

Au = b, u, b ∈ Rn,

with symmetric (n×n) positive definite stiffness matrix A. For this step, we use
the conjugate gradient method improved by some preconditioning technique.

5

Chapter 3

Data storage

At first, we shall focus our attention to the discretization and data preparation.
In the case of data processing by sequential programs, the whole domain Ω is
divided into hexahedra by a regular grid and these hexahedra are further divided
into six tetrahedral finite elements, see figure 3.1. Hence, the stiffness matrix A
has all the nonzero entries within a 27-node regular stencil (each grid node has
81 degrees of freedom)1.

z

y

x

NZ

NX

NY

Ω

Figure 3.1: The discretization of the studied domain Ω by a regular grid (left).
The splitting of a grid element to hexahedra (right).

The grid parameters important for the regular stencil of the stiffness matrix
are the numbers of grid nodes in directions X , Y, Z: NX, NY, NZ. The total
number of grid nodes is NN = NX*NY*NZ and the size of the resultant linear
system is ND = 3*NN directions.

Parallel versions of the conjugate gradient method are derived from the data
decomposition into certain blocks associated with individual parallel tasks dur-
ing the solution. In the following sections, we will describe three different ways
of data splitting.

1Implementation note: Due to the symmetry of the matrix A, we can store only upper
triangular part of the matrix, row-by-row by using regular 42 element stencil for storage of
the nonzero matrix entries.

6

3.1. DISPLACEMENT DECOMPOSITION 7

3.1 Displacement decomposition

We assume the displacement decomposition of grid nodes corresponding to dis-
placement directions. Figure 3.2 shows the scheme of rearranging and splitting
the stiffness matrix A to separated blocks Aij , i, j = 1, 2, 3. Similarly, every
vector is splitted to three parts.

X Y Z X Y Z . . .1 1 1 2 2 2

X

Y

Z

X

Y

Z

1

1

1

2

2

2
...

X X . . . Y Y . . . Z Z . . .1 2 1 2 1 2

X

X

Y

Y

Z

Z

...

...

...

1

2

1

2

1

2

A A A

A

A

A

A

A

A

11 12 13

21 22 23

31 32 33A

ND = 3 * NN NN NN NN

Figure 3.2: The displacement decomposition of the stiffness matrix A.

Matrices Aii, i = 1, 2, 3 are symmetric and have a similar structure like the
original matrix A. These matrices have all 14 nonzero entries on each row of
their upper triangular parts within a regular stencil. Nondiagonal matrices Aij ,
i, j = 1, 2, 3, i 6= j have regularly at most 27 nonzero entries on every raw. Note,
that Aij = AT

ji.
Individual parallel tasks correspond always to one of three displacement

directions. Every task reads necessary data only. For the splitted stiffness
matrix A holds: the first task reads blocks A11, A21, A31 (plus an appropriate
part of the right hand side), the second task A12, A22, A32 and the third task
A13, A23, A33.

The parallelization of the conjugate gradient method’s algorithm based on
the displacement decomposition is static because the number of parallel tasks
is constant. Therefore to implement this algorithm on systems having higher
number of processors is disadvantageous.

3.2 Domain decomposition

At the domain decomposition, we consider a special one-dimensional partition-
ing of the domain Ω in the Z direction into m disjunct non-overlapping sub-
domains Ω̂1, . . . , Ω̂m. Then we extend the subdomain Ω̂i(i = 1, . . . , m − 1) by
adding some “layers” of grid nodes from the adjacent subdomain Ω̂i+1. The
number of shared layers will be called the overlapping factor. Let us note
that the overlapping factor influences the convergence speed of applied itera-
tive method. Figure 3.3 illustrates three subdomains with overlapping factor
1.

8 CHAPTER 3. DATA STORAGE

Ω

x

y

z

Ω

Ω

Ω
Ω

Ω

Ω

1

2

3

4

5

6

7

8

9

10

1

2

3

4

4

5

6

7

7

8

9

10

1

2

3

4

5

4

5

6

7

8

7

8

9

10

1

2

3 3

2

1

X Y Z X Y Z . . .1 1 1 2 2 2

X

Y

Z

X

Y

Z

1

1

1

2

2

2
...

X1 Y1 Z1 X2 Y2 Z2 . . .

X1
Y1
Z1
X2
Y2
Z2
...

A

3A

2A

1A

Figure 3.3: The domain decomposition into overlapping subdomains (above).
The matrix representation of the decomposed domain (bellow).

3.3. COMBINED DECOMPOSITION 9

Each of m parallel tasks reads data corresponding to the subdomain Ωi, i. e.
an appropriate matrix Ai and a loading vector bi. Note, the matrices Ai have
the same structures and properties as the original stiffness matrix A.

The parallelization of conjugate gradients based on domain decomposition is
not static and can use large (in full generality arbitrary) number of processors
being available on a parallel computer. But in practice, the huge parallelization
can be greatly decelerating the convergence speed of the whole method, for
example.

3.3 Combined decomposition

The higher level of parallelization can be achieved by using a combination both
the domain decomposition and the displacement decomposition described above.
After splitting the domain Ω, we consider a set of overlapping subdomains Ωi,
which are further decomposed to blocks according to displacement directions,
see fig. 3.4.

X1 Y1 Z1 X2 Y2 Z2 . . .

X1
Y1
Z1
X2
Y2
Z2
...

3A

2A

1A

2 2

1211

2

13

2 2 2

222

31 32 33

232221

x y z

x

y

z A A A

A

AA

AA

A

Figure 3.4: The combined decomposition into overlapping subdomains with
displacement decomposition.

In the case of m overlapping subdomains, we will prepare data for 3 ∗ m
parallel tasks in this way. Therefore at the same number of processors, the
convergence properties of the solver based on the combined decomposition could
be better than the same one based only on the domain decomposition.

3.4 Coarse grid

For the solution of elasticity problems by the conjugate gradients’ method, we
can use the solution of the same problem on the coarser grid. After discretization
of the studied domain Ω by the coarse grid, the finite element method is applied
as in the original problem (including boundary conditions), see figure 3.5. Let
us denote Ac the stiffness matrix of the coarse problem. The matrix Ac has the
same structure as the original matrix A.

It is natural to implement the coarse grid computation as a stand-alone
parallel task, which can run completely in parallel with the other tasks intended

10 CHAPTER 3. DATA STORAGE

z

y

x

ΩΩ c

Figure 3.5: Explicit coarse grid.

for computations on subdomains.
It is impossible to make the “explicit” coarse grid

Figure 3.6: The frag-
ment of the top side
of an aggregate coarse
grid.

in many cases of modelling the real geomechanical
problems, but we can use the aggregate coarse grid.
We shall aggregate grid nodes in original discretiza-
tion grid in directions X , Y, Z to bigger nodes of the
aggregate coarse grid. Figure 3.6 shows the fragment
of the aggregation with the aggregation factor 2 in
each direction.

In practice, the aggregation process means, that
we will make the new aggregate stiffness matrix Aagc

by summation of appropriate rows and columns in
the original stiffness matrix A. Hereat, the grid nodes
cumulate separately on the boundary and inside the
domain Ω.

Chapter 4

Numerical methods

We consider the numerical solution of elasticity problems and appropriate data
storage described before. For the solution of a large linear system

Au = b

with the symmetric positive definite stiffness matrix A, we chose the precondi-
tioned conjugate gradients’ method. In the following sections, we will describe
several variants of the method.

4.1 Sequential algorithm

Figure 4.1 shows the sequential version of the algorithm. In this scheme, u∗

means the initial approximation of the solution, r the residual, v, w auxiliary
vectors and α, β, s0, s1 scalars. The operation P is the preconditioning.

The initialization and iteration phases of the algorithm are separated by the
termination criterion TC having the form ||r|| ≤ ε||b||, where ε is the required
relative accuracy (usually 10−3 – 10−5).

4.1.1 Preconditioning

The preconditioning is intended for improving the spectral properties of the
stiffness matrix A and is given by the inexpensive preconditioning operation
Cw = r.

We shall consider the form of the preconditioning matrix C called the in-
complete factorization:

C = (X + L)X−1(X + L)T ,

where L is the strictly lower triangular part of the matrix A, X is a diagonal
matrix determined by the condition of equal rowsums of the matrices C and
A + D for an appropriate diagonal perturbation matrix D.

4.2 Parallel algorithm

A natural step towards the parallelization of the preconditioned conjugate gradi-
ents’ method is the data decomposition into (in general m) equally sized blocks.

11

12 CHAPTER 4. NUMERICAL METHODS

S

u = u∗

w = Au

r = b − w

v = P (r)

s0 =< r, v >

TC

w = Av

s =< v, w >

α = s0/s

u = u+ αv

r = r − αw

w = P (r)

s1 =< r, w >

β = s1/s0

s0 = s1

v = w + βv

E

+

−

Initialization

Iteration

Figure 4.1: Sequential preconditioned conjugate gradients.

4.2. PARALLEL ALGORITHM 13

Following the common SPMD (single program - multiple data) parallelization
model, the solution of the linear system is assigned blockwise to m parallel
tasks, which perform the PCG algorithm concurrently (with appropriate data
exchange) on their portion of data.

For synchronization and supervision purposes, it is practical to accompany
these worker tasks by a master task, which combines partial results to global
values, evaluates the termination criterion, etc. The scheme of such a parallel
algorithm is presented in figure 4.2.

There are two particular points, where this straightforward parallelization
procedure may cause difficulties. The first one denoted by M in figure 4.2, is the
matrix-vector product, which requires extensive intertask communication CM.
The second point denoted by P is the preconditioning operation. The amount
of intertask communication CP depends on the type of the preconditioning.

4.2.1 Algorithm DIS

Let us assume the displacement decomposition of data (see section 3.1) and the
parallel algorithm mentioned above. At the matrix-vector product M, the i-th
worker computes the products wij = Ajivi, j = 1, 2, 3, and transfers all but the
wii to other workers (wij to the j-th worker). On the contrary, it must obtain
their wji, j 6= i, to be able to calculate the new value of wi =

∑

j wji.

The i-th worker realizes the preconditioning P by the computation only on
the block Aii. In the first case, the incomplete factorization Ciwi = ri is applied,
where

Ci = (Xi + Li)X
−1
i (Xi + Li)

T ,

see section 4.1.1. In the second case, the variable preconditioning defines the
operation P as a low accuracy solution of the system Aiiwi = ri by another,
inner conjugate gradients’ iterations with the preconditioning using the incom-
plete factorization. While being of limited benefit for the sequential solution, it
turned out to be very useful in the parallel case, because it migrates the compu-
tational work to communication-free inner iterations. Both described types of
the preconditioning are not general, because no task interactions CP is necessary.

4.2.2 Algorithm DOM

The algorithm shown on the figure 4.2 can be applied to the domain decomposed
data too, see the section 3.2. Having this data partitioning, a standard matrix-
vector product M is performed by using the multiplication ŵi = Âiv̂i (only on
the non-overlapping part of Ai). To keep the vectors wi updated for all rows
of Ai and consistent with the global operation w = Av, pair of neighbouring
tasks have to exchange calculated components related to the shared rows at
the communication CM. The amount of this data transfers depends on the
bandwidth of A and the density of the discretization in the Z and Y directions.

For the operation P , we can use the additive Schwarz preconditioner corre-
sponding to the defined domain decomposition:

w = P (r) =
m

∑

i=1

RT
i A−1

i Rir,

14 CHAPTER 4. NUMERICAL METHODS

S S

Master i-th worker

s0 =

m
∑

i=1

s0i

ui = u∗

i

M :M × v op.

ri = bi − wi

P : prec. op.

s0i =< ri, vi >

TC TC

s =

m
∑

i=1

si

α = s0/s

s1 =

m
∑

i=1

s1i

β = s1/s0

s0 = s1

M :M × v op.

si =< vi, wi >

ui = ui + αvi

ri = ri − αwi

P : prec. op.

s1i =< ri, wi >

vi = wi + βvi

E
E

+ +

− −

s0i

si

α

s1i

β

CM

CP

CM

CP

Figure 4.2: An universal scheme of parallel conjugate gradients.

4.2. PARALLEL ALGORITHM 15

where Ri are restrictions Ri : u → ui, ui is the vector of those components of
u that correspond to the nodes from the closure of the subdomain Ωi. Note
that the operation A−1

i can be performed by replacing the matrix Ai by its
incomplete factorization, for example. The amount of necessary data transfers
CP depends on the overlapping factor.

4.2.3 Algorithm DIDO

Let us consider the combined decomposition of data (see the section 3.3) and
an application of the algorithm depicted in figure 4.2. For the matrix-vector
product M we can compute wi = Aivi on each subdomain Ωi by means of the
multiplications wkl

i = Akl
i vkl

i , i = 1, . . . , m, k, l = 1, 2, 3. Data transfers among
three workers are necessary for each subdomain, as in the case of the displace-
ment decomposition (the first part of communication CM). After this step, to
keep the (decomposed) vectors wi updated for all rows of Ai and consistent
with the global operation w = Av, the first workers for each subdomain have to
exchange calculated components related to the shared rows at the second part
of communication CM.

For preconditioning P , workers use the additive Schwarz preconditioner anal-
ogous to the algorithm DOM. Therefore the amount of data transfers CP de-
pends on the overlapping factor.

4.2.4 Application of coarse grid

The Schwarz preconditioners can be more efficient if they can take advantage
of a “global” information represented by a solution of the same problem, but
discretized by a coarser grid, see section 3.4. Let Rc be the matrix of linear
interpolation transforming the values from the fine to the coarse grid. Then we
can define the two-level additive Schwarz preconditioner

w = (Pc +
∑

i

RT
i A−1

i Ri)r

or the two-level hybrid non-symmetric Schwarz preconditioner

w = Pcr +
∑

i

RT
i A−1

i Ri(r − APcr),

where Pc is the coarse part of preconditioner

Pc = RT
c A−1

c Rc.

Note, that the preconditioner can be symmetrized, but our tests show that the
behavior of the CG iterations with the symmetric preconditioner is nearly the
same as with the cheaper non-symmetric one.

It is natural to implement the coarse grid computation as a stand-alone
worker process, which can run completely in parallel with the subdomain work-
ers in the additive case. In the multiplicative (hybrid) case, the subdomain
workers have to wait for the computation and for sending Pcr from the coarse
grid worker. However, in practice this clear drawback of the multiplicative ap-
proach disappears with the reduction of the number of iterations.

16 CHAPTER 4. NUMERICAL METHODS

4.2.5 Aggregate coarse grid

In the case of the aggregate coarse grid (see the section 3.4), we can use the
above described two-level additive Schwarz preconditioner too, but the coarse
part of this preconditioner will be in the form

Pc = RT
agcA

−1
agcRagc,

where Ragc is the restriction Ragc : u → uagc, uagc is the coarse grid displace-
ment given by aggregation (summation) of appropriate values from fine grid
nodes. The coarse grid application is the same as in the case of the explicit
coarse grid.

Part II

Software and Testing

17

Chapter 5

The ELPAR library

Simultaneously with the development of parallel PCG algorithms described in
the previous part, we proceeded with their computer realization in form of a
programme library, denoted as ELPAR throughout this document. At the time
of its writing, all of those algorithms were coded mostly as β-versions and their
testing was still going ahead. Of course, this may motivate some changes of the
code in the future.

In this (second) part of the report we give information about the current
state of the library, its organization and the way how it can be used, acting
partially as a substitute for a manual. Some benchmark results are added to
provide an idea about the performance of the solvers.

5.1 General characteristics

Before we proceed to the description of the individual solvers of the library, let
us underscore some of their common features.

5.1.1 Message passing

As one could already notice in Part I, the parallel algorithms were designed
having message passing model in mind. Although possibly more difficult to
use, this model of parallel computations, assuming just communication channels
between the processor nodes, is very general and can be implemented on any
parallel architecture. Nowadays, the most important realizations of the message
passing model are Parallel Virtual Machine (PVM) [5] and especially Message
Passing Interface (MPI) [6].

Our parallel codes are prepared to make use of either of those message pass-
ing systems. In fact, they have the potential to be independent of a particular
message passing library, since for interprocess interactions the solvers just call
general routines from a communication interface defined for this purpose. This
interface may be implemented in any message passing system (now in MPI and
PVM) and the solver can switch to it just by relinking its code with a corre-
sponding version of the interface.

18

5.1. GENERAL CHARACTERISTICS 19

5.1.2 Model of the parallel computation

The parallel solvers apply the master–worker model. Here, the master process
is a computationally inexpensive task that controls the progress of the solution,
distributes the parameters, summarizes partial results to global values, evaluates
the termination criterion, etc. Usually it occupies one processing node for its
own.1 Most of the computational work is performed by the worker processes,
usually one per node, which in general follow the PCG algorithm on their portion
of data. Their number differs according to the partitioning used.

From the programming point of view the solvers are SPMD2 programmes,
what means that there is a single code realizing both the master’s and the
workers’ roles.

5.1.3 Memory vs. disk

The solvers have to work with data of considerable size, e.g. the stiffness matrix,
initially stored in files. In principle, the data might be read into the main
memory once at the beginning of the computation, or read step by step from
the disk, as soon as it is needed, sometimes repeatedly. There is a trade-off
between those two approaches, the former promising faster execution paid for
by greater memory requirements, the latter maybe slower, but more modest on
resources.

The solvers in the ELPAR library employ the first approach, which also
allows more transparent comparison and evaluation (the solvers print out both
the time needed to read in the data and the time spent in the computational
phase). On the other hand, insufficient memory may pose strict limit on the
size of solvable problems on a given computer. In any case, the solvers can be
quite readily reprogrammed to use the disk oriented approach.

The constants limiting the size of the largest task can be found in the source
codes as Fortran parameters. If they are to small for the given problem, the
programmes usually print out an error message informing about the required
value(-s). After increasing those constants and recompilation, the codes can
be prepared to manage larger problems. Keep in mind however that there
are another limits imposed by the operating system, and with statically linked
libraries, the size of the executables may be huge.

5.1.4 User interface

Since some parallel environments do not support it, the solvers avoid interactive
mode of operation. Instead, they read all the run-time control parameters from
files, exceptionally from the command line. The basic parameter file of a solver
has an identical name, with an .in suffix. In this text file the user specifies the
following run-time parameters pertinent to the PCG algorithm itself:

1. relative accuracy of the solution

2. preconditioning: incomplete factorization (value 1) or variable precondi-
tioning (2)

1In fact, there is a small loss of performance only, if the master shares its processor node
with one of the workers (must be supported by the parallel run-time environment).

2Single Programme Multiple Data

20 CHAPTER 5. THE ELPAR LIBRARY

3. limit on the number of iterations

4. starting approximation: the right-hand side (0), user specified – read in
from file (1), zeros (2)

Note: Some solvers may be restricted in allowable values.
Another set of parameters, more related to the partitioning and paralleliza-

tion, is taken into account during the initialization of the parallel execution,
performed by supporting programmes. See the next section 5.1.5.

The solvers (their masters) write an execution log to the standard output.
It includes the code version, task information, parameters of the solution, con-
vergence characteristics of the iteration sequence and timing information. The
output is duplicated in a .rep file.

5.1.5 Auxiliary procedures

Before a parallel solver can start the solution, the data must be prepared for the
parallel processing. Similarly, after the parallel execution the results have to be
gathered and combined together. For this purpose, each solver is accompanied
by a suite of supporting (sequential) programmes that (1) split the data files
generated by the preprocessor to a new set of files appropriate in form and con-
tent to the solver, applied partitioning and specified parameters of the solution,
(2) combine the results computed by the workers to a form acceptable for the
given postprocessor and (3) depending on the solver, possibly carry out some
other auxiliary work. Their execution may be also controlled through parame-
ter files (.in extension). We shall denote the actions taken to prepare the run
of a parallel solver (point (1) in the first place) as initialization of the parallel
solution.

If the parallel facility does not provide disk space shared by its processor
nodes or if its performance is poor, it is necessary to distribute the data files
with workers’ input to directories accessible by the workers (usually on nodes’
local disks). Similarly, after the computation is over, it might be needed to
gather the output files from the nodes.

5.2 Parallel solvers

Keeping those common features in mind, let us describe the individual solvers
in the ELPAR library.

5.2.1 The displacement decomposition solver

A parallel solver based on the displacement decomposition (DiD) technique,
described in section 4.2.1, was already implemented before the LB98273 project
was launched, see e.g. [3]. Its code, has been revised before it was included to
the ELPAR library. In particular, now it uses a unified user interface with the
other solvers and the stiffness matrix is stored in the main memory during the
computations. Its features include two preconditioning options and the ability
to solve singular systems making use of projections.

Name of the programme: itera

5.2. PARALLEL SOLVERS 21

Parallelization: The displacement decomposition partitions the domain to
three subdomains, each of which corresponds to the displacements in one of the
x, y, z directions. Thus, itera gives rise to exactly three worker processes, plus
one master process, i.e. it employs at most four processors. Being not scalable,
it is appropriate for small parallel environments.

Preconditioning: Based on a control parameter, itera can apply tho kinds
of preconditioning: incomplete factorization and variable preconditioning. Be-
cause this option has an essential impact on the solution process, it is often
convenient to speak about two different solvers. We shall reference them as
follows:

• DiD-IF – itera with incomplete factorization preconditioning

• DiD-VP – itera with variable preconditioning

For the DiD-VP solution, there are two constants controlling the inner PCG
iterations, after some tuning set as follows:3 The relative accuracy to 10−1, the
iteration limit to 30.

Parameter file: itera.in; see 5.1.4 for details.

Supporting programmes:

• The initialization programme dsplit prepares data for the run of the
itera solver. It separates blocks of the the rearranged stiffness matrix
and the right-hand side that correspond to the displacement directions
x, y, z and stores them in new files to be processed by the workers. The
only parameter in its parameter file dsplit.in switches on projections
for the solution of singular systems. In such a case a projection matrix is
generated, too.

• The smerge utility just composes a single file of resulting displacements
from partial results obtained by the workers.

5.2.2 The domain decomposition solver

This solver is a new development with the goal to achieve more scalability, i.e.
to employ more than four processors, if available. It is based on the domain
decomposition (DD) technique and follows the algorithm described in 4.2.2. The
user can optionally provide a coarse grid to improve the efficiency of the solution
or use an automatically generated aggregate coarse grid for the same purpose.

Name of the programme: isol

3They can be changed in the source code.

22 CHAPTER 5. THE ELPAR LIBRARY

Parallelization: The current DD implementation considers a simple one-
dimensional “geometric” partitioning of the domain in the z direction to a
chosen number of subdomains. The adjacent subdomains can partially over-
lap: The size of the shared area is specified by the overlapping factor. Each
subdomain is processed by one worker process and interactions are necessary
only between “neighbours” in the 1-D decomposition. The computation is su-
pervised by a master process. Thus, the isol solver can employ an arbitrary
number of processor nodes and has the potential to take advantage of large
parallel facilities.

Preconditioning: At present, isol is restricted to the incomplete factoriza-
tion preconditioning.

Coarse grid: The DD algorithm is expected to be more efficient if it can
take advantage of a “global” information, represented by a solution of the same
problem, but discretized by a coarser grid. There are the following options in
this respect:

• Explicit coarse grid: Before the solution, the user generates an appropriate
coarse grid task, which is then linked (see the dconv utility below) with the
original fine grid problem. During the solution, the coarse grid is handled
by an additional worker. We shall refer to this option, i.e. isol using an
explicit coarse grid, as DD-EC.

• Aggregate coarse grid: It may be intricate to design a coarse grid for a
practical problem. For this reason, we experimented with a coarse grid
generated automatically (by the magr utility below) by the aggregation of
adjoining nodes of the original grid, see 4.2.2. Again, one more worker is
employed for the aggregate problem. This alternative of the solution is
called DD-AC.

• No coarse grid: This basic mode of isol is labelled DD-0C.

Parameter file: isol.in; see 5.1.4 for details.

Supporting programmes:

• For isol the initialization programme is called dconv. Its parameter file
contains the following items:

1. number of subdomains to partition the domain into

2. their overlapping factor

3. application of the coarse grid: no coarse grid (value 0), explicit coarse
grid (1), aggregate coarse grid (2)

If the explicit coarse grid parameter is specified, dconv expects to find
the data files of the coarse grid problem (supplied by the user, specially
named) in order to link it with the original task. In case of the aggregate
coarse grid, another utility, magr, must be launched before dconv.

5.2. PARALLEL SOLVERS 23

• The magr programme arranges for the preparation of the aggregate grid.
Roughly speaking, it contracts every 3 × 3 × 3 adjacent nodes4 of the
original (regular) grid into a single node of the aggregate grid, producing
the corresponding data files for dconv and isol.

• The srest utility just composes a single file of resulting displacements
from partial results obtained by the workers.

5.2.3 The combined solver

The two partitionings applied in the DD and DiD solvers are on different “levels”
and it is possible to combine them. This was the motivating idea behind the
latest development, the DDiD5 solver, promising to take the best of both: the
efficiency of the DiD solver and scalability of the DD solver. See 4.2.3 for further
information. At present, this solver is in its final stage of debugging, and hence
no benchmark results are available yet.

Name of the programme: iscom

Parallelization: The primary partitioning is realized by the domain decom-
position, as described in the previous section 5.2.2. For the computation on each
subdomain the displacement decomposition (5.2.1) is then applied, engaging a
single master process for all the workers. Thus, the total number of parallel
processes is 3n + 1, where n is the number of subdomains. If a coarse grid is
included in the DD computation, another worker is added. The iscom solver
therefore targets multicomputers with large number of processor nodes.

Preconditioning: iscom also employs the incomplete factorization precondi-
tioning only.

Coarse grid: iscom is able to take advantage of the coarse grid (both explicit
and aggregate), exactly as the isol solver. Thus, an analogy to the correspond-
ing paragraph in the previous section holds and we shall distinguish between

• DDiD-EC – iscom with an explicit coarse grid

• DDiD-AC – iscom with an aggregate grid

• DDiD-0C – iscom without a coarse grid

Parameter file: iscom.in; see 5.1.4 for details.

Supporting programmes: The iscom code is accompanied by an analogical
set of utilities as isol. These are:

• dtrans for the initialization; its parameter file dtrans.in has the same
contents as dconv.in

• macg for the preparation of the aggregate grid

• sorfo for the composition of the resulting displacement file

4This aggregation degree can be changed in the source code.
5DDiD means DD + DiD

24 CHAPTER 5. THE ELPAR LIBRARY

5.2.4 The sequential solver

Although it is not a parallel code and therefore not a regular component of the
ELPAR library, let us also give basic information about the sequential alter-
native to the parallel PCG solvers in this place. This solver has been derived
from the original GEM32 solver [4], the code being made more portable and
compatible with the other solvers. The main objective of the programme is to
serve as a reference in terms of results and performance.

In fact, there are two sequential codes, which differ in the way how the
stiffness matrix is dealt with. The first one (sesol) stores all its data in memory,
the second one (sesolo) reads its rows directly from the disk at their processing
time (c.f. the treatment in section 5.1.3). Thus, we shall distinguish the following
sequential approaches:

• SEQ-M – sequential solver with data in memory sesol

• SEQ-D – sequential solver with data on disk sesolo

Name of the programme: sesol/sesolo

Preconditioning: incomplete factorization

Parameter file: sesol.in/sesolo.in; see 5.1.4 for details.

Supporting programmes: –

Chapter 6

PortaGEM

In principle, the methods and algorithms employed in the solvers of the previous
chapter are general and could be applied for the solution of linear systems
generated by an arbitrary software using FE method with linear finite elements.
However, any particular implementation has to cooperate with some pre- and
postprocessor modules, agreeing at least on the data structures. With respect
to its origin it was natural that the ELPAR library in its initial realization was
embedded in the GEM32 package (cf. section 1.2), which provides the necessary
hinterland. To work with another FE software, just changes related to the
specific layout of the stiffness matrix in GEM32 are necessary. Throughout this
document, we consider GEM32 as the hosting environment for ELPAR.

So far, the GEM32 package has been developed and operated exclusively
on the IBM RISC System/6000 workstations, making use of their Fortran 77
compiler (AIX XL Fortran), without giving mind to the portability issues. To
be able to test ELPAR on various platforms and meet the natural requirements
on its portability, the GEM32 package itself had to be revised in this respect.
Thus, the work on ELPAR was simultaneously an impulse to develop a portable
version of GEM32, which we call portaGEM. We expect that portaGEM will
gradually become the “norm” for further development of GEM32. At present,
it includes all the codes of GEM32 that are necessary to run the solvers in the
ELPAR library and serves as the source for its distribution.

6.1 Structure of portaGEM

PortaGEM is in fact a directory tree that comprises all the files necessary to
build the ELPAR library and run selected benchmarks on a given platform. On
the highest level, it includes the following subdirectories important for ELPAR:

• benchmrk: Data files of various benchmarks. Scripts for testing.

• common: Files of universal utility, e.g. scripts for an automated build on a
new platform.

• gemin: Source codes of the gemin3d preprocessor.

• local: Dedicated for platform-dependent files. E.g. executables or results
of benchmarks.

25

26 CHAPTER 6. PORTAGEM

• parsol: Subdirectory of the ELPAR library. The second-level subdirec-
tories (itera, isol, iscom) contain the source codes of individual parallel
solvers and their supporting programmes.

• solver: Similarly, its subdirectories hold source codes of the sequential
solvers (sesol, sesolo).

• stiffmat: Source codes of the stiffmat/smat routine (generates the stiff-
ness matrix from the preprocessor output).

• tgrid: Source codes of the tgrid preprocessor.

• utils: Subdirectories of various auxiliary programmes.

Some more details can be added to the description of the portaGEM struc-
ture: For example, there can be several versions of a programme in portaGEM.
Most directory names have an extension indicating the author of the code.
README files describe the contents of directories and summarize the history of
the programmes. There is also a simple “stamping” mechanism helping keep
the integrity of portaGEM when more programmers modify it.

6.2 Building the codes

For compilation and linking of the executables, the standard MAKE utility is
taken advantage of. Each set of source files in a portaGEM directory making
up a programme is accompanied by a makefile. These makefiles have a unified
form independent of the target platform: Specific commands are isolated from
the makefiles and included only during their interpretation based on an archi-
tecture parameter. The makefiles also keep track of the history of compilations
in individual directories.

An additional parameter is used in makefiles of the parallel codes (solvers),
so as to be able to produce both the MPI and PVM codes.

In the common directory, there is a shell script that automates the generation
of all the portaGEM executables. Because of their number (more than twenty),
this is especially useful when installing portaGEM on a new computer.

Chapter 7

Testing

In this chapter we shall illustrate the performance of the solvers of the EL-
PAR library on same examples. Recall that both the development of the codes
and their testing has not been finished yet, so the presented results should be
regarded as preliminary.

7.1 Benchmark problems

In [1], the Division of Applied Mathematics has designated several problems as
benchmarks suitable for testing finite element solvers. From those, we employed
the following ones in our tests.

7.1.1 The Square Footing problem

In the majority of experiments we used the so called Square Footing (FOOT)
problem, a 3-D task of soil mechanics, which deals with the influence of flexible
footing represented by localized pressure (on the top side of the domain) to
the stress development in a soil medium and is illustrated in fig. 7.1. Due to
symmetry, only a quarter of the domain of interest is discretized. The standard
discretization is accomplished by a rectangular structured grid of 40 × 40 × 40
nodes, providing a linear system of 192 000 equations.

Figure 7.1: The Square Footing problem. A square area on the top side of the
domain is loaded by a uniform load.

27

28 CHAPTER 7. TESTING

By changing the density of the grid, we derived a sequence of sixteen prob-
lems with the same geometry, but increasing in the number finite elements,
which ranges from 53 nodes (375 linear equations) to 803 nodes (1 536 000 equa-
tions). We shell denote the problems of this collection according to their size
by FOOT05, FOOT10, . . . , FOOT80.

7.1.2 The Dolńı Rož́ınka problem

The second benchmark used in the tests is an example of a large scale compu-
tation. It has been derived from a practical problem related to mining in the
uranium ore deposit at Dolńı Rož́ınka (DR) in the Bohemian-Moravian High-
lands. This model considers a domain of 1430 × 550 × 600 meters, with the
top side 700 m under the surface. Three uranium ore veins, where the mining
process is concentrated, are located in this domain. For both the basic materials
(uranium ore and surrounding rocks) and the goaf material filling the volume
of the extracted ore, linear elastic behaviour is assumed. The discretization of
the domain by a regular structured grid has 124×137×76 “bricks”, see fig. 7.2.
This leads to a finite element system of 3 873 264 degrees of freedom.

Figure 7.2: The mesh of the DR problem

Mathematical modelling aimed at the assessment of geomechanical effects
of mining, e.g. at the comparison of different mining methods from the point
of view of the stress changes and the possibility of dangerous rockbursts. The
task was to simulate four selected stages of ore extraction, represented by a
four-step sequence of problems with different material distribution. By the way,
the modelling raised some mathematical issues, such as coping with singular,
slightly inconsistent systems. See [2] for details.

As the DR benchmark, the fourth step of the sequence mentioned above was
selected.

7.2 Computing environments

To verify a programme library, it is important to test it on as many computer
architectures as possible. In case of parallel programmes and especially when

7.3. SELECTED RESULTS 29

plenty of processor nodes are needed, this may be not easy to procure. Thus,
we appreciated very much the possibility of making use of the computing fa-
cilities at the Edinburgh Parallel Computing Centre (EPCC) at the very end
of the solution of the LB98212, c.f. 8.2. However, the primary platform for
the development and runs of the ELPAR library remained the IBM systems at
VŠB –Technical University Ostrava and the Institute of Geonics.

As explained in chapter 6, to make the programmes of ELPAR run in the
GEM32 environment, the whole portaGEM package has to be ported to the
new platform. So far, this has been successfully accomplished for the following
parallel platforms:

• IBM (VŠB –TUO): IBM RISC System/6000 SP massively parallel system,
8 processor nodes (not identical: differences in types and frequencies of the
processors (POWER2/67 – POWER2SC/160), local memory size (128 –
512 MB), disk access, etc.), High Performance Switch, Ethernet and ATM
interconnects; AIX 4.3 operating system, XL Fortran compiler, PVM 3.3
or IBM MPI (a proprietary MPI implementation within the IBM Parallel
Environment (PE) package)

• SUN (EPCC): Sun Enterprise HPC 3500 and 6500 symmetric multiproces-
sor systems, 8 and 18 processor nodes (UltraSPARC-II/400, 7 and 18 GB
of shared memory); Solaris 7 operating system, SUN Fortran 90 compiler,
SUN MPI; a Sun Enterprise HPC 3000 as a front-end server

• LINUX (EPCC): a Beowulf cluster, 16 processor nodes (AMD Athlon/650
processors, 128 MB of local memory, diskless); 2x FastEthernet intercon-
nect, Linux RedHat 6.0 operating system, Portland Group Fortran 90
compiler, MPICH MPI implementation; a front-end/NFS server

N.B.: EPCC provides also a large Cray T3E system (more than 300 processor
nodes), which we had to omit in our limited time. The port to a new plat-
form is usually not a straightforward procedure, since in spite of a progressing
standardization, parallel architectures boast numerous proprietary features and
there are many factors that exercise influence upon a parallel application. As
a rule, one has to learn a lot of tools, experiment with compilers and their op-
tions, sometimes inducing changes in the source codes, manage the local parallel
environment (a message passing system and often a batch queuing system), etc.
A lot of additional effort is then needed to optimize the implementation.

7.3 Selected results

Among the platforms above, which portaGEM has been ported to, the best
conditions to test and compare the solvers of the ELPAR library provided the
SUN systems, especially the HPC 6500 machine. They surpassed the other
ones in the number of processors, memory size and overall performance, and
offered also an appropriate development and run-time environments. The Load
Sharing Facility (LSF), their batch processing system, guarantees quite precise
and repeatable timings, usually with little impact of other running jobs, because
it assigns one user process per processor. That is why we focused on getting a
complete set of results on the SUN platform.

30 CHAPTER 7. TESTING

7.3.1 Technical details

• In the tests below, the following codes were used:

– itera version 4.00c, compiled by a
mpf90 -fast -xchip=ultra2 -xarch=v8plusa -lmpi . . .

command line

– isol version 1.20b, compiled also using
mpf90 -fast -xchip=ultra2 -xarch=v8plusa -lmpi . . .

– sesol version 1.00a, compiled by
f90 -fast . . .

(Note that the unfinished iscom solver did not take part in the testing.)

• At the compile time, all source codes were dimensioned to manage the DR
problem.

• Because PVM was not available on the SUN platform, the tested codes
employ MPI for message passing.

7.3.2 The FOOT results

The subsequent graphs show the behaviour of the itera and isol solvers on
the FOOT40, FOOT60 and FOOT80 benchmarks as far as the execution time
and number of iterations is concerned. The solver (see section 5.2 for the ab-
breviations) are distinguished as follows:

• DD-0C: dot (•)

• DD-AC: x-mark (×)

• DD-EC: star (∗)

• DiD-IF: plus (+)

• DiD-VP: circle (©)

Since we are primarily interested in the parallel iterative solution itself, the
values, given in seconds, represent the wall-clock times of the solution phase
alone, measured by the solvers. It does not include the time spent reading in
the data, which was about 4 s for FOOT40 and up to 30 s for FOOT80. The
whole set of measured data is available in appendix A.

The accuracy of the solution prescribed for all benchmarks was 10−4. In the
DD-EC solution of all three benchmarks, FOOT10 as the coarse grid task was
employed.

Our observations include:

1. The FOOT40 benchmark confirmed that the DD-0C solver (without a
coarse grid) lags behind the other DD solvers both in the magnitude and
evenness of the achieved times. To reduce the number of test runs a little,
we omitted DD-0C in the FOOT60 and FOOT80 benchmarks.

7.3. SELECTED RESULTS 31

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70
FOOT40 − times

No. of processors

T
im

e
[s

]

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

FOOT40 − iterations

No. of processors

N
o.

 o
f i

te
ra

tio
ns

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

FOOT60 − times

No. of processors

T
im

e
[s

]

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60
FOOT60 − iterations

No. of processors

N
o.

 o
f i

te
ra

tio
ns

2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

FOOT80 − times

No. of processors

T
im

e
[s

]

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70
FOOT80 − iterations

No. of processors

N
o.

 o
f i

te
ra

tio
ns

Figure 7.3: Interpolated solution times (left) and iteration counts (right) for
the FOOT40, FOOT60, FOOT80 benchmarks (192 000, 648 000, 1 536 000 equa-
tions)

32 CHAPTER 7. TESTING

2. DD solvers outperform the DiD solvers when the shortest execution time is
the priority. But their efficiency is lower than that of the DiD solvers and
they do not scale well with the number of processors. In fact, “oscillations”
in their solution time can be related to the oscillating number of iterations,
but this seems not to be sufficient to explain some dramatic changes in
the times of solution. This phenomena needs further investigation.

3. When comparing the DiD solvers between themselves, somewhat better
performance of DiD-IF compared with DiD-VP could been expected be-
cause of the enormous speed of message passing reachable on shared mem-
ory machines such as SUN HPC.

4. No regular experiments have been made yet to investigate the influence of
the size of the coarse grid on the DD-EC solution. At the moment, there
is a problem with the performance of the dconv utility: Its execution
time (needed for the “synchronization” of the coarse and fine grids) is
much longer than the solution itself (more then 3 minutes in the case of
FOOT60 and FOOT10 as its coarse grid).

Some additional remarks:

1. The SUN HPC platform boasts the best times ever achieved with the
GEM32 solvers.

2. When using the same number of processors, the solvers run faster on the
HPC 3500 machine than on the HPC 6500, mainly due to shorter data
reading. This can be explained by the fact that the working directory was
located on the HPC 3500 disk and only mounted to the HPC 6500.

7.3.3 The DR results

The conditions to run the DR benchmark were similar to the FOOT benchmarks
above. That is, the accuracy prescribed for the DR benchmark was also 10−4

and we were interested in the solution phase, which does not include the data
reading time (60 – 110 s, see appendix A for details).

Because of some problems with the installation of the DR benchmark and
its longer execution time, we carried out the experiments with a limited combi-
nation of solvers and processors. In fact, only the most promising solvers were
tested:1

• DD-AC: x-mark (×)

• DiD-IF: plus (+)

Nevertheless, the results shown below seem to provide quite clear picture
about the current situation:

The main conclusion is that for the DR benchmark, the DiD solver works
better then the DD solver regardless of the number of processors DD employs.

1There was no appropriate coarse grid to use DD-EC.

7.3. SELECTED RESULTS 33

2 4 6 8 10 12 14 16 18 20
500

600

700

800

900

1000

1100

1200
DR − times

No. of processors

T
im

e
[s

]

2 4 6 8 10 12 14 16 18 20
30

40

50

60

70

80

90
DR − iterations

No. of processors

N
o.

 o
f i

te
ra

tio
ns

Figure 7.4: Solution times (left) and iteration counts (right) for the DR bench-
mark (3 873 264 equations)

Chapter 8

Conclusions

8.1 Future work

The previous text has left a lot of issues open — they need more work and
investigation. As the important we consider the subsequent list, which makes
our working programme for the near future.

• Finishing and benchmarking of the iscom (DDiD) solver; comparison with
the other solvers.

• Explanation/elimination of the oscillations in the run times of the isol

(DD) solver, possibly with some improvement of its efficiency.

• Port of ELPAR/portaGEM to the Cray T3E platform, to improve its
portability and verify the behaviour of the codes in a parallel environment
with tens of processor nodes.

• Solution of a refined DR problem (6 – 10 million degrees of freedom).

• Testing on the LINUX platform. An affordable Beowulf cluster like this
is a parallel hardware with the greatest perspective to be acquired in our
financially restricted conditions.

• Testing of the PVM-versions of the solvers, where possible. Comparison
with the MPI-versions.

8.2 Acknowledgements

The authors would like to acknowledge the support of:

• the European Commission through grant No. HPRI-1999-CT-00026 (the
TRACS Programme at EPCC)

• the Czech Ministry of Education through grant No. LB98212

• VŠB – TU Ostrava through project No. CEZ:J17/98:2724019

• the Grant Agency of the Czech Republic through grant No. 105/99/1229

34

Appendix A

Numerical form of

benchmark results

In this appendix, we provide the complete set of data used to generate diagrams
in chapter 7. For each of the solvers and tests, the following values are given:

#p Number of processor employed (for both the master and workers)
#it Number of iterations performed to achieve the prescribed accuracy
Tr Time (in seconds) to read in data from files
Tc Time (in seconds) spent in the solution (iterative) phase
Tot Total wall-clock time (in seconds) of the solution

Let us add that whereas the Tr and Tc times provide the solvers themselves,
the Tot time was measured by the /usr/bin/time system utility. Due to the
system overhead involved in the starting and stopping of programmes, the fol-
lowing inequality holds:

Tr + Tc < Tot

35

36 APPENDIX A. NUMERICAL FORM OF BENCHMARK RESULTS

A.1 FOOT results

A.1.1 FOOT40

DD solvers:

| DD-AC (aggreg.) | DD-EC (explic.) | DD-0C (no coarse)

#p|#it| Tr| Tc | Tot #it| Tr| Tc | Tot #it| Tr | Tc | Tot

3 56 3.2 43.3 47.7

4 33 3.6 24.4 29.1 15 3.9 20.3 25.3 62 3.3 26.7 31.2

5 32 3.6 16.6 21.4 14 3.3 13.0 17.5 66 3.2 19.0 23.3

6 32 3.3 14.1 18.6 14 3.4 9.5 14.0 72 8.2 16.7 26.5

7 32 3.5 12.7 17.6 14 3.4 7.7 12.2 87 10.5 23.5 35.5

8 34 3.5 14.0 18.8 14 3.6 9.0 13.8 93 11.8 25.0 38.8

9 35 3.6 14.4 19.3 14 3.7 9.2 14.2 90 13.9 12.5 28.4

10 32 3.7 10.6 15.5 14 3.7 5.6 10.7 100 11.9 21.4 35.6

11 34 3.8 13.1 18.2 14 3.8 7.4 12.6 98 10.4 11.0 23.2

12 33 3.8 10.3 15.4 14 3.8 4.9 10.1 116 4.4 31.2 37.1

13 35 4.0 14.5 20.0 16 4.1 10.2 15.7 112 3.8 20.3 25.7

14 34 4.0 12.2 17.8 15 4.1 7.1 12.8 111 4.1 11.2 16.9

15 33 4.1 10.2 15.9 15 4.3 5.0 10.9 142 4.2 59.8 65.6

16 38 4.6 18.9 25.1 19 4.5 16.7 22.9 142 4.3 49.1 54.9

17 37 4.5 16.6 22.7 18 4.5 13.6 19.9 138 4.3 37.7 43.9

18 37 4.6 15.3 21.5 18 4.5 11.8 18.1 135 4.3 30.1 36.0

DiD solvers:

| DiD-IF (inc.f.) | DiD-VP (var.p.)

#p|#it| Tr| Tc | Tot #it| Tr| Tc | Tot

4 45 4.6 17.1 22.9 11 3.7 18.3 23.2

Sequential SEQ-M solver:

#p|#it| Tr| Tc | Tot

1 45 4.1 77.3 82.2

A.1. FOOT RESULTS 37

A.1.2 FOOT60

DD solvers:

| DD-AC (aggreg.) | DD-EC (explic.)

#p|#it| Tr | Tc | Tot #it| Tr | Tc | Tot

4 39 11.0 107.1 119.7 19 10.7 83.7 95.9

5 39 14.6 81.1 97.7 18 10.8 55.5 67.8

6 38 15.5 69.9 88.1 18 10.9 43.8 56.3

7 37 12.9 66.7 82.2 18 10.9 36.0 48.3

8 38 11.3 57.5 70.8 17 11.4 30.1 43.1

9 39 11.6 62.2 75.7 18 11.5 34.1 47.1

10 39 11.6 60.1 73.8 18 11.6 31.2 44.4

11 38 12.0 63.6 78.0 19 12.1 35.5 49.4

12 33 12.2 46.1 60.8 17 11.8 18.7 32.4

13 42 12.2 59.4 73.4 20 12.2 31.4 45.4

14 37 12.4 45.3 60.3 18 12.3 16.4 30.5

15 42 12.8 64.6 80.6 21 12.7 38.4 53.2

16 39 13.0 52.0 67.9 20 12.5 25.7 40.3

17 36 13.0 44.0 59.0 18 13.0 14.4 29.4

18 41 13.8 68.9 86.1 24 13.6 54.3 70.5

DiD solvers:

| DiD-IF (inc.f.) | DiD-VP (var.p.)

#p|#it| Tr | Tc | Tot #it| Tr | Tc | Tot

4 57 15.8 77.4 94.8 11 12.5 82.9 96.9

Sequential SEQ-M solver:

#p|#it| Tr | Tc | Tot

1 57 14.1 343.7 360.3

38 APPENDIX A. NUMERICAL FORM OF BENCHMARK RESULTS

A.1.3 FOOT80

DD solvers:

| DD-AC (aggreg.) | DD-EC (explic.)

#p|#it| Tr | Tc | Tot #it| Tr | Tc | Tot

4 46 26.0 325.8 354.2 23 25.0 239.5 266.7

5 45 25.9 264.6 292.8 23 25.4 171.9 199.5

6 43 25.9 234.6 262.8 22 25.7 121.6 149.5

7 44 26.3 216.0 244.5 22 25.7 102.1 130.1

8 44 25.7 215.2 243.1 21 26.1 90.3 118.6

9 44 27.6 210.0 239.8 22 27.9 88.3 118.4

10 42 26.5 184.9 213.5 21 26.6 68.6 97.1

11 46 28.1 225.8 256.0 24 27.5 106.0 135.6

12 41 27.4 172.0 203.7 21 27.5 56.9 86.6

13 44 27.7 186.2 219.1 23 27.7 69.8 99.8

14 46 28.6 210.6 241.4 26 28.8 103.2 134.2

15 42 27.8 170.6 204.5 23 28.3 57.5 88.0

16 47 30.3 215.4 248.0 27 29.2 111.0 144.8

17 45 29.1 190.9 223.6 25 28.7 74.2 105.5

18 39 28.9 154.0 187.2 22 28.5 43.2 74.3

DiD solvers:

| DiD-IF (inc.f.) | DiD-VP (var.p.)

#p|#it| Tr | Tc | Tot #it| Tr | Tc | Tot

4 67 42.6 226.1 273.0 12 32.8 267.6 302.7

Sequential SEQ-M solver:

#p|#it| Tr | Tc | Tot

1 67 33.3 961.2 998.2

A.2. DR RESULTS 39

A.2 DR results

DD solver:

| DD-AC (aggreg.)

#p|#it| Tr | Tc | Tot

6 50 65.4 854.3 923.2

7 53 65.2 819.9 988.8

8 56 67.7 851.4 922.5

9 60 69.2 904.2 976.8

12 65 71.8 903.7 980.8

15 73 75.4 1020.8 1103.2

18 79 77.8 1081.2 1162.7

DiD solver:

| DiD-IF (inc.f.)

#p|#it| Tr | Tc | Tot

4 83 109.9 721.3 835.5

Bibliography

[1] Blaheta, R. et al.: IGAS collection of benchmarks, solvers and test results.
Technical report COPERNICUS 940820 – DAM IG – 9705, Institute of
Geonics Cz. Acad. Sci., Ostrava, 1997

[2] Blaheta, R., Jakl, O., Kohut, R., Kolcun, A.: An application of large scale
mathematical modelling in geomechanics. In: Proc. Modern Mathematical
Methods in Engineering. VŠB –Technical University, Ostrava, 1997.

[3] Blaheta, R., Jakl, O., Starý, J.: PVM-implementation of the PCG method
with Displacement Decomposition. In: Bubak, M, Dongarra, J., Was-
niewski, J. (eds.): Recent Advances in Parallel Virtual Machine and Message
Passing Interface. Lecture Notes in Computer Science, Vol. 1332, Springer-
Verlag, Berlin, 1997, pp. 321–328

[4] Blaheta, R., Kohut, R.: The PCG–1 iterative solver. Technical report. In-
stitute of Geonics Cz. Acad. Sci., Ostrava, 1995

[5] Geist, A. et al.: PVM: Parallel Virtual Machine — Users’ Guide and Tuto-
rial for Networked Parallel Computing. MIT Press, Cambridge, 1994

[6] MPI: A Message-Passing Interface Standard. University of Tennessee, 1995.
See also http://www.mpi-forum.org/docs/mpi-11.ps

[7] Nečas, J., Hlaváček, I.: Mathematical theory of elastic and elasto-plastic
bodies: an introduction. Elsevier Scientific Publishing Company, 1981

[8] Smith, B. F., Bjørstad, P. E., Gropp, W. D.: Domain Decomposition. Par-
allel multilevel methods for elliptic partial differential equations. Cambridge
University Press, 1996

[9] Tichý, P. et al.: Development of the Regional Metropolitan Supercomputing
Centre in Ostrava — supporting research in the area of parallel algorithms.
Final report of the grant No. LB98273 (Cz. Ministry of the Education),
VŠB –Technical University, Ostrava, 2001

[10] Modelling and Simulation of complex Technical Problems, project of the
Program of the Information Society of the Thematic Program II of the Na-
tional Research Program of the Czech Republic, project No. 1ET400300415,
http://www2.cs.cas.cz/mweb

40

