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Summary

Monthly mean temperature and monthly precipitation totals
in two small catchments in the Czech Republic are estimated
from large-scale 500 hPa height and 1000/500 hPa thickness
®elds using statistical downscaling. The method used is
multiple linear regression. Whereas precipitation can be
determined from large-scale ®elds with some con®dence in
only a few months of the year, temperature can be
determined successfully. Principal components calculated
separately from the height and thickness anomalies are
identi®ed as the best predictor set. The method is most
accurate if the regression is performed using seasons based
on three months. The test on an independent sample,
consisting of warm seasons, con®rms that the method
successfully reproduces the difference in mean temperature
between two climatic states, which indicates that this
downscaling method is applicable for constructing scenarios
of a future climate change. The ECHAM3 GCM is used for
scenario construction. The GCM is shown to simulate
surface temperature and precipitation with low accuracy,
whereas the large-scale atmospheric ®elds are reproduced
well; this justi®es the downscaling approach. The observed
regression equations are applied to 2xCO2 GCM output so
that the model's bias is eleminated. This procedure is then
discussed and ®nally, temperature scenarios for the 2xCO2

climate are constructed for the two catchments.

1. Introduction

It is recognized that there is a gap between what
general circulation models (GCMs) can produce
with reasonable levels of con®dence and what is

required for climate change impact studies (von
Storch, 1995; Kattenberg et al., 1996). Methods of
bridging this gap, that is, of translating the most
reliable GCM output to the surface variables,
required at regional and local scales by impact
researchers, are commonly referred to as down-
scaling techniques (Giorgi and Mearns, 1991).
Speci®cally, statistical downscaling is based on
seeking statistical relationships between sets of
predictors (variables that are well represented by
GCMs) and predictands (variables needed for
impact studies). Starting from the pioneering paper
by Kim et al. (1984), a variety of approaches to
statistical downscaling have been employed which
vary in their temporal and spatial scales, their
statistical methods, and the variables included in
the process.

GCMs simulate upper-air variables more accu-
rately than the surface variables; large-scale ®elds
are simulated better than values at a single
gridpoint (gridbox) (Grotch and MacCracken,
1991; Gates et al., 1996). Therefore, large-scale
upper-air variables are a good choice as predictors
in downscaling studies. Furthermore, the predic-
tors selected for downscaling must explain a
suf®cient portion of thevariance of the predictands.
Circulation variables (geopotential heights and sea
level pressure) have therefore been used in many
studies as the only predictor in downscaling
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variables, such as temperature and precipitation
(von Storch et al., 1993; Hewitson, 1994; Corte-
Real et al., 1995; Schubert and Henderson-Sellers,
1997). Changes in circulation do not appear to be
the main source of observed long-term surface
climate trends (Yarnal, 1985; Huth, 1999), and
therefore, changes in surface climate due to the
enhanced greenhouse effect as determined by
downscaling GCM-simulated circulation alone,
may not be reliable. The downscaling-from-
circulation method fails, for example, in the simple
case where the whole troposphere warms up in
future climate whereas the circulation remains
unchanged. A possible remedy to this problem
suggested in recent studies, is to include among
the predictors other large-scale ®elds that affect
surface conditions, such as temperature in the
free atmosphere (Kaas and Frich, 1995; Cavazos,
1997).

There are several unresolved issues in the
application of statistical downscaling procedures
to GCM output. They concern two topics: (i) the
climatology from which the predictor and
predictand anomalies in GCM climates (both in
the control and perturbed runs) are calculated,
and (ii) the way the principal components (PCs),
representing the predictor ®eld, are de®ned in the
GCM output. In the majority of relevant studies,
either the options are selected without a proper
substantiation or the selected options are not
explicitly mentioned at all.

This study aims to construct time series of
monthly mean temperature and precipitation by
downscaling outputs from the ECHAM3 GCM
for a 2xCO2 climate situation in two small
catchments in the Czech Republic. The emphasis
is put on methodological considerations regard-
ing the application of statistical downscaling to
GCM output. The results of the study will be
used to investigate climate change impacts on
hydrological regimes in the two catchments. The
data used in this study are described in Sec. 2 and
the downscaling method is described in Sec. 3.
Section 4 deals with GCM control run validation
based on two points of view: 1. Is there a need
for downscaling, i.e., are GCM-simulated tem-
peratures and precipitation too unreliable for
direct use in impact studies (cf. Palutikof et al.,
1997)? 2. Are the large-scale ®elds simulated
accurately enough to be used as predictors? In
Sec. 5 the downscaling method is applied to

observed data, concentrating on the selection of
predictors and the optimum de®nition of seasons.
The downscaling method is then applied to the
control and 2xCO2 GCM output in Sec. 6 along
with a discussion of the related methodological
considerations. The time series of monthly values
for a 2xCO2 climate (climate change scenario)
are constructed and the results are summarized in
Sec. 7.

2. Datasets

Thirty years of observations and thirty years of
both control and equilibrium 2xCO2 experiments
with the ECHAM3 GCM are used in this study. The
ECHAM3 model has a T42 resolution, correspond-
ing approximately to a 2.8� grid step both in
longitude and latitude. In the control run, climato-
logical SSTs and sea ice were employed while the
2xCO2 run was forced by SSTs and sea ice
averaged over years 65 to 74 (roughly correspond-
ing to doubling the CO2 concentration) in the
scenario A transient integration. Observations span
the period 1961±1990; the GCM simulations span
years 11 to 40 in the control run and 13 to 42 in the
2xCO2 run. A more detailed description of the
ECHAM3 model can be found in DKRZ (1993).

Two large-scale predictors are considered.
Upper-air circulation is represented by 500 hPa
geopotential heights (Z500); temperature of the
lower troposphere is characterized by 1000/500
hPa thickness (TH). The observed data are taken
from NCEP reanalyses. They were interpolated
from the original 5� � 5� grid onto the model grid
using bicubic splines. To reduce the amount of
data, the grid is used with a halved resolution
(approximately 5.6� � 5.6�) to represent predic-
tor ®elds in both the observations and GCM
output. The area of interest covers most of
Europe and extends from 16.9� W to 28.1� E and
from 32.1� N to 65.6� N, thereby consisting of 63
gridpoints.

The geographic location of the catchments of the
Metuje and Blanice rivers is shown in Fig. 1. The
precipitation series for the Metuje catchment were
obtained by simply averaging data from ®ve
gauges; the precipitation series for the Blanice
catchment and temperatures for both catchments
consist of data from a single station. The positions
of the four closest GCM gridpoints are also
displayed in Fig. 1.
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3. Downscaling Method

The method used is a multiple linear regression
between principal components (PCs) of predictor
®eld(s) as dependent variables, and local tem-
perature/precipitation as the independent vari-
able. Although the variance of a surface climate
variable explained by a set of PCs is smaller than
that explained by the original gridded data (even
if a screening procedure is applied to the latter;
Klein and Walsh, 1983; Huth, 1997), we prefer to
use PCs because the ability of GCMs to simulate
large-scale correlation/covariance structures is
generally better relative to individual gridpoint
values.

Principal components are calculated from
monthly Z500 and TH anomalies, de®ned as
departures from the corresponding 30-year
monthly means. The procedure is similar to that
employed by Barnston and Livezey (1987), which
may be referred to for more information on
principal component analysis (PCA). Separate
PCs are calculated for seasons de®ned by a variety
of groupings of months (see Sec. 5). Three sets of
PCs are produced for each season: PCs of
geopotential heights alone, PCs of thickness alone,
and joint PCs, calculated from the two ®elds
together. The data matrix thus consists of 63
columns (corresponding to 63 gridpoints) in the
former two cases, and of 126 columns (two
quantities for each gridpoint) in the latter case. A
correlation matrix was used in the PCA. The PCs
are orthogonally rotated using Varimax criterion,

in order to make their interpretation possible while
retaining the linear independence of PC scores (i.e.,
time series of PC amplitudes). To determine the
number of PCs to be retained and rotated, we
employ O'Lenic and Livezey's (1988) criterion of
cutting the PCs just behind the last section of
relatively small slope (shelf ) in an eigenvalue vs.
PC-number diagram, which has been shown to be
suitable in identifying modes of circulation
variability. In most cases, the criterion was easy
to apply. The numbers of PCs retained differ
among seasons and among predictor sets. For the
commonly de®ned seasons (DJF, MAM, etc.), we
retained 5 PCs for Z500 and 6 PCs for joint
predictor (Z500�TH) in all seasons. For TH, the
number of retained PCs is 9 in summer and 6 in
other seasons. The variance explained by the
retained PCs is generally largest in winter (about
92%) and smallest in summer (about 80%), and
differs by only a little amount (3% maximum)
among the three PC sets.

If only Z500 PCs are taken as the predictors in
the linear regression equation, all the PCs retained
are used in the regression model, i.e., no screening
is applied. The information on the thermal
structure of the lower troposphere (the TH ®eld)
can be included in two ways: The regression can be
based either on joint (Z500�TH) PCs or on
separate Z500 and TH PCs. In the former case, no
screening is applied since all the PCs are linearly
independent by de®nition. On the other hand, PCs
of Z500 ®eld and PCs of TH ®eld are strongly
interrelated and screening is therefore necessary.

Fig. 1. Location of the catchments
and four close ECHAM gridpoints
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The stepwise screening procedure is used, in which
each potential predictor variable is evaluated for its
individual signi®cance level before including it in
the equation, and, after each addition, each variable
within the equation is evaluated for its signi®cance
as part of the model. The signi®cance levels for
entering variables into the equation and retaining
them were set to 90% and 95%, respectively.

4. Validation

4.1 Surface Variables

A comparison of temperature and precipitation as
simulated by the ECHAM3 GCM, with observa-
tions, in the two catchments, was performed in
detail by Neme�sovaÂ et al. (1998). Here we compare
the annual cycles of monthly mean temperature
and monthly precipitation for both catchments and
the four closest GCM gridpoints (Fig. 2). The
difference between the simulated and observed
cycles is much greater than the spread of curves
among gridpoints and between catchments. The
control climate is warmer than the observed
throughout the year except for spring. Tempera-
tures peak later in summer: the annual maximum
occurs in August instead of July. Annual precipita-
tion is about twice as large in the control climate
than the observed and the precipitation distribution
during the year is entirely different.

Because of these de®ciencies the simulation of
neither temperature nor precipitation annual cycle
can be considered satisfactory. The attempt to
downscale both variables from large-scale upper-
air ®elds is thus justi®ed on this basis.

4.2 Upper-Air Fields

A simple comparison of annual mean 500 hPa
heights and 1000/500 hPa thickness shows that the
ECHAM GCM simulates the lower troposphere
too warm and the 500 hPa level too high. The
maximum bias is located over northwest France for
both ®elds (not shown).

The percentage of variance explained by the
eight leading PCs (modes of variability) of the
three predictor sets (Z500, TH, joint) in winter
(DJF) in the observations and the GCM control run
is shown in Table 1. The number of PCs to be
retained was determined according to O'Lenic and
Livezey's (1988) criterion, described in the

previous section. In the Z500 PCs, a drop in the
explained variance occurs between the ®fth and
sixth PC in both climates, indicating that the
number of relevant Z500 PCs, ®ve, is the same. On
the other hand, in both TH and joint PCs a drop
occurs after the sixth PC in the observations, but
after the ®fth PC in the control climate. In addition
to this, 5 PCs in the control run explain approxi-
mately the same amount of variance as 6 PCs in the
observations. Both these ®ndings indicate that
there are only ®ve relevant PCs in the control
climate, not six as in the observations. The results
are very similar in other seasons.

The maps of the Z500 and TH loadings (i.e.,
correlations between the gridpoint values and PC

Fig. 2. Annual cycles of temperature (�C) and precipitation
(mm) for the Blanice (solid line) and Metuje (dashed)
catchments and at the four ECHAM gridpoints (dotted)
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scores) for DJF are compared between the observed
and control climate in Figs. 3 and 4. There is a clear
one-to-one correspondence between the observed
and control PCs of the Z500 ®eld (Fig. 3). The
correspondence is underscored by the correlation
between the loading patterns (Table 2): All the
correlation coef®cients between the corresponding
patterns greatly exceed 0.9. For the TH ®eld,
several pairs of the observed and control PCs can
also be found (Fig. 4): observed PCs 1, 4, 5 and 6
correspond in turn to control PCs 3, 4, 5 and 2. PC 2
in the observations manifests a weaker correspon-
dence with the control PC 1 since its center is
shifted ten degrees eastwards. However, observed
PC 3 has no counterpart in the control climate.
Pattern correlations (Table 3) con®rm that the one-
to-one correspondence is incomplete and observed
mode 3 is not reproduced in the control climate. If
only 5 PCs are rotated in the control climate, a one-
to-one correspondence between the observed and
control PCs appears except for the observed PC 3,
which has no counterpart in the control climate
(Table 4). This indicates that the variations in lower
tropospheric temperature centered over Tunisia are
not reproduced by the ECHAM3 GCM. The lower
number of relevant TH PCs in the control climate,
®ve, which is indicated by the percentage of
variance in Table 1, is thus con®rmed. A similar
effect appears for the joint predictor: the observed
PC with its Z500 and TH anomaly center over

Tunisia is missing in the control climate (not
shown).

In other seasons, the performance of the model is
similar to that for winter: The control Z500 PCs
correspond to the observed PCs quite closely,

Table 1. Percentage of Variance Explained by 8 Leading PCs
of 500 hPa Heights (Z500), Thickness (TH), and Joint PCs of
Z500 and TH (Joint; for De®nition see Text); for the
Observed (OBS) and GCM Control (CTR) Climates; all
for Winter (DJF). Cummulative Variance Explained by
Leading 5 and 6 PCs (Denoted C5 and C6, Respectively)
is Displayed in the Last Two Rows

Z500 RT Joint
PC OBS CTR OBS CTR OBS CTR

1 29.3 36.5 36.4 33.9 30.9 33.3
2 26.4 28.8 23.3 31.7 22.4 26.9
3 19.1 18.5 13.5 12.8 14.9 16.2
4 10.1 6.9 9.3 8.0 10.2 8.0
5 7.2 4.7 6.2 5.6 6.7 5.1
6 2.6 1.6 4.1 2.3 4.0 2.3
7 2.1 1.0 1.8 1.4 2.0 1.8
8 1.1 .7 1.4 1.1 1.5 1.2

C5 92.1 95.5 88.6 92.0 85.0 89.5
C6 94.7 97.1 92.1 94.2 89.1 91.8

Fig. 3. Rotated PC loadings for 500 hPa heights in winter
for a 5-PC solution: observed (top) and control run (bottom)
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whereas the ECHAM GCM simulates fewer
relevant thickness PCs than occur in the observa-
tions.

5. Downscaling of Observed Data

5.1 Selection of Predictors and Predictands

First of all, the optimum con®guration of predictors
and predictands is selected. More speci®cally, we
examine the effect on the accuracy of the down-
scaled variables of (i) taking anomalies or raw
values as predictands, (ii) including thickness

3
Fig. 4. Rotated PC loadings for thickness in winter for a
6-PC solution: observed (top) and control run (bottom)

Table 2. Correlation Coef®cients Between Five Observed
and Control PC Loadings for 500 hPa Heights, Winter
(DJF). One-to-one Correspondence is Indicated in Boldface

CONTROL
PC 1 2 3 4 5

1 .980 ÿ.196 ÿ.121 ÿ.294 ÿ.047
2 ÿ.149 .973 .241 .000 ÿ.464
3 ÿ.030 .287 .978 ÿ.392 ÿ.655
4 ÿ.199 .052 ÿ.313 .988 .235
5 .012 ÿ.408 ÿ.629 .311 .934O

B
S

E
R

V
E

D

Table 3. Same as in Table 2 Except for 6 PCs of Thickness

CONTROL
PC 1 2 3 4 5 6

1 .427 ÿ.381 .916 .165 ÿ.404 ÿ.108
2 .860 ÿ.573 ÿ.105 .161 ÿ.163 .770
3 .066 .689 ÿ.438 ÿ.484 .655 ÿ.521
4 ÿ.093 ÿ.630 .077 .972 ÿ.611 ÿ.032
5 ÿ.060 .170 ÿ.345 ÿ.580 .880 .178
6 ÿ.291 .890 ÿ.243 ÿ.630 .186 ÿ.228O

B
S

E
R

V
E

D

Table 4. Same as in Table 3 Except for 6 Observed PCs and 5
Control PCs

CONTROL
PC 1 2 3 4 5

1 .265 ÿ.359 .953 .186 ÿ.371
2 .970 ÿ.514 ÿ.042 .108 ÿ.167
3 ÿ.116 .768 ÿ.374 ÿ.446 .617
4 .005 ÿ.636 .043 .970 ÿ.603
5 .005 .195 ÿ.360 ÿ.580 .895
6 ÿ.384 .846 ÿ.232 ÿ.629 .148

O
B

S
E

R
V

E
D
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among the predictors, and (iii) the way in which
thickness is included. For this purpose, the down-
scaling procedure is applied to the whole 30-year
period of observed data and based on standard
seasons (winter is December to February etc.):
principal components and regression coef®cients
are determined for each season separately. The
evaluation is performed for seasons in terms of the
squared correlation coef®cient, i.e., the share of
variance explained by the regression equation.

The results are presented in Fig. 5 for the Metuje
catchment for both variables, in all four seasons,

and with four con®gurations of predictors and
predictands (regression methods). If principal
components of Z500 ®eld are used as the predictor,
taking anomalies (method B) instead of raw values
(method A) of the predictand variable improves the
speci®cation of temperature throughout the year,
most notably in spring and autumn, whereas the
improvement for precipitation is only marginal.
The inclusion of thickness in the predictors
(method C) further improves the speci®cation of
temperature. The results are better in all seasons for
stepwise regression performed on PCs calculated
for Z500 and TH ®elds separately (method D) than
for regression of joint PCs without screening
(method C). The inclusion of thickness does not
lead to any improvement in the speci®cation of
precipitation.

The variance explained by circulation and
lower tropospheric thickness using the best
method (D) is much larger for temperature than
for precipitation. For temperature, the variance
explained is largest in spring, exceeding 80% at
both stations, while smallest in autumn. Very low
portions of the total variance of precipitation
are explained, only exceeding one third for
Metuje in winter. The worst results are obtained
for the convective season (spring and summer).

5.2 De®nition of Seasons

In this subsection we attempt to ®nd the optimum
de®nition of seasons, that is, a de®nition for
which the largest share of variance is explained.
This is done using a cross-validation scheme,
which provides an unbiased estimate of potential
`predictability' of temperature and precipitation.
The cross-validation consists in omitting one
season at a time, building the statistical model on
the rest of data, and testing it on the omitted
season as on an independent sample (Michaelsen,
1987). The accuracy of cross-validated tempera-
ture and precipitation is evaluated by correlating
speci®ed values with observations for each
calendar month separately.

The selection of the optimum length of seasons
for downscaling temperature is illustrated in Fig. 6.
Three partitions of the year are considered: (i) the
whole year treated as one season; (ii) four three-
month seasons de®ned in a common way (winter as
December to February, spring as March to May,

Fig. 5. Selection of predictors, Metuje; temperature (top)
and precipitation (bottom). Shown are squared correlations
between downscaled values and observations for the
following predictors: PCs of raw 500 hPa heights (A);
PCs of 500 hPa height anomalies (B); joint PCs of
anomalies of 500 hPa heights and relative topography (C);
PCs of 500 hPa anomalies and PCs of relative topography
anomalies (D)
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etc.); and (iii) each month treated as a separate
season. Building the regression model for each
month separately (bars furthest to the right) yields
the worst results, mainly in November and
December. The overall performance appears to
be best for the three-month seasons (black bars).
The performance of the regression method peaks in
the warm half of the year and is weakest in
November and December in both catchments.
There are three possible sets of three-month
seasons: one starting with December to February
(the ordinary de®nition), the second starting with
January to March, and the third with February to
April. There is a great deal of similarity in the level
of performance among the sets of seasons, but the
ordinary seasons (DJF, . . .), nevertheless, tend to
produce the best results (not shown).

For precipitation, treating each month sepa-
rately results in several negative correlations
(Fig. 7). This outcome, however, is rather a
common case in cross-validating regression
`forecasts' if the expected skill (in terms of
correlation) is close to zero (Barnston and van
den Dool, 1993). The three-month seasons tend
to be better than the year as a whole from
October to March in the Blanice catchment (not
shown) but for three separate months only
(February, July, December) in the Metuje catch-
ment. In the warm half-year (April to Septem-
ber), the skill is low, indicating that the

speci®cation of precipitation fails in months
when convective precipitation prevails. The only
months when precipitation can be speci®ed from
circulation and thickness in both catchments
with a reasonable skill are October, December,
January and February.

Because of the low skill levels obtained for
downscaling monthly precipitation, the rest of
this study is con®ned to an analysis of tempera-
ture only.

5.3 Analogue of a Warmer Climate

Our ultimate aim is to apply the downscaling
procedure to a future, likely warmer climate.
Before doing that, it is useful to know if the
method is transferable from one climate state (on
which it is developed) to another and to what
extent it can reproduce the difference between
the two climate states. For this purpose, we
applied the procedure similar to that used by von
Storch et al. (1993): We selected the ten coldest
and ten warmest seasons (winters, springs, etc.)
from the observed dataset as an analogue of the
difference between the present and future, likely
warmer climate. The linear regression model was
built on thirty monthly mean temperature
anomalies of the ten coldest seasons, and then
applied to thirty months of the ten warmest
seasons as an independent sample.

The observed and downscaled temperatures in
the ten warmest seasons are compared in terms of
their mean anomaly (Fig. 8) and absolute range

Fig. 6. Selection of the length of seasons for Metuje.
Shown are correlations (� 100) between downscaled and
observed temperatures for one season 12 months long
(entire year; 1), four three-month seasons (4); 12 one-month
seasons (each month separately; 12)

Fig. 7. Same as in Fig. 6, except for precipitation
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(i.e., the difference between the maximum and
minimum monthly value; not shown). The
downscaling method reproduces the positive
anomaly of the warm seasons reasonably well,
although it tends to underestimate the size of the
anomaly throughout the year (except summer in
the Metuje catchment). This is a consequence of
the downscaled values having lower variance
than the observed values. The difference between
the warm and cold `climate states' appears to be
best captured in spring. The absolute range is
reproduced well in all seasons except winter for
which the downscaled temperatures are much
more variable: the observed range for the Blanice
catchment is 8 �C whereas in the downscaled

values, it approaches 15 �C. A possible explana-
tion for this is that in reality the direct effect of
circulation is dampened by local in¯uences, such
as temperature inversions, inhibiting surface from
excessive warming when warm advection occurs
above. In the regression model, such damping
effects are absent and warm advection can thus
raise surface temperatures without any physical
limitations.

The results show that the downscaling proce-
dure is capable of capturing differences in mean
temperatures between two climate states. It is,
therefore, meaningful to apply the method to
derive temperature scenarios for a warmer 2xCO2

climate.

6. Downscaling of GCM Data

6.1 Methodological Considerations

The downscaling method used in this study
possesses three options when applied to GCM
data: 1. Should the predictor anomalies be de-
®ned by subtracting from the observed or the
control mean? 2. Should the predictand anoma-
lies, i.e., the output from the regression equation,
be added to the observed or the control mean? 3.
Should the regression be based on PCs directly
computed from the GCM control run, or on the
projection of the observed PCs onto the control
run? Similar questions apply to any statistical
downscaling technique (e.g., canonical correla-
tion analysis), but only a few studies explicitly
mention which options are actually employed.

The ®rst two options are twinned. Taking the
anomalies from the control run as the predictors
makes the anomalies downscaled from the
control run have zero mean. Consequently, the
anomalies downscaled from the 2xCO2 run are
free of the model's bias. Therefore, the unbiased
full time series for the 2xCO2 climate at a given
site can be made up by adding downscaled
anomalies to the observed mean. The appropri-
ateness of this approach has been shown by Karl
et al. (1990) and Winkler et al. (1997). There
appears, however, to be an alternative: The
observed mean can be subtracted from the
GCM time series to produce anomalies. Then,
the downscaled control anomalies no longer have
zero mean and the downscaled 2xCO2 anomalies
include the model's bias. The bias may be

Fig. 8. Test on an independent sample. Mean temperature
anomalies of ten warmest seasons in observations (OBS)
and downscaled values de®ned by regression on ten coldest
seasons (DOWN)
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eliminated by subtracting the mean control
anomaly from the downscaled 2xCO2 anomalies,
the full 2xCO2 time series is then constructed by
adding the observed mean. In this study we
employ the former method of eliminating bias
from the GCM downscaled series (hereafter
referred to as `C' method; C stands for control)
because it is simpler and perhaps more intuitive.
The latter method (`O' for observed) is used for
comparison purposes only.

The advantage of using the model's own PCs
(e.g., Hewitson, 1994) rather than the projections
of the observed PCs can be seen in that the
intrinsic PCs explain more variance in the GCM
run than the projected ones. However, the
necessary condition for control PCs to be used
in the downscaling procedure is a one-to-one
correspondence between the observed and con-
trol PCs. If the model fails to simulate the PCs
with enough accuracy, the observed relationships
with surface climate may not be valid in the
control climate (for example, a poleward shift of
a pattern like mode 1 in Fig. 4 would be
connected with a ¯ow that has a more northerly
component, inducing advection of cooler air), or
even impossible to apply if a relevant observed
PC is absent in the control run. Since the latter
situation is the case in this study (the observed
PC of thickness centered over Tunisia is not
reproduced in the control climate), we decided to
project observed PCs onto both GCM climates,

and to base the regression on these projections
rather than on the GCM's intrinsic PCs.

6.2 Application to GCM Output

The monthly mean temperature anomalies corre-
sponding to the present and 2xCO2 climates,
obtained directly from GCM output and by the
two downscaling methods (referred to above) for
the Blanice catchment are presented in Table 5.
The downscaling is based on commonly de®ned
seasons. The mean of the downscaled control
series is identical to the observed mean by
de®nition if the C method is employed. The
temperature bias of the control climate is larger
for the O downscaling method than for direct
GCM output. This points to the fact that the
model does not correctly simulate the links
between the large-scale and local-scale: If it
did, the GCM's bias would originate from the
large-scale bias only, as in O-downscaling, and
the GCM's and the O-method biases would be
close to each other. The resulting 2xCO2

anomalies (to be added to the observed means)
are fairly similar for the two downscaling
methods, and both differ considerably from the
direct GCM output for most months (see the four
rightmost columns in Table 5 for Blanice and
Table 6 for Metuje). This means that the removal
of the model's bias in the O downscaling method
is almost as effective as in the simpler C method.

Table 5. Temperature Anomalies in the Blanice Catchment for Control (CTR) and 2xCO2 (SCA) Climates, and Anticipated
Warming (Difference SCA±CTR), for Direct ECHAM Output and two Downscaling Methods (O and C). In the Rightmost
Column are Differences in Anticipated Warming Between the two Downscaling Methods (O±C). Downscaling Performed for
Standard Seasons (DJF, MAM, etc.)

Temperature anomalies diff.

ECHAM downscaling O downscaling C Anticipated warming down
Month CTR SCA CTR SCA CTR SCA ECHAM down O down C O±C

1 .5 3.7 2.7 4.6 .0 1.4 3.2 1.9 1.4 .5
2 1.5 3.7 3.9 4.5 .0 .6 2.2 .6 .6 .0
3 .7 3.8 2.3 5.0 .0 2.6 3.1 2.7 2.6 .1
4 .0 3.3 1.3 4.2 .0 2.8 3.3 2.9 2.8 .1
5 ÿ.8 1.8 .5 2.7 .0 2.1 2.6 2.2 2.1 .1
6 ÿ.4 2.7 .7 1.5 .0 .7 3.1 .8 .7 .1
7 .7 6.0 1.1 2.6 .0 1.1 5.3 1.5 1.1 .4
8 3.0 9.6 1.6 3.5 .0 1.4 6.6 1.9 1.4 .5
9 2.4 7.0 2.9 8.4 .0 5.8 4.6 5.5 5.8 ÿ.3

10 1.1 4.4 3.0 8.7 .0 5.9 3.3 5.7 5.9 ÿ.2
11 1.0 3.2 4.1 8.8 .0 4.6 2.2 4.7 4.6 .1
12 .8 3.0 2.8 4.1 .0 1.0 2.2 1.3 1.0 .3
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Discontinuities may appear between seasons
in the annual cycle of downscaled temperature
change: In Tables 5 and 6 we can see that the
autumn changes stand out from the summer and
winter changes in both catchments for both
downscaling methods. This is further illustrated
in Fig. 9 where the annual cycles of the
downscaled temperature change are shown for
the C method and for three possible de®nitions of
seasons. A similar, though smaller, discontinuity
can be found e.g., between June and July for the
JFM seasons in the Blanice catchment. The
reason for such inconsistencies is that the
predictors involved in the regression equation
differ from season to season and the response of
PCs' magnitudes to increased greenhouse forcing
differs from one PC to another. Table 7 shows
that in autumn, the predictors with a strong
response enter the regression equation with
mostly positive coef®cients, causing a high
warming rate. In neighbouring seasons, the
predictors with smaller response dominate and/
or several predictors are included with a negative
regression coef®cient, thus damping the tem-
perature response.

To minimize the effect of different predictors
entering downscaling procedure in different
seasons, we decided to construct the ®nal annual
cycle of monthly mean temperature response
to doubled greenhouse forcing by averaging the

three annual cycles based on the three de®nitions
of seasons. The ®nal downscaled temperature
change is displayed in Fig. 10 together with the
temperature scenario derived directly from the
ECHAM GCM by subtracting gridpoint 2xCO2

and control values. In general, downscaling
produces less warming than the GCM itself,
with the exception of October and November.
The downscaled annual cycles differ from the
GCM ones in that they indicate maximum
warming in autumn (by 4.5 �C for Blanice and
3.3 �C for Metuje); minimum warming occurs in
winter. A tendency towards a stronger down-
scaled temperature response is observed in the
Blanice catchment, which is consistent with the

Table 6. Anticipated Warming (Difference SCA±CTR) in the
Metuje Catchment for Direct ECHAM Output and two
Downscaling Methods (O and C). In the Rightmost Column
are Differences of Anticipated Warming Between the two
Downscaling Methods (O±C). Downscaling Performed for
Standard Seasons (DJF, MAM, etc.)

Anticipated warming diff. down
Month ECHAM down O down C O±C

1 2.7 .4 .3 .1
2 2.3 ÿ.6 ÿ.8 .2
3 3.1 2.4 2.4 .0
4 3.0 2.3 2.2 .1
5 2.3 1.3 1.3 .0
6 2.7 1.7 2.0 ÿ.3
7 4.2 2.6 2.4 .2
8 5.4 2.8 2.7 .1
9 3.7 4.2 5.1 ÿ.9

10 3.2 4.3 5.5 ÿ1.2
11 2.4 4.0 4.7 ÿ.7
12 2.1 ÿ.2 ÿ.2 .0

Fig. 9. Downscaled temperature change (difference be-
tween the 2xCO2 and present climates) obtained by the C
method for three sets of three-month seasons (starting with
DJF, JFM and FMA)
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direct GCM output, also yielding more warming
for Blanice catchment.

The temperature scenarios, i.e., the annual
cycles for the 2xCO2 climate, obtained both by
downscaling and directly from the GCM output,
are shown in Fig. 11 for the two catchments.
Also shown are annual cycles for the two
representations of the present climate, viz., the
observations (which are identical with the values
downscaled from the control run) and the control
GCM run. The downscaling retains the annual
maximum in July in the 2xCO2 climate as in the
observations, unlike the ECHAM simulations
which have an unrealistically late annual tem-
perature maximum in August, which is even
ampli®ed in the GCM 2xCO2 climate.

7. Conclusions

The ECHAM3 GCM simulates monthly mean
temperatures and monthly precipitation totals in
two catchments in the Czech Republic with con-
siderable de®ciencies. The potential for statisti-
cal downscaling from large-scale 500 hPa height
and 1000/500 hPa thickness ®elds to provide their
more accurate representation has therefore been
examined. As a downscaling method, multiple
linear regression of the principal components of
the large-scale ®elds has been employed.

In general, downscaling is much more suc-
cessful for temperature than precipitation. This is
in accord with recent downscaling studies,

carried out for different climatic conditions and
based on various methodologies (Wilks, 1989;
Wigley et al., 1990; Semenov and Barrow, 1997;
Kidson and Thompson, 1998). Monthly precipi-
tation in the two catchments can be speci®ed
from the large-scale circulation and thickness
®elds with reasonable accuracy in only a few
single months particularly in the cold part of the
year. In months when convective precipitation
prevails, the percentage of precipitation variance
explained rarely exceeds 20%, whatever con®g-
uration of predictors and seasons is used. This is
consistent with results of Noguer (1994) who has
shown precipitation downscaling to have vir-
tually no skill over the Iberian Peninsula in
summer. A possible improvement may be
achieved by incorporating free-atmospheric
moisture variables, such as speci®c humidity,
into the predictors (as in Crane and Hewitson,
1998). These variables have not been used in
regional validation studies yet, however, but they
are likely to be simulated with less accuracy than
circulation and free-atmospheric temperature.
This may cause subsequent dif®culties in apply-
ing observed humidity-to-precipitation relation-
ships to GCM outputs. We do not expect much
improvement if sea level pressure were used
instead of mid-tropospheric geopotential heights
because the success in speci®cation of surface
climate elements from circulation have been
shown to be almost independent of whether SLP
or upper air data is employed (Kidson, 1997).

Table 7. Response to Enhanced Greenhouse Effect (Difference SCA±CTR) in Mean Amplitude of PC Projections (Diff.) and
Regression Coef®cients for Blanice (Blan) and Metuje (Met). All for JJA, SON and DJF Seasons

JJA SON DJF
PC Diff. Blan Met Diff. Blan Met Diff. Blan Met

Z1 .59 �.190 �.245 1.18 ± ± .00 �.590 �.589
Z2 1.92 ± �.253 .88 ± ÿ.420 .49 ÿ.845 ÿ.837
Z3 2.78 ÿ.318 ± .82 �.424 ± .58 ÿ1.055 ÿ.713
Z4 5.13 ± ± 1.59 �.569 ± 1.26 ± ±
Z5 4.63 ± ± 2.90 �.505 �.943 .95 �1.563 �1.049
TH1 .25 �.367 ± .77 ± �.998 .79 �1.316 �1.900
TH2 1.08 ± ± 1.75 �.471 �.674 .15 ± �1.042
TH3 2.53 ± ± 2.04 ± ± .80 ± ±
TH4 1.40 ± ± 3.58 ± ± 1.92 ± ±
TH5 2.99 ± ± 3.25 �.582 �.631 2.62 ÿ.673 ÿ.792
TH6 1.10 �.511 �.322 1.89 ± ÿ.669 2.24 �.644 ±
TH7 1.81 �.507 �.447
TH8 .89 �.341 �.655
TH9 1.26 ± ±
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Another remedy is resorting to stochastic model-
ling techniques (weather generators), which has
been proposed e.g., by Wilks (1989), Dubrovsk�y
(1997), and Semenov and Barrow (1997).

For downscaling temperature, the anomalies
from the climatology are a better predictor than
the raw data, especially in spring and autumn.
The inclusion of large-scale free-atmospheric
temperature among predictors leads to a pro-
nounced improvement in the results, especially if
principal components are calculated for circula-
tion and temperature variables separately and
stepwise screening is applied in the regression
model. The optimum length of seasons appears

to be three months; the three possible sets of
three-month seasons yield comparable results,
although the commonly de®ned seasons (starting
with DJF) tend to be best. The correspondence of
downscaled and observed temperatures is best in
summer and lowest in late autumn and early
winter. This re¯ects the fact that surface
temperature in central Europe is more closely
related to upper-air circulation in summer than in
winter (Huth, 1997).

For constructing the climate change scenario,
i.e., monthly mean temperatures for a 2xCO2

climate, the outputs from the ECHAM3 GCM
have been used. The procedure consists of four

Fig. 10. Annual cycles of temperature change: obtained by
averaging the three sets of downscaled temperature changes
from Fig. 9 (DOWN); direct output from the model
(ECHAM)

Fig. 11. Temperature annual cycles: observed (OBS),
ECHAM control run (CTR-ECHAM), 2xCO2 scenario
from downscaling (SCA-DOWN), and 2xCO2 scenario
from the direct model output (SCA-ECHAM)
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steps: ®rst, the anomalies of predictor ®elds in the
2xCO2 GCM run are calculated from the climatol-
ogy of the GCM control run; then they are projected
onto the observed principal components. Third,
regression models derived on observed data are
applied to the projections to produce temperature
anomalies in a 2xCO2 climate and ®nally, the
anomalies are added to the observed climatology.
Such a procedure allows the bias of the GCM to be
reduced as much as possible. An alternative
procedure that de®nes the 2xCO2 predictor anoma-
lies by subtracting the observed climatology and
constructs the 2xCO2 temperatures by adding the
observed mean to the downscaling output and
subtracting the mean control anomaly has been
shown to yield similar results.

The ®nal temperature scenario has been con-
structed by combining the three monthly 2xCO2

temperature series obtained by downscaling for
three different de®nitions of seasons. The down-
scaled temperature response to an enhanced
greenhouse effect is generally weaker than the
response produced directly by the model. The
maximum warming appears in October in both
catchments, 4.5 �C for Blanice and 3.3 �C for
Metuje, whereas the warming rate is smallest in
winter. This is different from the scenarios for the
Czech Republic based directly on outputs from the
Global Institute for Space Studies (GISS) and
Canadian Climate Centre (CCC) GCMs, which
suggest more warming in winter than in summer
(KalvovaÂ and Neme�sovaÂ, 1997). Higher warming
rates in winter than in summer appear also in the
majority of GCMs over southeastern and north-
eastern Europe (Kattenberg et al., 1996; Kittel et
al., 1998). However, this should not be viewed as a
discrepancy because on a regional scale, the range
of winter and summer warming rates produced by
various GCMs is quite large. Because of the
uncertainties associated with the downscaled
temperatures obtained in this study the results
should be treated as one possible realization of
many possible future climates rather than an actual
prediction.
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