Hyperons in neutron stars Lecture 1

Paweł Haensel

Copernicus Astronomical Center (CAMK) Warszawa, Poland haensel@camk.edu.pl

Rež/Prague, Czech Republic September, 2010

・ロト ・回ト ・ヨト ・

 $G = 6.6732 \times 10^{-8} \text{ cm}^3 \text{ g}^{-1} \text{ s}^{-1}$ $M_{\odot} = 1.989 \times 10^{33} \text{ g}^{-1}$

typical NS sizes - 2-3 times Schwarzschild radius $r_{
m g}$

 $r_{\rm g} = 2GM/c^2 = 2.96 \times (M/M_{\odot}) \ {\rm km}$

measured masses and radii vskip 3mm $R\sim 10-20~{\rm km}$, $M\sim 1-2~M_\odot$ $\overline{\rho}=M/(\frac{4}{3}\pi R^3)$

$$\overline{\rho} \sim (10^{14} - 10^{15}) \text{ g cm}^{-3}$$

Central density can be significantly higher

・ロト ・回ト ・ ヨト ・

 $G = 6.6732 \times 10^{-8} \text{ cm}^3 \text{ g}^{-1} \text{ s}^{-1}$ $M_{\odot} = 1.989 \times 10^{33} \text{ g}^{-1}$

typical NS sizes - 2-3 times Schwarzschild radius $r_{
m g}$

$$r_{\rm g} = 2GM/c^2 = 2.96 \times (M/M_{\odot}) \ \rm km$$

measured masses and radii vskip 3mm $R \sim 10-20 \ {\rm km}$, $M \sim 1-2 \ M_{\odot}$ $\overline{\rho} = M/(\frac{4}{\pi}R^3)$

$$\overline{\rho} \sim (10^{14} - 10^{15}) \text{ g cm}^{-3}$$

Central density can be significantly higher

メロト メポト メヨト メヨ

 $G = 6.6732 \times 10^{-8} \text{ cm}^3 \text{ g}^{-1} \text{ s}^{-1}$ $M_{\odot} = 1.989 \times 10^{33} \text{ g}^{-1}$

typical NS sizes - 2-3 times Schwarzschild radius $r_{
m g}$

$$r_{\rm g} = 2GM/c^2 = 2.96 \times (M/M_{\odot}) \ \rm km$$

measured masses and radii vskip 3mm $R\sim 10-20~{\rm km}$, $M\sim 1-2~M_\odot$ $\overline{\rho}=M/(\frac{4}{2}\pi R^3)$

$$\overline{\rho} \sim (10^{14} - 10^{15}) \text{ g cm}^{-3}$$

Central density can be significantly higher

メロト メロト メヨト メ

 $G = 6.6732 \times 10^{-8} \text{ cm}^3 \text{ g}^{-1} \text{ s}^{-1}$ $M_{\odot} = 1.989 \times 10^{33} \text{ g}^{-1}$

typical NS sizes - 2-3 times Schwarzschild radius $r_{
m g}$

$$r_{\rm g} = 2GM/c^2 = 2.96 \times (M/M_{\odot}) \ \rm km$$

measured masses and radii vskip 3mm $R\sim 10-20~{\rm km}$, $M\sim 1-2~M_\odot$ $\overline{\rho}=M/(\frac{4}{2}\pi R^3)$

$$\overline{\rho} \sim (10^{14} - 10^{15}) \text{ g cm}^{-3}$$

Central density can be significantly higher

メロト メロト メヨト メ

NS are rapidly rotatings - their surface gravity should be strong enough to prevent ${\rm mass\ shedding\ from\ the\ equator}$

$$m\Omega^2 R < GMm/R^2 \implies M/R^3 > \Omega^2/G$$

measured pulsar frequency

January 2006: f = 1/period = 716 Hz $\Omega = 2\pi f = 4499 \text{ s}^{-1}$

 $M/R^3 > \Omega^2/G$

$$\overline{\rho} = M/(\frac{4}{3}\pi R^3)$$
 $\overline{\rho} > 7.2 \times 10^{13} \text{ g cm}^{-3}$

Central density will be significantly larger.

Neutron stars are the densest stars in the Universe

イロト イヨト イヨト イヨ

NS are rapidly rotatings - their surface gravity should be strong enough to prevent ${\rm mass}\ {\rm shedding}\ from the equator$

$$m\Omega^2 R < GMm/R^2 \implies M/R^3 > \Omega^2/G$$

measured pulsar frequency

January 2006: $f=1/{\rm period}=716~~{\rm Hz}$ $\Omega=2\pi f=4499~{\rm s}^{-1}$ $M/R^3>\Omega^2/G$

$$\overline{\rho} = M/(\frac{4}{3}\pi R^3)$$
 $\overline{\rho} > 7.2 \times 10^{13} \text{ g cm}^{-3}$

Central density will be significantly larger.

Neutron stars are the densest stars in the Universe

・ロン ・回 と ・ ヨン・

NS are rapidly rotatings - their surface gravity should be strong enough to prevent ${\rm mass\ shedding\ from\ the\ equator}$

$$m\Omega^2 R < GMm/R^2 \implies M/R^3 > \Omega^2/G$$

measured pulsar frequency

January 2006: $f=1/{\rm period}=716~~{\rm Hz}$ $\Omega=2\pi f=4499~{\rm s}^{-1}$ $M/R^3>\Omega^2/G$

$$\overline{\rho} = M/(\frac{4}{3}\pi R^3)$$
 $\overline{\rho} > 7.2 \times 10^{13} \text{ g cm}^{-3}$

Central density will be significantly larger.

Neutron stars are the densest stars in the Universe

イロト イヨト イヨト イ

NS are rapidly rotatings - their surface gravity should be strong enough to prevent ${\rm mass\ shedding\ from\ the\ equator}$

$$m\Omega^2 R < GMm/R^2 \implies M/R^3 > \Omega^2/G$$

measured pulsar frequency

January 2006: $f=1/{\rm period}=716~~{\rm Hz}$ $\Omega=2\pi f=4499~{\rm s}^{-1}$ $M/R^3>\Omega^2/G$

$$\overline{\rho} = M/(\frac{4}{3}\pi R^3)$$
 $\overline{\rho} > 7.2 \times 10^{13} \text{ g cm}^{-3}$

Central density will be significantly larger.

Neutron stars are the densest stars in the Universe

・ロト ・回ト ・ヨト ・

NS are rapidly rotatings - their surface gravity should be strong enough to prevent ${\rm mass}\ {\rm shedding}\ from the equator$

$$m\Omega^2 R < GMm/R^2 \implies M/R^3 > \Omega^2/G$$

measured pulsar frequency

January 2006: $f=1/{\rm period}=716~~{\rm Hz}$ $\Omega=2\pi f=4499~{\rm s}^{-1}$ $M/R^3>\Omega^2/G$

$$\overline{\rho} = M/(\frac{4}{3}\pi R^3)$$
 $\overline{\rho} > 7.2 \times 10^{13} \text{ g cm}^{-3}$

Central density will be significantly larger.

Neutron stars are the densest stars in the Universe

・ロト ・回ト ・ヨト ・

Physical conditions in neutron star core - 1

Matter constituents: baryons (B = N, H) and leptons ($\ell = e, \mu$) - Fermions

Number density of species j $n_j = N_j/V$

Fermi momentum of species

$$j \qquad n_j = \frac{p_{\mathrm{F}j}^3}{3\pi^2\hbar^3} \Longrightarrow p_{\mathrm{F}j} = \hbar \left(3\pi^2 n_j\right)^{1/3}$$

BARYONS: non-relativistic, strongly interacting Fermi liquid "Fermi kinetic energy" $\varepsilon_{\rm FB}^{\rm kin}=p_{\rm FB}^2/2m_B^*$

LEPTONS: Quasi-ideal Fermi gases electrons - ultrarelativistic, muons - mildly relativistic

$$\varepsilon_{\mathrm{F}\ell} = \varepsilon_{\mathrm{F}\ell}^{\mathrm{kin}} = \sqrt{m_\ell^2 c^4 + p_{\mathrm{F}\ell}^2 c^2} - m_\ell c^2$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Number density of species j

$$n_j = N_j / V$$

Fermi momentum of species

$$j \qquad n_j = \frac{p_{\mathrm{F}j}^3}{3\pi^2\hbar^3} \Longrightarrow p_{\mathrm{F}j} = \hbar \left(3\pi^2 n_j\right)^{1/3}$$

BARYONS: non-relativistic, strongly interacting Fermi liquid "Fermi kinetic energy" $\varepsilon_{\rm FB}^{\rm kin} = p_{\rm FB}^2/2m_B^*$

LEPTONS: Quasi-ideal Fermi gases electrons - ultrarelativistic, muons - mildly relativistic

$$\varepsilon_{\mathrm{F}\ell} = \varepsilon_{\mathrm{F}\ell}^{\mathrm{kin}} = \sqrt{m_\ell^2 c^4 + p_{\mathrm{F}\ell}^2 c^2} - m_\ell c^2$$

Number density of species j

$$n_j = N_j / V$$

Fermi momentum of species

$$j \qquad n_j = \frac{p_{\mathrm{F}j}^3}{3\pi^2\hbar^3} \Longrightarrow p_{\mathrm{F}j} = \hbar \left(3\pi^2 n_j\right)^{1/5}$$

BARYONS: non-relativistic, strongly interacting Fermi liquid "Fermi kinetic energy" $\varepsilon_{\rm FB}^{\rm kin} = p_{\rm FB}^2/2m_B^*$

LEPTONS: Quasi-ideal Fermi gases electrons - ultrarelativistic, muons - mildly relativistic

$$\varepsilon_{\mathrm{F}\ell} = \varepsilon_{\mathrm{F}\ell}^{\mathrm{kin}} = \sqrt{m_\ell^2 c^4 + p_{\mathrm{F}\ell}^2 c^2} - m_\ell c^2$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Number density of species j

$$n_j = N_j / V$$

Fermi momentum of species

$$j \qquad n_j = \frac{p_{\mathrm{F}j}^3}{3\pi^2\hbar^3} \Longrightarrow p_{\mathrm{F}j} = \hbar \left(3\pi^2 n_j\right)^{1/3}$$

BARYONS: non-relativistic, strongly interacting Fermi liquid "Fermi kinetic energy" $\varepsilon_{\rm FB}^{\rm kin}=p_{\rm FB}^2/2m_B^*$

LEPTONS: Quasi-ideal Fermi gases electrons - ultrarelativistic, muons - mildly relativistic

$$\varepsilon_{\mathrm{F}\ell} = \varepsilon_{\mathrm{F}\ell}^{\mathrm{kin}} = \sqrt{m_\ell^2 c^4 + p_{\mathrm{F}\ell}^2 c^2} - m_\ell c^2$$

(D) < **(P)** < **(P**

Number density of species j

$$n_j = N_j / V$$

Fermi momentum of species

$$j \qquad n_j = \frac{p_{\mathrm{F}j}^3}{3\pi^2\hbar^3} \Longrightarrow p_{\mathrm{F}j} = \hbar \left(3\pi^2 n_j\right)^{1/3}$$

BARYONS: non-relativistic, strongly interacting Fermi liquid "Fermi kinetic energy" $\varepsilon_{\rm FB}^{\rm kin}=p_{\rm FB}^2/2m_B^*$

LEPTONS: Quasi-ideal Fermi gases electrons - ultrarelativistic, muons - mildly relativistic

 $\varepsilon_{\mathrm{F}\ell} = \varepsilon_{\mathrm{F}\ell}^{\mathrm{kin}} = \sqrt{m_\ell^2 c^4 + p_{\mathrm{F}\ell}^2 c^2} - m_\ell c^2$

・ロト ・ 日 ・ ・ ヨ ・ ・

Number density of species j

$$n_j = N_j / V$$

Fermi momentum of species

$$j \qquad n_j = \frac{p_{\mathrm{F}j}^3}{3\pi^2\hbar^3} \Longrightarrow p_{\mathrm{F}j} = \hbar \left(3\pi^2 n_j\right)^{1/3}$$

BARYONS: non-relativistic, strongly interacting Fermi liquid "Fermi kinetic energy" $\varepsilon_{\rm FB}^{\rm kin}=p_{\rm FB}^2/2m_B^*$

LEPTONS: Quasi-ideal Fermi gases electrons - ultrarelativistic, muons - mildly relativistic

$$\varepsilon_{\mathrm{F}\ell} = \varepsilon_{\mathrm{F}\ell}^{\mathrm{kin}} = \sqrt{m_\ell^2 c^4 + p_{\mathrm{F}\ell}^2 c^2} - m_\ell c^2$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$T_{\rm Fj} = \varepsilon_{\rm Fj}^{\rm kin} / k_{\rm B} = 1.16 \times 10^{11} \cdot \frac{\varepsilon_{\rm Fj}^{\rm kin}}{10 \text{ MeV}} \text{ K}$$

After a few months $T < 10^9 \ {\rm K}$, and matter constituents are strongly degenerate $T/T_{{\rm F}j} < 10^{-2}$

For $T < 10^9 \ {\rm K} \ {\rm NS}$ is transparent to neutrinos

Neutrinos are decoupled from the matter, and leave NS in $R/c\sim 10^{-4}~{\rm s}$

Neutrinos do not affect the matter thermodynamics. Matter is **neutrino-free**

ADEA

$$T_{\rm Fj} = \varepsilon_{\rm Fj}^{\rm kin} / k_{\rm B} = 1.16 \times 10^{11} \cdot \frac{\varepsilon_{\rm Fj}^{\rm kin}}{10 \text{ MeV}} \text{ K}$$

After a few months $T < 10^9 \ {\rm K}$, and matter constituents are strongly degenerate $T/T_{{\rm F}j} < 10^{-2}$

For $T < 10^9 \ {\rm K} \ {\rm NS}$ is transparent to neutrinos

Neutrinos are decoupled from the matter, and leave NS in $R/c\sim 10^{-4}~{\rm s}$

Neutrinos do not affect the matter thermodynamics. Matter is **neutrino-free**

$$T_{\rm Fj} = \varepsilon_{\rm Fj}^{\rm kin} / k_{\rm B} = 1.16 \times 10^{11} \cdot \frac{\varepsilon_{\rm Fj}^{\rm kin}}{10 \text{ MeV}} \text{ K}$$

After a few months $T < 10^9 \ {\rm K}$, and matter constituents are strongly degenerate $T/T_{{\rm F}j} < 10^{-2}$

For $T < 10^9 \ {\rm K} \ {\rm NS}$ is transparent to neutrinos

Neutrinos are decoupled from the matter, and leave NS in $R/c\sim 10^{-4}~{\rm s}$

Neutrinos do not affect the matter thermodynamics. Matter is **neutrino-free**

$$T_{\rm Fj} = \varepsilon_{\rm Fj}^{\rm kin} / k_{\rm B} = 1.16 \times 10^{11} \cdot \frac{\varepsilon_{\rm Fj}^{\rm kin}}{10 \text{ MeV}} \text{ K}$$

After a few months $T < 10^9 \ {\rm K}$, and matter constituents are strongly degenerate $T/T_{{\rm F}j} < 10^{-2}$

For $T < 10^9 \ {\rm K} \ {\rm NS}$ is transparent to neutrinos

Neutrinos are decoupled from the matter, and leave NS in $R/c\sim 10^{-4}~{\rm s}$

Neutrinos do not affect the matter thermodynamics. Matter is **neutrino-free**

ADEA

$$T_{\rm Fj} = \varepsilon_{\rm Fj}^{\rm kin} / k_{\rm B} = 1.16 \times 10^{11} \cdot \frac{\varepsilon_{\rm Fj}^{\rm kin}}{10 \text{ MeV}} \text{ K}$$

After a few months $T < 10^9 \ {\rm K}$, and matter constituents are strongly degenerate $T/T_{{\rm F}j} < 10^{-2}$

For $T < 10^9$ K NS is transparent to neutrinos

Neutrinos are decoupled from the matter, and leave NS in $R/c\sim 10^{-4}~{\rm s}$

Neutrinos do not affect the matter thermodynamics. Matter is **neutrino-free**

ADEA

B - baryon index, $B = n, p, \Lambda^0, \Sigma^-, \Xi^-, \ldots$

b - label of baryonic quantity.

$$\sum_B n_B = n_b \; .$$

The electric charge density and the strangeness per baryon are given by

$$q_{\rm b} = \sum_B n_B Q_B , \quad s_{\rm b} = \sum_B n_B S_B / n_{\rm b} .$$

・ロト ・回ト ・ヨト ・

- B baryon index, $B=n,p,\Lambda^0,\Sigma^-,\Xi^-,\ldots.$
- b label of baryonic quantity.

$$\sum_B n_B = n_{\rm b} \; .$$

The electric charge density and the strangeness per baryon are given by

$$q_{\rm b} = \sum_B n_B Q_B , \quad s_{\rm b} = \sum_B n_B S_B / n_{\rm b} .$$

メロト メロト メヨト メ

- B baryon index, $B=n,p,\Lambda^0,\Sigma^-,\Xi^-,\ldots.$
- b label of baryonic quantity.

$$\sum_B n_B = n_{\rm b} \; .$$

The electric charge density and the strangeness per baryon are given by

$$q_{\rm b} = \sum_B n_B Q_B , \quad s_{\rm b} = \sum_B n_B S_B / n_{\rm b} .$$

メロト メロト メヨト メ

$\mathcal{E} = E_{\rm tot}/V$ includes rest energy of particles

uniform plasma at rest $\Longrightarrow \mathcal{E}$ is function of n_i .

Electromagnetic contribution to \mathcal{E} can be neglected compared to kinetic energy and strong interaction energy.

$$\mathcal{E}(\{n_j\}) = \mathcal{E}_{\mathrm{B}}(\{n_B\}) + \mathcal{E}(n_e) + \mathcal{E}(n_{\mu})$$

Challenge - calculation of $\mathcal{E}_{\mathrm{B}}(\{n_B\})$

Important quantity for multicomponent plasma: chemical potential of species \boldsymbol{j}

$$\mu_j = \partial \mathcal{E} / \partial n_j$$
 includes rest energy

(D) < **(P)** < **(P**

 $\mathcal{E} = E_{\rm tot}/V$ includes rest energy of particles

uniform plasma at rest $\Longrightarrow \mathcal{E}$ is function of n_j .

Electromagnetic contribution to \mathcal{E} can be neglected compared to kinetic energy and strong interaction energy.

$$\mathcal{E}(\{n_j\}) = \mathcal{E}_{\mathrm{B}}(\{n_B\}) + \mathcal{E}(n_e) + \mathcal{E}(n_{\mu})$$

Challenge - calculation of $\mathcal{E}_{\mathrm{B}}(\{n_B\})$

Important quantity for multicomponent plasma: chemical potential of species j

 $\mu_j = \partial \mathcal{E} / \partial n_j$ includes rest energy

イロト イヨト イヨト イ

 $\mathcal{E} = E_{\rm tot}/V$ includes rest energy of particles

uniform plasma at rest $\Longrightarrow \mathcal{E}$ is function of n_j .

Electromagnetic contribution to \mathcal{E} can be neglected compared to kinetic energy and strong interaction energy.

$$\mathcal{E}(\{n_j\}) = \mathcal{E}_{\mathrm{B}}(\{n_B\}) + \mathcal{E}(n_e) + \mathcal{E}(n_{\mu})$$

Challenge - calculation of $\mathcal{E}_{\mathrm{B}}(\{n_B\})$

Important quantity for multicomponent plasma: chemical potential of species \boldsymbol{j}

 $\mu_j = \partial \mathcal{E} / \partial n_j$ includes rest energy

・ロト ・回ト ・ヨト ・

 $\mathcal{E} = E_{\rm tot}/V$ includes rest energy of particles

uniform plasma at rest $\Longrightarrow \mathcal{E}$ is function of n_j .

Electromagnetic contribution to \mathcal{E} can be neglected compared to kinetic energy and strong interaction energy.

$$\mathcal{E}(\{n_j\}) = \mathcal{E}_{\mathrm{B}}(\{n_B\}) + \mathcal{E}(n_e) + \mathcal{E}(n_{\mu})$$

Challenge - calculation of $\mathcal{E}_{\mathrm{B}}(\{n_B\})$

Important quantity for multicomponent plasma: chemical potential of species j

 $\mu_j = \partial \mathcal{E} / \partial n_j$ includes rest energy

イロト イヨト イヨト イ

 $\mathcal{E} = E_{\rm tot}/V$ includes rest energy of particles

uniform plasma at rest $\Longrightarrow \mathcal{E}$ is function of n_j .

Electromagnetic contribution to \mathcal{E} can be neglected compared to kinetic energy and strong interaction energy.

$$\mathcal{E}(\{n_j\}) = \mathcal{E}_{\mathrm{B}}(\{n_B\}) + \mathcal{E}(n_e) + \mathcal{E}(n_{\mu})$$

Challenge - calculation of $\mathcal{E}_{\mathrm{B}}(\{n_B\})$

Important quantity for multicomponent plasma: chemical potential of species j

 $\mu_j = \partial \mathcal{E} / \partial n_j$ includes rest energy

イロト イヨト イヨト イヨ

 $\mathcal{E} = E_{\rm tot}/V$ includes rest energy of particles

uniform plasma at rest $\Longrightarrow \mathcal{E}$ is function of n_j .

Electromagnetic contribution to \mathcal{E} can be neglected compared to kinetic energy and strong interaction energy.

$$\mathcal{E}(\{n_j\}) = \mathcal{E}_{\mathrm{B}}(\{n_B\}) + \mathcal{E}(n_e) + \mathcal{E}(n_{\mu})$$

Challenge - calculation of $\mathcal{E}_{\mathrm{B}}(\{n_B\})$

Important quantity for multicomponent plasma: chemical potential of species \boldsymbol{j}

$$\mu_j = \partial \mathcal{E} / \partial n_j$$
 includes rest energy

・ロト ・回ト ・ヨト ・

$\mu_{\ell} = \varepsilon_{\mathrm{F}\ell}$

electrons - ultra-relativistic

$$\mu_e = \hbar c p_{\rm Fe} \approx 122.1 \, (n_e/0.05 n_0)^{1/3} \, {\rm MeV} \; ,$$

muons mildly relativistic

$$\mu_{\mu} = m_{\mu}c^2 \sqrt{1 + (\hbar p_{\mathrm{F}\mu}/m_{\mu}c)^2} \; .$$

Muons present only if $\mu_e > m_\mu c^2 = 105.65$ MeV. Otherwise $\mu^- \longrightarrow e^- + \nu_\mu + \overline{\nu}_e$

メロト メポト メヨト メ

 $\mu_{\ell} = \varepsilon_{\mathrm{F}\ell}$

electrons - ultra-relativistic

$$\mu_e = \hbar c p_{\rm Fe} \approx 122.1 \, (n_e/0.05 n_0)^{1/3} \, {\rm MeV} \; ,$$

muons mildly relativistic

$$\mu_{\mu} = m_{\mu}c^2 \sqrt{1 + (\hbar p_{\mathrm{F}\mu}/m_{\mu}c)^2} \; .$$

Muons present only if $\mu_e > m_\mu c^2 = 105.65$ MeV. Otherwise $\mu^- \longrightarrow e^- + \nu_\mu + \overline{\nu}_e$

メロト メポト メヨト メヨ

 $\mu_{\ell} = \varepsilon_{\mathrm{F}\ell}$

electrons - ultra-relativistic

$$\mu_e = \hbar c p_{\rm Fe} \approx 122.1 \, (n_e/0.05 n_0)^{1/3} \, {\rm MeV} \; ,$$

muons mildly relativistic

$$\mu_{\mu} = m_{\mu}c^2 \sqrt{1 + (\hbar p_{\mathrm{F}\mu}/m_{\mu}c)^2} \; .$$

Muons present only if $\mu_e > m_\mu c^2 = 105.65$ MeV. Otherwise $\mu^- \longrightarrow e^- + \nu_\mu + \overline{\nu}_e$

イロト イ団ト イヨト イ

 $\mu_{\ell} = \varepsilon_{\mathrm{F}\ell}$

electrons - ultra-relativistic

$$\mu_e = \hbar c p_{\rm Fe} \approx 122.1 \, (n_e/0.05 n_0)^{1/3} \, {\rm MeV} \; ,$$

muons mildly relativistic

$$\mu_{\mu} = m_{\mu}c^2 \sqrt{1 + (\hbar p_{\mathrm{F}\mu}/m_{\mu}c)^2} \; .$$

Muons present only if $\mu_e>m_\mu c^2=105.65$ MeV. Otherwise $\mu^- \longrightarrow e^- + \nu_\mu + \overline{\nu}_e$

メロト メロト メヨト メ

electrically neutral matter at a given baryon number density $n_{\rm b}$

$$\boxed{n_{\rm b}} \qquad \sum_B n_B = n_{\rm b} ,$$

$$\boxed{q=0} \qquad \sum_B n_B Q_B - \sum_{\ell=e,\mu} n_\ell = 0 ,$$

 Q_B - electric charge of a baryon B in units of e

Equilibrium state: by minimizing $\mathcal{E} = \mathcal{E}(\{n_B\}, n_e, n_\mu)$ under the constraints $\boxed{n_b} q = 0$

メロト メポト メヨト メ

electrically neutral matter at a given baryon number density $n_{\rm b}$

$$\boxed{n_{\rm b}} \quad \sum_B n_B = n_{\rm b} \ ,$$
$$\boxed{q=0} \quad \sum_B n_B Q_B - \sum_{\ell=0,n} n_\ell = 0$$

 Q_B - electric charge of a baryon B in units of e

Equilibrium state: by minimizing $\mathcal{E} = \mathcal{E}(\{n_B\}, n_e, n_\mu)$ under the constraints $\boxed{n_{\rm b}} \boxed{q = 0}$

A D > A B > A B > A
electrically neutral matter at a given baryon number density $n_{\rm b}$

$$\begin{array}{c} \hline n_{\rm b} \\ \hline n_{\rm b} \\ \hline \end{array} \sum_{B} n_{B} = n_{\rm b} \ , \\ \hline \hline q = 0 \\ \hline \end{array} \sum_{B} n_{B} Q_{B} - \sum_{\ell=e,\mu} n_{\ell} = 0 \ , \end{array}$$

 ${\cal Q}_{\cal B}$ - electric charge of a baryon ${\cal B}$ in units of e

Equilibrium state: by minimizing $\mathcal{E} = \mathcal{E}(\{n_B\}, n_e, n_\mu)$ under the constraints n_b q = 0

メロト メポト メヨト・

electrically neutral matter at a given baryon number density $n_{\rm b}$

$$\begin{array}{cc} \hline n_{\rm b} & \sum_B n_B = n_{\rm b} \ , \\ \hline q = 0 & \sum_B n_B Q_B - \sum_{\ell=e,\mu} n_\ell = 0 \ , \end{array}$$

 ${\cal Q}_{\cal B}$ - electric charge of a baryon ${\cal B}$ in units of e

Equilibrium state: by minimizing $\mathcal{E} = \mathcal{E}(\{n_B\}, n_e, n_\mu)$ under the constraints $\boxed{n_{\rm b}} \boxed{q=0}$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Auxiliary "energy density" $\widetilde{\mathcal{E}}$

$$\widetilde{\mathcal{E}} = \mathcal{E} + \lambda_{\rm b} \left(\sum_{B} n_B - n_{\rm b} \right) + \lambda_{\rm q} \left(\sum_{B} Q_B n_B - \sum_{\ell = e, \mu} n_{\ell} \right)$$

$\lambda_{ m b}$ and $\lambda_{ m q}$ - Lagrange multipliers

 $N_{\rm B}$ - number of the baryon species Minimizing $\widetilde{\mathcal{E}} \Longrightarrow N_{\rm B} + 2$ equations

$$\begin{split} \partial \widetilde{\mathcal{E}} / \partial n_B &= \mu_B + \lambda_{\rm b} + \lambda_{\rm q} \ Q_B = 0 \qquad (B = 1, \dots, N_{\rm B}), \\ \partial \widetilde{\mathcal{E}} / \partial n_\ell &= \mu_\ell - \lambda_{\rm q} = 0 \qquad (\ell = e, \ \mu), \end{split}$$

 $\mu_j = \partial {\cal E} / \partial n_j$

イロト イロト イヨト イ

Auxiliary "energy density" $\widetilde{\mathcal{E}}$

$$\widetilde{\mathcal{E}} = \mathcal{E} + \lambda_{\rm b} \left(\sum_{B} n_B - n_{\rm b} \right) + \lambda_{\rm q} \left(\sum_{B} Q_B n_B - \sum_{\ell = e, \mu} n_{\ell} \right)$$

 $\lambda_{
m b}$ and $\lambda_{
m q}$ - Lagrange multipliers $N_{
m B}$ - number of the baryon species Minimizing $\widetilde{\mathcal{E}} \Longrightarrow N_{
m B} + 2$ equations

$$\begin{aligned} \partial \tilde{\mathcal{E}} / \partial n_B &= \mu_B + \lambda_{\rm b} + \lambda_{\rm q} \ Q_B = 0 \qquad (B = 1, \dots, N_{\rm B}), \\ \partial \tilde{\mathcal{E}} / \partial n_\ell &= \mu_\ell - \lambda_{\rm q} = 0 \qquad (\ell = e, \ \mu), \end{aligned}$$

 $\mu_j = \partial \mathcal{E} / \partial n_j$

・ロト ・回ト ・ ヨト ・

Auxiliary "energy density" $\widetilde{\mathcal{E}}$

$$\widetilde{\mathcal{E}} = \mathcal{E} + \lambda_{\rm b} \left(\sum_{B} n_B - n_{\rm b} \right) + \lambda_{\rm q} \left(\sum_{B} Q_B n_B - \sum_{\ell = e, \mu} n_{\ell} \right)$$

 $\lambda_{
m b}$ and $\lambda_{
m q}$ - Lagrange multipliers $N_{
m B}$ - number of the baryon species Minimizing $\widetilde{\mathcal{E}} \Longrightarrow N_{
m B} + 2$ equations

$$\begin{split} \partial \tilde{\mathcal{E}}/\partial n_B &= \mu_B + \lambda_{\rm b} + \lambda_{\rm q} \ Q_B = 0 \qquad (B = 1, \dots, N_{\rm B}), \\ \partial \tilde{\mathcal{E}}/\partial n_\ell &= \mu_\ell - \lambda_{\rm q} = 0 \qquad (\ell = e, \ \mu), \end{split}$$

 $\mu_j = \partial \mathcal{E} / \partial n_j$

・ロト ・回ト ・ ヨト ・

Eliminate Lagrange multipliers: $\lambda_{\mathbf{q}} = \mu_{\ell}$, $\lambda_{\mathbf{b}} = -\mu_{\ell}Q_B - \mu_B$ Therefore $\mu_e = \mu_{\mu}$ and $-\mu_e Q_B - \mu_B = -\mu_e Q_{B'} - \mu_{B'}$ N_{B} relations for $N_{\mathrm{B}} + 2$ chemical potentials additional relations $\overline{n_{\mathrm{b}}}$ and $\overline{q} = 0$ Total number of equations $N_{\mathrm{B}} + 2$ Equation depends on Q_B lightest baryons - octet $n, p, \Lambda, \Sigma, \Xi Q_B = -1, 0, 1$:

$$\begin{array}{rcl} Q_B = -1 & : & \mu_{B^-} = \mu_n + \mu_e \ , \\ Q_B = 0 & : & \mu_{B^0} = \mu_n \ , \\ Q_B = +1 & : & \mu_{B^+} = \mu_n - \mu_e \end{array}$$

(D) < **(P)** < **(P**

Eliminate Lagrange multipliers: $\lambda_q = \mu_\ell$, $\lambda_b = -\mu_\ell Q_B - \mu_B$ Therefore $\mu_e = \mu_\mu$ and $-\mu_e Q_B - \mu_B = -\mu_e Q_{B'} - \mu_{B'}$

 $N_{\rm B}$ relations for $N_{\rm B}+2$ chemical potentials

additional relations $\boxed{n_{
m b}}$ and $\boxed{q=0}$

Total number of equations $N_{\rm B} + 2$ Equation depends on Q_{R}

lightest baryons - octet n, p, Λ , Σ , $\Xi Q_B = -1, 0, 1$:

$$Q_B = -1 : \mu_{B^-} = \mu_n + \mu_e ,$$

$$Q_B = 0 : \mu_{B^0} = \mu_n ,$$

$$Q_B = +1 : \mu_{B^+} = \mu_n - \mu_e$$

ADEA

Eliminate Lagrange multipliers: $\lambda_q = \mu_\ell$, $\lambda_b = -\mu_\ell Q_B - \mu_B$ Therefore $\mu_e = \mu_\mu$ and $-\mu_e Q_B - \mu_B = -\mu_e Q_{B'} - \mu_{B'}$

 $N_{\rm B}$ relations for $N_{\rm B}+2$ chemical potentials

additional relations $\boxed{n_{
m b}}$ and $\boxed{q=0}$

Total number of equations $N_{\rm B}+2$

Equation depends on Q_B

lightest baryons - octet n, p, Λ , Σ , $\Xi Q_B = -1, 0, 1$:

$$Q_B = -1 : \mu_{B^-} = \mu_n + \mu_e ,$$

$$Q_B = 0 : \mu_{B^0} = \mu_n ,$$

$$Q_B = +1 : \mu_{B^+} = \mu_n - \mu_e$$

Eliminate Lagrange multipliers: $\lambda_q = \mu_\ell$, $\lambda_b = -\mu_\ell Q_B - \mu_B$ Therefore $\mu_e = \mu_\mu$ and $-\mu_e Q_B - \mu_B = -\mu_e Q_{B'} - \mu_{B'}$

 $N_{\rm B}$ relations for $N_{\rm B}+2$ chemical potentials

additional relations $\boxed{n_{
m b}}$ and $\boxed{q=0}$

Total number of equations $N_{\rm B}+2$ Equation depends on Q_B

lightest baryons - octet n,p, Λ , Σ , $\Xi \; Q_B = -1,0,1$:

$$Q_B = -1 : \mu_{B^-} = \mu_n + \mu_e ,$$

$$Q_B = 0 : \mu_{B^0} = \mu_n ,$$

$$Q_B = +1 : \mu_{B^+} = \mu_n - \mu_e$$

ADEA

Eliminate Lagrange multipliers: $\lambda_q = \mu_\ell$, $\lambda_b = -\mu_\ell Q_B - \mu_B$ Therefore $\mu_e = \mu_\mu$ and $-\mu_e Q_B - \mu_B = -\mu_e Q_{B'} - \mu_{B'}$

 $N_{\rm B}$ relations for $N_{\rm B}+2$ chemical potentials

additional relations $\boxed{n_{
m b}}$ and $\boxed{q=0}$

Total number of equations $N_{\rm B} + 2$ Equation depends on Q_B lightest baryons - octet $n, p, \Lambda, \Sigma, \Xi Q_B = -1, 0, 1$:

$$\begin{array}{rcl} Q_B = -1 & : & \mu_{B^-} = \mu_n + \mu_e \ , \\ Q_B = 0 & : & \mu_{B^0} = \mu_n \ , \\ Q_B = +1 & : & \mu_{B^+} = \mu_n - \mu_e \end{array}$$

(D) < **(P)** < **(P**

Baryon octet

Table: Masses, electric charges, strangeness, and e-folding (mean) lifetimes of the baryon octet, measured in laboratory. The baryon number, spin, and parity of all these baryons are 1, 1/2, and +1, respectively.

baryon name	mc^2 (MeV)	Q(e)	S	au (s)
p	938.27	1	0	$> 10^{32}$
n	939.56	0	0	886
Λ^0	1115.7	0	-1	2.6×10^{-10}
Σ^+	1189.4	1	-1	0.80×10^{-10}
Σ^0	1192.6	0	-1	7.4×10^{-20}
Σ^{-}	1197.4	-1	-1	1.5×10^{-10}
Ξ^0	1314.8	0	-2	2.9×10^{-10}
Ξ^{-}	1321.3	-1	-2	1.6×10^{-10}

イロト イヨト イヨト イ

Normal Fermi liquids - basic features

Free Fermi gas,
$$n = \frac{p_F^3}{3\pi^2\hbar^3}$$

 $n = 2\int \frac{\mathrm{d}^3 p}{(2\pi\hbar)^3} f(p)$

Strongly interacting Fermi liquid jump in f(p) at $p_{\rm F}$, same relation between $p_{\rm F}$ and n

Effect of interactions: depleted states $p < p_{\rm F}$, populated states $p > p_{\rm F}$

・ロト ・回ト ・ ヨト

Normal Fermi liquids - basic features

Free Fermi gas, $n = \frac{p_{\rm F}^3}{3\pi^2\hbar^3}$ $n = 2\int \frac{{\rm d}^3p}{(2\pi\hbar)^3}f(p)$

Strongly interacting Fermi liquid - jump in f(p) at $p_{\rm F}$, same relation between $p_{\rm F}$ and n

Effect of interactions: depleted states $p < p_{\rm F}$, populated states $p > p_{\rm F}$

Image: A math a math

Normal Fermi liquids - basic features

Free Fermi gas, $n = \frac{p_{\rm F}^3}{3\pi^2\hbar^3}$ $n = 2\int \frac{{\rm d}^3p}{(2\pi\hbar)^3}f(p)$

Strongly interacting Fermi liquid - jump in f(p) at $p_{\rm F}$, same relation between $p_{\rm F}$ and n

Effect of interactions: depleted states $p < p_{\rm F},$ populated states $p > p_{\rm F}$

Image: A math a math

Particles vs. quasiparticles

イロト イヨト イヨト イヨ

Particles vs. quasiparticles

イロト イヨト イヨト イヨ

$npe\mu$ matter in equilibrium

$$V = const, N_{\rm b} = const, T = 0$$

$$\delta E = -P\delta V + \sum_{j} \mu_{j} \delta N_{j}$$

 $npe\mu$ -matter becomes unstable: $\delta N_n = -1 \ \delta N_\Lambda = +1 \Longrightarrow \delta E < 0$ Chemical potential of one Λ in $npe\mu$ matter calculated as a limit:

$$\lim_{n_{\Lambda}\longrightarrow 0} \left(\partial \mathcal{E}/\partial n_{\Lambda}\right)_{\rm eq} \equiv \mu_{\Lambda}^{0} .$$

 $n^{\Lambda}_{
m t}$ at which $\mu^{0}_{\Lambda}-\mu_{n}$ vanishes $\Longrightarrow \Lambda$ present for $n_{
m b}>n^{\Lambda}_{
m t}$

・ロン ・回 と ・ ヨ と ・

$npe\mu$ matter in equilibrium

$$V = const, N_{\rm b} = const, T = 0$$

$$\delta E = -P\delta V + \sum_{j} \mu_{j} \delta N_{j}$$

 $npe\mu$ -matter becomes unstable: $\delta N_n = -1 \ \delta N_\Lambda = +1 \Longrightarrow \delta E < 0$ Chemical potential of one Λ in $npe\mu$ matter calculated as a limit:

$$\lim_{n_{\Lambda}\longrightarrow 0} \left(\partial \mathcal{E} / \partial n_{\Lambda} \right)_{\text{eq}} \equiv \mu_{\Lambda}^{0} .$$

 $n^{\Lambda}_{
m t}$ at which $\mu^{0}_{\Lambda}-\mu_{n}$ vanishes $\Longrightarrow \Lambda$ present for $n_{
m b}>n^{\Lambda}_{
m t}$

・ロト ・ 日 ・ ・ ヨ ・ ・

 $npe\mu$ matter in equilibrium

$$V = const, N_{\rm b} = const, T = 0$$

$$\delta E = -P\delta V + \sum_{j} \mu_{j} \delta N_{j}$$

 $npe\mu\text{-matter}$ becomes unstable: $\delta N_n=-1$ $\delta N_\Lambda=+1\Longrightarrow \delta E<0$

Chemical potential of one Λ in $npe\mu$ matter calculated as a limit:

$$\lim_{n_{\Lambda}\longrightarrow 0} \left(\partial \mathcal{E}/\partial n_{\Lambda}\right)_{\rm eq} \equiv \mu_{\Lambda}^{0} \; .$$

 $n^{\Lambda}_{
m t}$ at which $\mu^{0}_{\Lambda}-\mu_{n}$ vanishes $\Longrightarrow \Lambda$ present for $n_{
m b}>n^{\Lambda}_{
m t}$

 $npe\mu$ matter in equilibrium

$$V = const, N_{\rm b} = const, T = 0$$

$$\delta E = -P\delta V + \sum_{j} \mu_{j} \delta N_{j}$$

 $npe\mu$ -matter becomes unstable: $\delta N_n = -1 \ \delta N_\Lambda = +1 \Longrightarrow \delta E < 0$ Chemical potential of one Λ in $npe\mu$ matter calculated as a limit:

$$\lim_{n_{\Lambda} \longrightarrow 0} \left(\partial \mathcal{E} / \partial n_{\Lambda} \right)_{\text{eq}} \equiv \mu_{\Lambda}^{0} .$$

 $n^\Lambda_{
m t}$ at which $\mu^0_\Lambda-\mu_n$ vanishes $\Longrightarrow \Lambda$ present for $n_{
m b}>n^\Lambda_{
m t}$

メロト メポト メヨト メ

 $npe\mu$ matter in equilibrium

$$V = const, N_{\rm b} = const, T = 0$$

$$\delta E = -P\delta V + \sum_{j} \mu_{j} \delta N_{j}$$

 $npe\mu$ -matter becomes unstable: $\delta N_n = -1 \ \delta N_\Lambda = +1 \Longrightarrow \delta E < 0$ Chemical potential of one Λ in $npe\mu$ matter calculated as a limit:

$$\lim_{n_{\Lambda} \longrightarrow 0} \left(\partial \mathcal{E} / \partial n_{\Lambda} \right)_{\text{eq}} \equiv \mu_{\Lambda}^{0} .$$

 $n^\Lambda_{\rm t}$ at which $\mu^0_\Lambda-\mu_n$ vanishes $\Longrightarrow \Lambda$ present for $n_{\rm b}>n^\Lambda_{\rm t}$

ENERGY ARGUMENT

 Λ are stable because $\mu_{\Lambda}^0 - \mu_n < 0$ and therefore $\delta N_n = +1, \delta N_{\Lambda} = -1 \Longrightarrow \delta E > 0$

"Conversion" $n \longrightarrow \Lambda$ will proceed till $\mu_{\Lambda} = \mu_n$, i.e. till equilibrium between Λ and $npe\mu$ is reached

ENERGY ARGUMENT

 Λ are stable because $\mu_{\Lambda}^0 - \mu_n < 0$ and therefore $\delta N_n = +1, \delta N_{\Lambda} = -1 \Longrightarrow \delta E > 0$

"Conversion" $n \longrightarrow \Lambda$ will proceed till $\mu_{\Lambda} = \mu_n$, i.e. till equilibrium between Λ and $npe\mu$ is reached

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Stability of hyperons in dense matter Q=0 - $_{\rm quasiparticles}$

QUASIPARTICLE ARGUMENT

Normal Fermi liquids: one-to-one correspondence between

 $Strongly\ interacting\ degenerate\ Fermi\ system$

and

$Fermi\ gas\ of\ weakly\ interacting\ quasiparticles$

Restriction to low-lying excited states: only states close to the ground state are involved: (quasi)particles close to the Fermi surface

 $\Lambda \longrightarrow n$ prohibited by energy conservation due to the Pauli principle for quasiparticles

ADEA

Stability of hyperons in dense matter Q=0 - $_{\rm quasiparticles}$

QUASIPARTICLE ARGUMENT

Normal Fermi liquids: one-to-one correspondence between

Strongly interacting degenerate Fermi system

and

 $Fermi\ gas\ of\ weakly\ interacting\ quasiparticles$

Restriction to low-lying excited states: only states close to the ground state are involved: (quasi)particles close to the Fermi surface

 $\Lambda \longrightarrow n$ prohibited by energy conservation due to the Pauli principle for quasiparticles

ADEA

Stability of hyperons in dense matter Q=0 - $_{\rm quasiparticles}$

QUASIPARTICLE ARGUMENT

Normal Fermi liquids: one-to-one correspondence between

Strongly interacting degenerate Fermi system

and

Fermi gas of weakly interacting quasiparticles

Restriction to low-lying excited states: only states close to the ground state are involved: (quasi)particles close to the Fermi surface

 $\Lambda \longrightarrow n$ prohibited by energy conservation due to the Pauli principle for quasiparticles

(D) < **(P)** < **(P**

$npe\mu$ matter

$$V = const, N_{\rm b} = const, T = 0$$

$$\delta E = -P\delta V + \sum_{j} \mu_{j} \delta N_{j}$$

 $npe\mu$ matter unstable: $\delta N_e=-1,~\delta N_n=-1,~\delta N_{\Sigma^-}=+1\Longrightarrow \delta E<0$

Chemical potential of one Σ^- in $npe\mu$ matter is calculated as a limit:

$$\lim_{n_{\Sigma^{-}}\longrightarrow 0} \left(\partial \mathcal{E} / \partial n_{\Sigma^{-}}\right)_{\rm eq} \equiv \mu_{\Sigma^{-}}^{0} \ .$$

Find $n_t^{\Sigma^-}$ at which $\mu_{\Sigma^-}^0 - \mu_n - \mu_e$ vanishes $\Longrightarrow \Sigma^-$ present for $n_b > n_t^{\Sigma^-}$

・ロト ・回ト ・ヨト ・

 $npe\mu$ matter

$$V = const, N_{\rm b} = const, T = 0$$

$$\delta E = -P\delta V + \sum_{j} \mu_{j} \delta N_{j}$$

 $npe\mu$ matter unstable: $\delta N_e = -1$, $\delta N_n = -1$, $\delta N_{\Sigma^-} = +1 \Longrightarrow \delta E < 0$

Chemical potential of one Σ^- in $npe\mu$ matter is calculated as a limit:

$$\lim_{n_{\Sigma^{-}}\longrightarrow 0} \left(\partial \mathcal{E} / \partial n_{\Sigma^{-}}\right)_{\rm eq} \equiv \mu_{\Sigma^{-}}^{0} \ .$$

Find $n_t^{\Sigma^-}$ at which $\mu_{\Sigma^-}^0 - \mu_n - \mu_e$ vanishes $\Longrightarrow \Sigma^-$ present for $n_b > n_t^{\Sigma^-}$

イロト イロト イヨト イ

 $npe\mu$ matter

$$V = const, N_{\rm b} = const, T = 0$$

$$\delta E = -P\delta V + \sum_{j} \mu_{j} \delta N_{j}$$

 $npe\mu$ matter unstable: $\delta N_e=-1$, $\delta N_n=-1$, $\delta N_{\Sigma^-}=+1\Longrightarrow \delta E<0$

Chemical potential of one Σ^- in $npe\mu$ matter is calculated as a limit:

$$\lim_{n_{\Sigma^-}\longrightarrow 0} \left(\partial \mathcal{E}/\partial n_{\Sigma^-}\right)_{\rm eq} \equiv \mu_{\Sigma^-}^0 \ .$$

Find $n_t^{\Sigma^-}$ at which $\mu_{\Sigma^-}^0 - \mu_n - \mu_e$ vanishes $\Longrightarrow \Sigma^-$ present for $n_b > n_t^{\Sigma^-}$

・ロト ・回ト ・ヨト ・ヨ

 $npe\mu$ matter

$$V = const, N_{\rm b} = const, T = 0$$

$$\delta E = -P\delta V + \sum_{j} \mu_{j} \delta N_{j}$$

 $npe\mu$ matter unstable: $\delta N_e=-1$, $\delta N_n=-1$, $\delta N_{\Sigma^-}=+1\Longrightarrow \delta E<0$

Chemical potential of one Σ^- in $npe\mu$ matter is calculated as a limit:

$$\lim_{n_{\Sigma^-} \longrightarrow 0} \left(\partial \mathcal{E} / \partial n_{\Sigma^-} \right)_{\rm eq} \equiv \mu_{\Sigma^-}^0 \ .$$

Find $n_{\mathrm{t}}^{\Sigma^-}$ at which $\mu_{\Sigma^-}^0 - \mu_n - \mu_e$ vanishes $\Longrightarrow \Sigma^-$ present for $n_{\mathrm{b}} > n_{\mathrm{t}}^{\Sigma^-}$

メロト メタト メヨト メヨ

Stability of hyperons in dense matter Q = -1

Energy

 Σ^- are stable as long as $\mu_{\Sigma^-} - \mu_n - \mu^e < 0$ and therefore $\delta N_n = +1, \delta N_\Lambda = -1 \Longrightarrow \delta E > 0$

Conversion $n, e \longrightarrow \Sigma^-$ will proceed till $\mu_{\Sigma^-} = \mu_n + \mu_e$, i.e. till equilibrium between Σ^- and $npe\mu$ is reached

Argument based on "quasiparticles"

 $\Sigma^- \longrightarrow n+e$ is prohibited by the energy conservation due to Pauli principle for quasiparticles

Analogous procedure for Ξ^-

Energy

 Σ^- are stable as long as $\mu_{\Sigma^-} - \mu_n - \mu^e < 0$ and therefore $\delta N_n = +1, \delta N_\Lambda = -1 \Longrightarrow \delta E > 0$

Conversion $n, e \longrightarrow \Sigma^-$ will proceed till $\mu_{\Sigma^-} = \mu_n + \mu_e$, i.e. till equilibrium between Σ^- and $npe\mu$ is reached

Argument based on "quasiparticles"

 $\Sigma^- \longrightarrow n+e$ is prohibited by the energy conservation due to Pauli principle for quasiparticles

Analogous procedure for Ξ^-

ADEA

Energy

 Σ^- are stable as long as $\mu_{\Sigma^-} - \mu_n - \mu^e < 0$ and therefore $\delta N_n = +1, \delta N_\Lambda = -1 \Longrightarrow \delta E > 0$

Conversion $n, e \longrightarrow \Sigma^-$ will proceed till $\mu_{\Sigma^-} = \mu_n + \mu_e$, i.e. till equilibrium between Σ^- and $npe\mu$ is reached

Argument based on "quasiparticles"

 $\Sigma^- \longrightarrow n+e$ is prohibited by the energy conservation due to Pauli principle for quasiparticles

Analogous procedure for Ξ^-

Energy

 Σ^- are stable as long as $\mu_{\Sigma^-} - \mu_n - \mu^e < 0$ and therefore $\delta N_n = +1, \delta N_\Lambda = -1 \Longrightarrow \delta E > 0$

Conversion $n, e \longrightarrow \Sigma^-$ will proceed till $\mu_{\Sigma^-} = \mu_n + \mu_e$, i.e. till equilibrium between Σ^- and $npe\mu$ is reached

Argument based on "quasiparticles"

 $\Sigma^- \longrightarrow n+e$ is prohibited by the energy conservation due to Pauli principle for quasiparticles

Analogous procedure for Ξ^-

Converting nucleons into hyperons

- Strong NN interactions make available energy and momenta significantly larger then the Fermi ones
- Strong process involving high-energy n in initial state, and producing very short-lived final state $n + n \longrightarrow n + \Lambda + K^0$
- Kaon is unstable (no kaon-condensation!) and decays by weak interaction $K^0 \longrightarrow 2\gamma$, and heat is radiated by neutrinos
- Λ downscatters, becomes a quasi-particle dressed by strong interaction and stays in the matter because decays $\Lambda \longrightarrow n + \pi^0$ and $\Lambda \longrightarrow p + e^- + \overline{\nu}_e$ are blocked by the energy & momentum conservation

particle states: very short lived quasi-particle states - long lived

・ロト ・回ト ・ヨト ・

Converting nucleons into hyperons

- Strong NN interactions make available energy and momenta significantly larger then the Fermi ones
- Strong process involving high-energy n in initial state, and producing very short-lived final state $n + n \longrightarrow n + \Lambda + K^0$
- Kaon is unstable (no kaon-condensation!) and decays by weak interaction $K^0 \longrightarrow 2\gamma$, and heat is radiated by neutrinos
- Λ downscatters, becomes a quasi-particle dressed by strong interaction and stays in the matter because decays $\Lambda \longrightarrow n + \pi^0$ and $\Lambda \longrightarrow p + e^- + \overline{\nu}_e$ are blocked by the energy & momentum conservation

particle states: very short lived
quasi-particle states - long lived

・ロト ・回ト ・ヨト ・
Converting nucleons into hyperons

- Strong NN interactions make available energy and momenta significantly larger then the Fermi ones
- Strong process involving high-energy n in initial state, and producing very short-lived final state $n + n \longrightarrow n + \Lambda + K^0$
- Kaon is unstable (no kaon-condensation!) and decays by weak interaction $K^0 \longrightarrow 2\gamma$, and heat is radiated by neutrinos
- Λ downscatters, becomes a quasi-particle dressed by strong interaction and stays in the matter because decays $\Lambda \longrightarrow n + \pi^0$ and $\Lambda \longrightarrow p + e^- + \overline{\nu}_e$ are blocked by the energy & momentum conservation

particle states: very short lived quasi-particle states - long lived

・ロン ・回 と ・ ヨン・

Converting nucleons into hyperons

- Strong NN interactions make available energy and momenta significantly larger then the Fermi ones
- Strong process involving high-energy n in initial state, and producing very short-lived final state $n + n \longrightarrow n + \Lambda + K^0$
- Kaon is unstable (no kaon-condensation!) and decays by weak interaction $\boxed{K^0 \longrightarrow 2\gamma}$, and heat is radiated by neutrinos
- Λ downscatters, becomes a quasi-particle dressed by strong interaction and stays in the matter because decays $\Lambda \longrightarrow n + \pi^0$ and $\Lambda \longrightarrow p + e^- + \overline{\nu}_e$ are blocked by the energy & momentum conservation

particle states: very short lived
quasi-particle states - long lived

イロト イヨト イヨト イ