Overview of the HypHI Phase 0 and 0.5 experiments at GSI

GSI – Darmstadt, Germany Dept. of Physics, The University of Tokyo

Daisuke Nakajima

Hypernuclear spectroscopy

Updated from: O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564.

Another complemental approach with **heavy ion beam**

- Proton/Neutron rich Hypernuclei
- Decay of Hypernucleai
- Magnetic moments

Production of Hypernuclei with HypHI

Production of Hypernuclei with HypHI

Production of Hypernuclei with HypHI

Proton/neutron rich Hypernuclei

Hypernuclei smaller mass number than a projectile can be produced
RI-beam available : Enhanced production of hypernuclei at drip-line

Hypernuclei far from the β -stability line

Relativistic Hypernuclei

Direct measurement of hypernuclear magnetic moments

Heavy ion induced reaction at Dubna (1989)

⁴He beams at 3.7 GeV on a polyethylene target ⁷Li beams at 3.0 GeV on a polyethylene target

Cross section $: \sim 0.1 \,\mu b$

Reaction	Energy [A GeV]	Theoretical	Experimental
		cross section $[\mu b]$	cross section $[\mu b]$
$^{3}\text{He}+\text{C}\rightarrow^{3}_{\Lambda}\text{H}+\text{X}$	5.14	0.03	$0.05^{+0.05}_{-0.02}$
**			
$^{4}\text{He}+\text{C}\rightarrow^{3}_{\Lambda}\text{H}+\text{X}$	3.7	0.06	< 0.1
$^{4}\text{He}+\text{C}\rightarrow^{4}_{\Lambda}\text{H}+\text{X}$	2.2	0.08	< 0.08
71	3.7	0.29	$0.4^{+0.4}_{-0.2}$
			-0.2
$^{6}\text{Li}+\text{C}\rightarrow^{3}_{\Lambda}\text{H}+\text{X}$	3.7	0.09	$0.2^{+0.3}_{-0.15}$
$^{6}\text{Li}+\text{C}\rightarrow^{4}_{\Lambda}\text{H}+\text{X}$	3.7	0.20	$0.3_{-0.15}^{+0.3}$
$^{6}\text{Li}+\text{C}\rightarrow^{5}_{\Lambda}\text{He}+\text{X}$	3.7	0.83	
$^{6}\text{Li}+\text{C}\rightarrow^{7}_{\Lambda}\text{Li}+\text{X}$	3.7	0.16	
$^{7}\text{Li+C}\rightarrow^{3}_{\Lambda}\text{H+X}$	3.0	0.22	
$^{7}\text{Li+C}\rightarrow^{4}_{\Lambda}\text{H+X}$	3.0	0.68	
$^{7}\text{Li+C}\rightarrow^{5}_{\Lambda}\text{He+X}$	3.0	0.84	
$^{7}\text{Li+C}\rightarrow^{6}_{\Lambda}\text{He+X}$	3.0	0.25	< 0.5
$^{7}\text{Li}+\text{C}\rightarrow^{7}_{\Lambda}\text{Li}+\text{X}$	3.0	0.11	< 1
$^{12}C+C\rightarrow^{3}_{\Lambda}H+X$	3.7	0.22	
$^{12}C+C\rightarrow^{4}_{\Lambda}H(^{4}_{\Lambda}He)+X$	3.7	0.39	
$^{12}C+C\rightarrow^{5}_{\Lambda}He+X$	3.7	2.58	
$^{12}C+C\rightarrow^{6}_{\Lambda}He+X$	3.7	0.32	
$^{12}\mathrm{C+C} \rightarrow^{12}_{\Lambda}\mathrm{C+X}$	3.7	0.18	

Present hypernuclear landscape

18 O

Known hypernuclei

Phase 1 (2012-2016) at GSI Proton rich hypernnuclei 26 SI 27 SI 28 SI 25 SI Si 4Si 23 AI 24 AI 25 AI 26 AI 27 AI 22 AI A ¹⁹ Mg ²⁰ Mg ²¹ Mg ²² Mg ²³ Mg ²⁴ Mg ²⁵ Mg ²⁶ Mg ANA ANA ANA ANA ANA ANA ANA ANA ANA ¹⁵ Ne ¹⁶ Ne ¹⁷ Ne ¹⁸ Ne ¹⁹ Ne ²⁰ Ne ²¹ Ne ²² Ne 14 F 15 F 16 F 17 F 18 F 19 F 13 O 16 O 1/ O 12 O 15 O 18 O 14 O 17 N 12 N 13 N 14 N 15 N °C ¹⁰ Λ 12 C 13 C 14 C 11 C 10 B ⁸∧B B 17 B 12 B ⁷B ⁶_ABe ⁷_ABe ⁸Be ⁹_ABe ¹⁰ Be ⁹_ALi ¹⁰_ALi ⁸Li ⁷Li Li Known hypernuclei $^{4}_{\Lambda}He$ $^{5}_{\Lambda}He$ $^{6}_{\Lambda}He$ $^{7}_{\Lambda}He$ $^{8}_{\Lambda}He$ 10^4 /week ${}^{3}_{\Lambda}H$ 10³ /week ÅΗ

HypHI Phase 0 experiment Oct. 2009

Setup upstream

TOF - start

Scintillating Fiber Detector

Scintillating Fiber Detector

The most crucial background

Drift Chamber : BDC, SDC from KEK

TOF+ wall

Time Of Flight measurement (~200 ps)
 Charge sepatation of particles
 Tracking charged particles

TFW and ALADIN TOF wall Time Of Flight measurement Tracking charged particles ALADIN TOF wall TFW C. C. C. C. C. C. C. 1.50cm 188.5cm **ALADIN** dipole magnet . TOF wall ALADil LIDEAIII 110cm 24 **TOF-start** 10 30 BDC 240cm F+ wall ¹²C Target 6 m 0 m

Trigger system

Setup (Phase 0.5)

Detectors upstream

Detectors downstream

Particle identification

$1/\beta$ vs P/Z

dE vs P/Z

Lambda Hyperon preliminary analysis with 5% statistics

Summary and near future plan

Summary

- The HypHI Phase 0, 0.5 experiments
 - Demonstrated feasibility of precise hypernuclear spectroscopy
- Full statistics analysis is in progress
 Near Future Plan
- ~2012 : Phase 1 experiment preparation is started

People working for HypHI Phase 0-0.5

GSI Helmholtz-University Young Investigators Group VH-NG-239

- ✤ S. Bianchin (GSI)
- ✤ O. Borodina (Mainz Univ.)
- ✤ V. Bozkurt (Nigde Univ.)
- ✤ B. Göküzüm (Nigde Univ.)
- ➡ E. Kim (Seoul Univ.)
- D. Nakajima (Tokyo Univ.)
- ✤ B. Özel-Tashnov (GSI)
- C. Rappold (Strasbourg Univ.)
- ✤ T.R. Saito (Spokes person)

Mainz University

→ P. Achenbach, J. Pochodzalla

GSI HP2 and Mainz University

🍷 D. Khaneft, Y. Ma, F. Maas

GSI HP1

🔸 W. Trautmann

GSI EE department

J. Hoffmann, K. Koch, N. Kurz, S. Minami W. Ott, S. Voltz

GSI Nuclear reaction

→ T. Aumann, C. Caeser, H. Simin

GSI Detector Lab.

- M. Träger, C. Schmidt
- KEK
 - 🕶 T. Takahashi, Y. Sekimoto
- KVI
 - ➡ E. Guliev, M. Kavatsyuk, G.J. Tambave

Kyoto University

Y. Hayashi, T. Hiraiwa, M. Moritsu, A.
 Okamura, T. Nagae, M. Sako, T. Sugimura

Nigde University

- Z.S. Ketenci, S. Erturk
- Osaka University
 - 🕈 S. Ajimura, A. Sakaguchi, K. Yoshida

Osaka Electro-Communication University

🔹 T. Fukuda, Y. Mizoi

Seoul National University

 H. Bhang, M. Kim, S. Kim, K. Tanida, C.J. Yoon

Tohoku University

🗢 T. Koike, H. Tamura

Student Postdoc Tenure track 30

Thank you very much

Backup

International Hypernuclear Network

Construction of fiber detector prototype

32ch multi-anode PMT

Drift Chamber : SDC

STAR at RHIC BNL

Au + Au collisions at $\sqrt{S_{NN}} = 200 \, GeV$

Science. DOI: 10.1126/science.1183980.]

GSI, Darmstadt

GSI, Darmstadt

Scatterd particles from the Holding structure

Improvement

The Phase 0 and 0.5 experiment

	Phase 0	Phase 0.5
	Oct. 2009 11 days	Mar. 2010 7 days
Beam	⁶ Li at 2 A GeV	²⁰ Ne at 2 A GeV
Intensity	3 × 10 ⁷ /spill	6 × 10 ⁶ /spill
Data	~800 GB (+ ~600 GB Calibration)	~700GB (+ ~200 GB Calibration)

Monte-Carlo Simulation

Hypernucleus	Expected cross section $(\mu \mathbf{b})$	Reconstructed events per week
$^{3}_{\Lambda}\mathrm{H}$	0.1	$2.8 \ge 10^3$
$^{4}_{\Lambda}\mathrm{H}$	0.1	$2.6 \ge 10^3$
$^{5}_{\Lambda}$ He	0.5	$6.3 \ge 10^3$

Positin Alignment of Fiber detectors

TOF corrections

Walk corrections for TOF-start and TOF+

TOF - start

TFW

ALADIN TOF wall

Time-Of-Flight wall for negatively charged particles

48

STAR at RHIC BNL

Science. DOI: 10.1126/science.1183980.]

