Trigger and Analysis methods for the HypHI phase 0 experiment

Christophe Rappold 1,2

¹IPHC/DRS, Université de Strasbourg, France

²GSI Helmholtz Centre for Heavy Ion Research, Darmstadt

SPHERE School on Strangeness Nuclear Physics 7-11 September 2010

HypHI Phase 0 experiment

Overview

Requirements on Trigger and Analysis

Trigger system

Overview Secondary Vertex Trigger Z=2 Trigger Trigger efficiency

Analysis methods

Track reconstruction Event reconstruction Particle Identification Background reduction

Preliminary result

the event reconstruction of $^{5}_{\Lambda}$ He

Conclusion

Goals of the HypHI phase 0 experiment

The phase 0 experiment:

- aims to demonstrate the feasibility of hypernuclear spectroscopy by means of heavy ion collisions.
- focuses on the study of ${}^{3}_{\Lambda}H$, ${}^{4}_{\Lambda}H$, ${}^{5}_{\Lambda}He$

to measure:

- the production cross section.
- hypernuclear lifetime.
- polarization of produced hypernuclei.

By identifying them:

- 1. Invariant mass spectroscopy.
- 2. Secondary vertex selection.

SNP2010

4 / 22

C. Rappold

Outline HypHI Phase 0 experiment Trigger system Analysis methods Preliminary result Conclusion

One of the challenges of the experiment

► To deal with the small hypernuclear production cross section (~ 0.1µb). Compare the total reaction cross section (~ 1b).

Proposed solution:

- Online selection via the trigger system.
- ► To reject background signal.

After in the Offline Analysis

A Precise hypernuclear spectroscopy needs:

Precise tracking reconstruction (δp/p ~ 1%)
 ⇒Precise secondary vertex reconstruction.
 ⇒Invariant mass in few MeV resolution (≤ 3MeV).

► Several cut conditions can improve the S/B ratio.

	Trigger system ●○○○○○○		
Overview			
-			

Topology of the hypernuclear decay:

Decay

- $\rightarrow {}^{3}_{\Lambda}H \rightarrow \pi^{-}+{}^{3}He$
- ► ${}^{4}_{\Lambda}H \rightarrow \pi^{-}+{}^{4}He$
- ► ${}^{5}_{\Lambda}\text{He} \rightarrow \pi^{-} + {}^{4}\text{He} + p$
- \rightarrow In common : π^- and Z=2 particle.

At 2 AGeV, hypernuclei are produced with a Lorentz boost $\gamma \sim$ 3:

- \rightarrow hypernuclei will decay outside the target.
- \implies secondary vertex can be distinguished from primary vertex.

Trigger system:

Simultaneous requirement:

Secondary vertex \times Z=2 particle detection $\times \pi^-$ detection.

Outline	HypHI Phase 0 experiment	Trigger system ○●○○○○○	Analysis methods	Preliminary result ○	Conclu
Secondary	Vertex Trigger				

Tracking trigger: Template matching method

Track template built from simulation:

- a track template = collection of hits on TR0 & 1 & 2.
- ► all possible primary track originate from the target : → veto matrix
- remaining hit on TR1 & TR2 used to evaluate the secondary vertex.

Implementation

- Total collection of channels to evaluate: 900k.
- ▶ Fast and parallel : FPGA chips.
- ▶ 38 VUPROM2 logic module used (GSI home development).

Illustration on a typical hypernuclear event

Vetoing all tracks from primary vertex (inside target) :

		Trigger system ○○○●○○○			Conclusion		
Secondary	Secondary Vertex Trigger						
Ach	ieved performan	ces					

Comparison between the decisions taken:

- during the experiment
- ▶ by an offline analysis which simulate trigger system.

 \implies Consistence over TR1x, 1y, 2x, 2y > 98 %.

	Trigger system ○○○○●○○		
Z=2 Trigge			

Time over threshold method

Z=2 particle discrimination

Measuring the pulse width and correlated it with the charge of the particle:

Comparison between minimum bias and hypernuclear trigger.

Normalized Counts of Z=1 and Z=2 particles per bar set (4 neighboring bars):

C. Rappold

IPHC/DRS-GSI

 Outline
 HypHI Phase 0 experiment
 Trigger system
 Analysis methods
 Preliminary result
 Conclusion

 000
 0000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Full trigger system efficiency

Monte Carlo study

- Secondary vertex trigger: 14% background reduction: 1.7%
- ▶ Z=2 trigger: 99% with reduction factor: 14%
- π^- trigger: 20% with reduction factor: 15%

\Rightarrow All together

efficiency 7% with a background reduction of 0.017%

		Analysis methods ●○○○○○○○	Conclusion
Track reco	nstruction		
Goa	ls & Features		

Goals

Handle only particles and their behaviour (decay/tracking).

From Hits to Tracks

- Give a representation of particle, quadrivector P.
- Compute the momentum of each possible particule.

How ?

▶ Track finding algorithm : to handle high hit multiplicity.

Track fitting algorithm : to compute goodness of tracking.

Track finding: Hough Transform

- Recognition of tracks y = a · x + b from a hit pattern.
- For each point (x_i, y_i) : y_i = a ⋅ x_i + b ∼ new variable : (a, b)
- transpose each hit to a curve : Cartesian or polar parameters

C. Rappold IPHC/DRS-GSI

			Analysis methods ○○●○○○○○	Conclusion
Track reco	nstruction			
Trac	k fitting: Kalm	an Filter		

An iterative fitting algorithm :

- prediction step : extrapolation of the position of the next hit from the last hit considered.
- filter step : correction of the prediction by comparing with the real measured hit.
- smoothing step : propagate backward to update all hits.

		Analysis methods ○○○●○○○○	Conclusion
Track reco	nstruction		
_			

Systematic procedure : efficiency study

Procedure of the efficiency study

- After the Hough transform in the analysis : found tracks.
- Track Fitting with this Kalman Filter implementation.
- χ^2 test for rejection of bad tracks.
- Mass calculation of each involved particles.

proton eff : 97 % / α eff : 99 % / π^- eff : 85% - 93% Momentum resolution $\delta p/p \sim 1\%$

C. Rappold

2010 17 / 22

	HypHI Phase 0 experiment	Trigger system 0000000	Analysis methods ○○○○●○○	Preliminary result	Conclusion
Event reco	nstruction				
The	phase 0 analysi	S			

1. Track finding:

- I. Pre tracking in upstream part (Fiber/DC) : Combinatorial track following.
- II. Track finding between upstream & downstream.

2. Track fitting:

- I. Compute seed for Kalman Filter (analytic calculation of momentum).
- II. Association of the charge from PID in TOF walls.
- III. Track fitting of each submitted tracks.
- 3. Particle Identification
 - I. With: dE/dx vs P/Z or $1/\beta$ vs P/Z.
 - II. χ^2 test for selection of good tracks of decay particles.
- 4. hypernuclear reconstruction:
 - I. pair or triplet of tracks used for invariant mass of hypernuclei.
 - II. secondary vertex reconstruction for selecting best hypernuclei candidates.

Obtained Particle identification from simulations

Cut conditions on the background reduction of ${}^{4}_{\Lambda}$ H

$^{4}_{\Lambda}H \rightarrow \alpha + \pi^{-}$

- 1. tracks from primary
- 2. $\Lambda + \alpha$ events:
- ▶ first: reduced by the
- \blacktriangleright second: reject Λ event +

After trigger (both background). $S/B = 0.14 \cdot 10^{-3}$

C. Rappold IPHC/DRS-GSI

Cut conditions on the background reduction of ${}^{4}_{\Lambda}$ H

$^{4}_{\Lambda}H \rightarrow \alpha + \pi^{-}$

- 1. tracks from primary
- 2. $\Lambda + \alpha$ events:
- ▶ first: reduced by the
- \blacktriangleright second: reject Λ event +

Secondary vertex cut. S/B = 0.57

C. Rappold

Cut conditions on the background reduction of ${}^{4}_{\Lambda}$ H

$^{4}_{\Lambda}H \rightarrow \alpha + \pi^{-}$

- 1. tracks from primary
- 2. $\Lambda + \alpha$ events:
- ▶ first: reduced by the
- \blacktriangleright second: reject Λ event +

Vertex cut $+ \Lambda$ rejection. S/B = 3.20

C. Rappold

Cut conditions on the background reduction of ${}^{4}_{\Lambda}$ H

$^{4}_{\Lambda}H \rightarrow \alpha + \pi^{-}$

- 1. tracks from primary
- 2. $\Lambda + \alpha$ events:
- ▶ first: reduced by the
- \blacktriangleright second: reject Λ event +

Vertex + Λ + TR0 energy cut. S/B = 124

C. Rappold IPHC/DRS-GSI

Outline HypHI Phase 0 experiment Trigger system Analysis methods Preliminary result 000 0000000 0000000 • • the event reconstruction of ${}^{5}_{\Lambda}$ He • • •

Invariant mass and lifetime measurement of ${}^{5}_{\Lambda}$ He

Mass: 4.8394GeV width: 3.1MeV Significance $S/\sqrt{(S+B)}$: 5.6 σ

C. Rappold

IPHC/DRS-GSI

Outline			Conclusion
Sum	nmary		

- Fast and efficient methods have been employed for online trigger system.
- Trigger analysis shows good performances for each subsystem.
- Advance method for track reconstruction have used.
- good efficiency and momentum resolution have been obtained.
- background reduction has been studied and cut conditions have been determined.
- ► Finally the first preliminary signature of ⁵_ΛHe hypernuclei has been presented.

backup●○○Secondary vertex trigger

Illustration on a typical hypernuclear event: case ${}_{\Lambda}^{5}$ He

Vetoing all tracks from primary vertex (inside target) :

Full algorithm in FPGA chips

Secondary vertex resolution

Species	x (mm)	y (mm)	z (mm)
⁴ _A H	0.23	0.33	3.53
³ / _A H	0.22	0.35	3.61
⁵ / _A He	0.17	0.29	6.4

Secondary decay vertex resolutions within 95% CL

backup ○○● Event reconstruction

Rate expectations

Species	Expected cross section (μ b)	event/week
³ _A H	0.1	$7.8 imes10^3$
⁴ / _A H	0.1	$7.2 imes10^3$
⁵ _A He	0.5	$18.2 imes 10^3$