Spectroscopy of hypernuclei -- experiment Mainly on γ spectroscopy

Dept. of Physics, Tohoku University H. Tamura

Reference O. Hashimoto and H. Tamura, Progress of Particle and Nuclear Physics 57 (2006) 564.

Contents

- 1. Introduction
- 2. Brief summary of reaction spectroscopy
 - 2.1 (K⁻, π ⁻) and (π ⁺,K⁺) spectroscopy
 - 2.2 (e,e'K⁺) spectroscopy
- 3. γ spectroscopy of Λ hypernuclei
 - 3.1 Motivation, method and apparatus
 - **3.2 Experiments and data**
 - 3.3 ΛN interaction
 - **3.3 Impurity effects**
 - 3.4 Nuclear medium effect of baryons
- 4. Experiments at J-PARC
- 5. Summary

1. Introduction for hypernuclear physics

World of matter made of u, d, s quarks

by M. Kaneta inspired by HYP06 conference poster

Hyperon mixing in neutron star core

Do we understand the nuclear force?

- Short-range parts
 - (Repulsive core, Spin-orbit force)
- -Cause elementary properties of nucleus (saturation, magic numbers)
- Origins are not understood.
 Meson exchange model seems invalid.
- → Quark-gluon picture necessary ?

s quark may change the quark gluon force.

Baryon-baryon force including strangeness can be also described by meson exchange picture under SU_f(3) symmetry ?

Extending nuclear force to B-B force will answer these questions.

Limited YN scattering data

NN forces Experimentally determined very well by pp and pn scattering exp. in wide momentum range with spin observables -> phase shift analysis

YN forces Statistically poor Limited momentum region $c\tau(\Lambda) = 7.9$ cm, $c\tau(\Sigma^+) = 2.4$ cm information of YN (and YY) forces from hypernuclear structure -> Spectroscopic data necessary

2. Brief Summary of Reaction Spectroscopy

World of matter made of u, d, s quarks

by M. Kaneta inspired by HYP06 conference poster

<u>Present Status of</u> <u>Λ Hypernuclear Spectroscopy</u>

Updated from: O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564.

<u>Characteristics of hypernuclear</u> production reactions

2.1 (K⁻,π⁻) and (π⁺,K⁺) spectroscopy

The best (K⁻, π^-) data -- Very small Λ spin-orbit splitting

Fig. 4.2. Excitation spectra obtained from the (K^-, π^-) reaction on ¹²C and ¹⁶O at $p_K = 715 \text{ MeV}/c$ are plotted as a function of the transfer energy $M_{HY} - M_A$. The q-dependence (angular distribution) of the peak intensities is displayed in the right-half. (Taken from Ref. 59.)

Brueckner et al., PLB 79 (1978) 157

[*E*a' - *E*b'] – [*E*c - *E*d] | < 0.5 MeV ~ $| E(\Lambda p_{1/2}) - E(\Lambda p_{3/2}) |$

<u>Limitation of</u> (K⁻, π⁻) reaction

Small momentum transfer < 50 MeV/c

-> Substitutional states only

Large A -> n hole in outer shell (w/ large L) -> Λ in the same outer shell -> highly unbound -> large widths No information of deep Λ orbits

Population of deep Λ orbits requires a large ΔL (a large q > p_F). => (π^+, K^+) reaction

<u>(</u>π⁺,**K**⁺) spectroscopy

Large mom. transfer ~350 MeV/c -> Deeply bound states are well populated -> large ΔL -> stretched states -> clear peaks

Experimental apparatus -- case of (π⁺,K⁺)

 $\frac{2\text{-body reaction}}{\pi^+ + A(^AZ) \rightarrow Hy(^A{}_AZ) + K^+}$ $p_{\pi} = p_{Hy} + p_{K}$ $\sqrt{p_{\pi}^2 + m_{\pi}^2} + m_A = \sqrt{p_{Hy}^2 + m_{Hy}^2} + \sqrt{p_{K}^2 + m_{K}^2}$

SKS (3 T max) (Superconducting Kaon Spectrometer)

Experimental apparatus -- case of (π^+ **,K**⁺**)**

2.2 (e,e'K⁺) spectroscopy

<u>Characteristic features of</u> (e,e'K⁺) experiments at JLab

25

Dedicated spectrometer at Hall C

Dedicated spectrometer at Hall C

Reaction spectrum on ²⁸Si target

Comparison between ²⁸ Al and ²⁸ Si

3. γ-ray spectroscopy

3.1 Motivation, method and apparatus

Reaction spectroscopy and γ-ray spectroscopy

Reaction Spectroscopy	γ-Spectroscopy
Resolution: 1.5 MeV(FWHM) by (π,K ⁺) 0.4 MeV(FWHM) by (e,e'K ⁺)	Resolution: ~0.1 MeV (FWHM) by scintillator (Nal) 0.002 MeV (FWHM) by Ge
Bound and unbound states with width < 10 MeV	Only bound states without particle decays but faster than weak decays(10 ⁻¹⁰ s) $-> \Sigma$, Ξ hypernuclei Σ N-> Λ N, Ξ N -> $\Lambda\Lambda$
Absolute mass can be measured (precise by (e,e'K ⁺) and (K ⁻ , π^0))	Excitation energies only
Angular distributions -> ∆L -> Spin assignment	Yield, Branching ratio, γγ coincidence -> level scheme
Cross sections -> Spectroscopic factor -> wavefunction	Angular correlation, Polarization -> spin-parity assignment
	Lifetime -> Transition probabilities (B(M1),B(E2) etc. -> wavefunction

Motivation of Hypernuclear γ **Spectroscopy**

High-precision ($\Delta E \sim a$ few keV) spectroscopy with Ge detectors

1. YN, YY interactions

 -> Unified picture of B-B interactions Understand short-range nuclear forces
 ΛN spin-dependent forces, ΣΝ-ΛΝ force, ... Understand high density nuclear matter (n-star)

2. Impurity effects in nuclear structure

Changes of size/shape, symmetry, cluster/shell structure... B(E2) -> shrinking effect

3. Medium effects of baryons probed by hyperons

B(M1) -> μ_{Λ} in nucleus

Method: How to identify hypernuclear γ rays

Structure of Λ Hypernuclei and γ spectroscopy

Fine structure of Λ Hypernuclei and γ spectroscopy

Low-lying levels of Λ hypernucleus

 $\Delta E \sim 0.002$ MeV FWHM by γ spectroscopy with Ge detectors

 $\triangle E \sim 1.5 \text{ MeV FWHM by } (\pi^+, K^+)$ ~ 0.4 MeV FWHM by (e,e'K+)

Past experiments before Hyperball (1998~)

- Only 5 γ transitions, All by Nal counters (ΔE ~ 0.1 MeV at 1MeV), Low statistics
- No significant improvement before "Hyperball"
- Use of Ge detector once attempted but γ rays not observed

Past experiments before Hyperball (1000) Hyperball (E930)

Past experiments before Hyperball (1998~)

- Only 5 γ transitions, All by Nal counters (ΔE ~ 0.1 MeV at 1MeV), Low statistics
- No significant improvement before "Hyperball"
- Use of Ge detector once attempted but γ rays not observed

Hypernuclear γ-ray data before 1998

Hyperball

- Large acceptance for small hypernuclear γ yields Ge (r.e. 60%) x 14 $\Omega \sim 15\%$, $\varepsilon \sim 2.5\%$ at 1 MeV
- High-rate electronics for huge background
- **BGO** counters for π^0 and **Compton suppression**
- **Resolution of hypernuclear** spectroscopy:
 - 1 MeV -> 2 keV FWHM

(Tohoku/ Kyoto/ KEK, 1998)

Ge detector and BGO counters

EGEG

Hyperball2 (2005~)

3.2 Experiments and Data

Hypernuclear γ-ray data after 1998

3.3 ΛN interaction

<u>AN Spin-dependent interactions</u>

■ Two-body **AN** effective interaction

$$V_{AN}^{eff} = V_{0}(r) + V_{\sigma}(r) \tilde{s}_{A} \tilde{s}_{N} + V_{A}(r) \tilde{t}_{AN} \tilde{s}_{A} + V_{N}(r) \tilde{t}_{AN} \tilde{s}_{N} + V_{T}(r) S_{12}$$

$$\overline{V} \qquad \Delta \qquad S_{A} \qquad S_{N} \qquad T$$

$$P-shell: 5 radial integrals for $p_{A}s_{A}$ w.f.
$$\Delta = \int V_{\sigma}(r) |u(r)|^{2} r^{2} dr, \quad r = r_{s_{A}} - r_{p_{N}}$$

$$Dalitz and Gal., Ann. Phys. 116 (1978) 167$$

$$Millener et al., Phys. Rev. C31(1985) 499$$

$$Level spacing: linear combination of Δ , S_{A} , S_{N} , T

$$Hypernuclear$$

$$Fine Structure"$$

$$S_{N} \qquad y \qquad y$$

$$A-1Z \qquad A_{A}Z \qquad core \qquad A + 1/2$$

$$A = \int V_{\sigma}(r) |u(r)|^{2} r^{2} dr, \quad r = r_{s_{A}} - r_{p_{N}}$$

$$Level spacing: linear combination of Δ , S_{A} , S_{N} , T

$$Hypernuclear$$

$$Fine Structure"$$

$$Split by$$

$$AN spin-dependent interactions$$

$$\leq 0.1 \text{ MeV}$$

$$\Delta$$

$$A = \int V_{\sigma}(r) |u(r)|^{2} r^{2} dr, \quad r = r_{s_{A}} - r_{p_{N}}$$$$$$$$

ΛN interaction from $^{7}\Lambda Li$

Observation of "Hypernuclear Fine Structure"

BNL E930 (AGS D6 line + Hyperball)

<u>Hyperball</u>

Hypernuclear γ-ray data

AN spin-dependent interaction strengths determined: $\Delta = 0.33 (0.43), S_A = -0.01, S_N = -0.4, T = 0.03 \text{ MeV}$

Almost all these p-shell levels are reproduced by this parameter set. (D.J. Millener)

Nijmegen meson-exchange models

Hiyama et al., PRL 85 (2000) 270 Fujiwara et al. Prog.Part.Nucl.Phys.58 (2007) 439.

Origin of the AN spin-orbit force: Quark-gluon exchange rather than heavy meson exchange ?

=> Nijmegen interaction updated to include it (ESC06)

Origin of *Λ*N tensor force: Meson exchange. Same as NN tensor force

3.4 Impurity effect

Hypernuclear Shrinking effect

B(E2) ∞|<f| e r² Y₂ |i>|² ∞ R⁴ or (β <r²>)²

Predicted by Motoba, Bando, Ikeda Prog.Theor.Phys. 70 (1983) 189.

⁴He + d + Λ model ~20% shrinkage Λ in 0s attracts nucleons "Glue role of Λ "

Hiyama et al. PRC 59 (1999) 2351, NPA684(2001)227 ${}^{5}_{A}$ He + p + n, 4 He + p + n + Λ Shrink between ${}^{5}_{A}$ He – pn distance 22% shrinkage

3.5 Medium effect of baryons

Magnetic moment of a Λ in a nucleus

Baryon magnetic moment in nucleus:

affected by partial restoration of chiral symmetry?

 \rightarrow Origin of baryon spin and mass

 Λ free from Pauli effect is a good probe.

Direct measurement is difficult (τ ~ 0.1-- 0.2 ns)

• A-spin-flip M1 transition: $B(M1) \rightarrow g_{\Lambda}$ $B(M1) = (2J_{\mu\nu} + 1)^{-1} | \langle \Psi_{low} || \mu || \Psi_{\mu\nu} \rangle |^2$ J_C = $(2J_{up} + 1)^{-1} |\langle \psi_{\Lambda\downarrow} \psi_c || \mu || \psi_{\Lambda\uparrow} \psi_c \rangle|^2$ M1 $\frac{1}{J_c - 1/2} \quad \mathbf{P}$ core nucleus $\mu = g_{\rm C} J_{\rm C} + g_{\rm A} J_{\rm A} = g_{\rm C} J + (g_{\rm A} - g_{\rm C}) J_{\rm A}$ Λ in s-orb hypernucleus $= \frac{3}{8\pi} \frac{2J_{low} + 1}{2J_{0} + 1} (g_{\Lambda} - g_{c})^{2} \quad [\mu_{N}^{2}]$ ~100% **Doppler Shift Attenuation Method :** Applied to "hypernuclear shrinkage" $\Gamma = BR / \tau = \frac{16\pi}{\alpha} E_{\gamma}^3 B(M1)$ in ${}^{7}_{\Lambda}$ Li from B(E2) : *PRL 86 ('01)1982*

Preliminary data on B(M1) in ⁷_ALi (BNL E930)

¹⁰B (K⁻, π^-) ¹⁰_AB^{*}, ¹⁰_AB^{*}(3⁺) -> ⁷_ALi^{*}(3/2⁺) + ³He indirect population

4. Experiments at J-PARC

J-PARC

(Japan Proton Accelerator Research Complex)

50 GeV Synchrotron (15 μA)

Hadron Hall

60m x 56m

Tokai, Japan

Material and Biological Science Facility

3 GeV Synchrotron

(333 µA)

400 MeV Linac (350m)

Neutrino Facility

World-highest beam intensity : ~ 1 MW x10 of BNL-AGS, x100 of KEK-PS

J-PARC Hadron Hall

Hadron Hall as of 2008.10

Hadron Hall as of 2008.10

IFE メカニカル

line

40(40+20)t/20t

spectrometer

SKS

Commissioning finished! proton beam

production target

γ spectroscopy at J-PARC

J-PARC E13 + α

- B(M1) measurement of $_{\Lambda}^{7}$ Li
- Charge symmetry breaking ($p\Lambda = n\Lambda$?) ${}^{4}_{\Lambda}H$, ${}^{4}_{\Lambda}He$
- $\Lambda\Sigma$ coupling and Λ NN force ${}^{10}_{\Lambda}B$, ${}^{11}_{\Lambda}B$,...
- Radial dependence of AN interaction ¹⁹ F
- Heavy hypernuclei for E1($p_{1/2}^{\Lambda}$, $p_{3/2}^{\Lambda}$ -> s^{Λ}) ⁸⁹ Y, ²⁰⁸ Pb
- sd-shell: AN interactions and impurity effects
 - ²⁰_ΛNe, ²⁵_ΛMg, ²⁸_ΛSi…
- Disappearance of n halo **B(E2)** in $_{\Lambda}^{7}$ He
- B(M1) for various hypernuclei ¹²_ΛC and heavier

10~100 times faster data collection at J-PARC

5. Summary

- Hypernuclear spectroscopy provides valuable information on YN interactions, impurity effects and medium effect of baryons.
- Reaction spectroscopy by (K⁻, π⁻), (π⁺,K⁺) and (e,e'K⁺) have been successful:
 - Different selectivity in populating states
 - Resolution improved down to 0.5 MeV(FWHM)
 - A single particle orbits well studied
- γ spectroscopy of Λ hypernuclei:
 - Excellent resolution of 0.002 MeV achieved by Hyperball
 - Almost all p-shell data accumulated
 - Spin-dependent AN interaction strengths determined
 - Hypernuclear shrinking effect observed
 - **g** $_{\Lambda}$ can be studied

Hypernuclear spectroscopy will be extensively studied at J-PARC.