ANTIKAON INTERACTIONS with NUCLEONS and NUCLEI

Wolfram Weise Technische Universität München

- PART I: Low-Energy QCD with Strange Quarks
- Chiral SU(3) effective field theory
- Low-energy $ar{\mathbf{K}}\mathbf{N}$ interactions and coupled channels
- Nature and properties of the ${f \Lambda}({f 1405})$

PART II: $ar{\mathbf{K}}$ -Nuclear Systems

- **K**-nucleon and -nuclear effective potentials
- **K**NN quasibound states ? Theory status review
- Outlook: kaon condensation in neutron stars ?

- Chiral symmetry and spontaneous symmetry breaking
- Pseudoscalar mesons as Nambu-Goldstone bosons
- Low-energy QCD: from quarks and gluons to chiral effective field theory

Technische Universität München

Hierarchy of **QUARK MASSES** in **QCD**

CHIRAL $\mathbf{SU}(2)_{\mathbf{L}}\times\mathbf{SU}(2)_{\mathbf{R}}$ symmetry

QCD with N_f = 2 MASSLESS QUARKS $\psi = (u,d)^T$

$$\psi_R = \frac{1}{2}(1+\gamma_5)\psi$$
 $\psi_L = \frac{1}{2}(1-\gamma_5)\psi$

• Invariance of \mathcal{L}_{QCD} under $\psi_{R,L} \to exp\left[i\frac{\theta_{R,L}^a\tau_a}{2}\right]\psi_{R,L}$

- Conserved currents: $J^{\mu}_{R,L} = \bar{\psi}_{R,L} \gamma^{\mu} \frac{\tau}{2} \psi_{R,L}$ $\partial_{\mu} J^{\mu}_{R,L} = 0$
- **VECTOR** and **AXIAL VECTOR CURRENTS**:

$$\mathbf{V}_{a}^{\mu} = J_{R,a}^{\mu} + J_{L,a}^{\mu} = \bar{\psi} \gamma^{\mu} \frac{\tau_{a}}{2} \psi \qquad \mathbf{A}_{a}^{\mu} = J_{R,a}^{\mu} - J_{L,a}^{\mu} = \bar{\psi} \gamma^{\mu} \gamma_{5} \frac{\tau_{a}}{2} \psi$$

Conserved charges:

$$\mathbf{Q}_a^V = \int d^3x \,\psi^{\dagger}(x) \,\frac{\tau_a}{2} \,\psi(x) \qquad \qquad \mathbf{Q}_a^A = \int d^3x \,\psi^{\dagger}(x) \,\gamma_5 \frac{\tau_a}{2} \,\psi(x)$$

Realizations of **CHIRAL SYMMETRY** in QCD

QCD with (almost) **MASSLESS** u- and d-QUARKS ($N_f = 2$)

Spontaneously Broken CHIRAL SYMMETRY

Axial charge acting on vacuum:

 $0 \neq \mathbf{Q}_a^A |0\rangle \sim |\pi_a\rangle$ massless pseudoscalars

NAMBU - GOLDSTONE BOSONS: PIONS

ORDER PARAMETER: PION DECAY CONSTANT

 $egin{aligned} &\langle 0|\mathbf{A}^{\mu}_{a}(x)|\pi_{b}(p)
angle = ip^{\mu}\,\mathbf{f}_{\pi}\,\delta_{ab}\,e^{-ip\cdot x}\ &\mathbf{f}_{\pi} = \mathbf{92.4\,MeV} \quad \mbox{(exp.)}\ &\mathbf{chiral\ limit:} \qquad \mathbf{f} = \mathbf{86.2\ MeV} \end{aligned}$

Non-trivial QCD vacuum:
 CHIRAL (Quark)
 CONDENSATE

 $\langle 0|\bar{\psi}\psi|0\rangle \neq 0$

Spontaneously Broken Symmetry: Ferromagnetism

Spontaneously Broken CHIRAL SYMMETRY (contd.)

SYMMETRY BREAKING SCALE $\,\, \longleftrightarrow \,\,$ mass gap $\, {f \Lambda}_{\chi} = 4\pi \, {f f} \sim 1 \, {f GeV}$

- Low-energy limit of QCD is realized in the form of a Chiral Effective Field Theory
- Nambu-Goldstone bosons (pions) are the active (almost massless) degrees of freedom

Technische Universität Münch

CHIRAL EFFECTIVE FIELD THEORY

Weinberg (`79), Gasser & Leutwyler (`84, `85)

LOW-ENERGY QCD: Effective Field Theory of weakly interacting Nambu-Goldstone Bosons (pions) representing QCD at scales $Q << 4\pi f_{\pi} \sim 1 \, {
m GeV}$

Effective Lagrangian (meson sector):chiral field $\mathcal{L}_{eff} = \mathcal{L}^{(2)} + \mathcal{L}^{(4)} + \dots$ $\mathbf{U}(x) = \exp[i\tau_a \pi_a(x)/f_{\pi}]$

$$\mathcal{L}^{(2)} = \frac{\mathbf{f}^2}{4} \mathbf{Tr}[\partial^{\mu} \mathbf{U}^{\dagger} \partial_{\mu} \mathbf{U}] + \frac{\mathbf{f}^2}{2} B_0 \mathbf{Tr}[\mathbf{m}(\mathbf{U}^{\dagger} + \mathbf{U})]$$
non-linear sigma model $\mathbf{m} = \mathbf{diag}(m_u, m_d)$ symmetry breaking mass term

Higher order terms ...

$$\mathcal{L}^{(4)} = \frac{\ell_1}{2} \left(\mathbf{Tr}[\partial^{\mu} \mathbf{U}^{\dagger} \partial_{\mu} \mathbf{U}] \right)^2 + \frac{\ell_2}{2} \mathbf{Tr}[\partial^{\mu} \mathbf{U}^{\dagger} \partial^{\nu} \mathbf{U}] \mathbf{Tr}[\partial_{\mu} \mathbf{U}^{\dagger} \partial_{\nu} \mathbf{U}] + \frac{\ell_3}{2} B_0^2 \left(\mathbf{Tr}[\mathbf{m}(\mathbf{U}^{\dagger} + \mathbf{U})] \right)^2 + \frac{\ell_4}{2} B_0 \mathbf{Tr}[\partial^{\mu} \mathbf{U}^{\dagger} \partial_{\mu} \mathbf{U}] \mathbf{Tr}[\mathbf{m}(\mathbf{U}^{\dagger} + \mathbf{U})]$$

 \ldots introduce additional low-energy constants ℓ_i

CHIRAL EFFECTIVE FIELD THEORY with inclusion of **BARYONS**

$$\mathcal{L}_{eff} = \mathcal{L}_{\pi}(U, \partial U) + \mathcal{L}_{N}(\Psi_{N}, U, ...)$$
$$U(x) = exp[i\tau_{a}\pi_{a}(x)/f_{\pi}]$$

Construction of Effective Lagrangian: Symmetries

Low-Energy Expansion: CHIRAL PERTURBATION THEORY

small parameter:

${f Q}$	energy / momentum / pion mass
$\overline{4\pi \mathbf{f}_{\pi}}$	$1{ m GeV}$

successfully applied to:

- → PION-PION scattering
- PION-NUCLEON scattering
 - **PION photoproduction** and COMPTON scattering on the NUCLEON
- → long range NUCLEON-NUCLEON interaction
 - NUCLEAR MATTER and NUCLEI

Test of Chiral Symmetry Breaking Scenario - Low-Energy Constants from Lattice QCD -

• Chiral Perturbation Theory at NLO vs. Lattice QCD: $\left(\mathbf{m}_{o}^{2} = -\frac{\mathbf{m}_{q}}{\mathbf{f}^{2}}\langle \bar{\psi}\psi \rangle\right)$

Test of Chiral Symmetry Breaking Scenario - Pion-Pion Scattering -

G. Colangelo et al.

Nucl. Phys. B 603 (2001) 125

Precision measurements of $\pi\pi$ scattering lengths a_0 , a_2 Theory: Chiral Symmetry + Roy Equations Sensitivity to $\ell_3, \bar{\ell}_4$

Chiral SU(3) Dynamics

- Effective field theory with strangeness: Chiral SU(3) Lagrangian
- Tomozawa Weinberg interactions
- Meson-baryon dynamics with strangeness: why "eightfold way" chiral perturbation theory does not work

Low-Energy QCD with N_f = 3 MASSLESS QUARKS $\psi = (u,d,s)^T$

Axial Vector Current: $\mathbf{A}^{\mu}_{a}(x) = \bar{\psi}(x) \gamma^{\mu} \gamma_{5} \frac{\lambda_{a}}{2} \psi(x)$

NAMBU - GOLDSTONE BOSONS:

Pseudoscalar SU(3) meson octet $\{\phi_a\} = \{\pi, \mathbf{K}, \bar{\mathbf{K}}, \eta_8\}$

ORDER PARAMETERS: DECAY CONSTANTS

 $\langle 0 | \mathbf{A}_a^{\mu}(0) | \phi_b(p) \rangle = i \delta_{ab} \, p^{\mu} \, \mathbf{f}_b$

$$egin{aligned} {f f}_{\pi} &= {f 92.4 \pm 0.3} \,\,{
m MeV} \ {f f}_{f K} &= {f 113.0 \pm 1.3} \,\,{
m MeV} \ ({f f} &= {f 86.2} \,\,{
m MeV} \,\,{
m chiral limit} \end{aligned}$$

SYMMETRY BREAKING PATTERN

PSEUDOSCALAR MESON SPECTRUM

• **PCAC:** Gell-Mann - Oakes - Renner Relations

$$m_{\pi}^{2} \mathbf{f}_{\pi}^{2} = -\frac{1}{2}(m_{u} + m_{d})\langle \bar{u}u + \bar{d}d \rangle$$
 $m_{K}^{2} \mathbf{f}_{K}^{2} = -\frac{1}{2}(m_{u} + m_{s})\langle \bar{u}u + \bar{s}s \rangle$

CHIRAL SU(3) EFFECTIVE LAGRANGIAN - Meson Sector -

Starting point: Spontaneously broken CHIRAL SU(3) x SU(3) SYMMETRY of QCD with N_f = 3 massless u-, d- and s-quarks

• GOLDSTONE BOSON (octet) FIELD:

$$\begin{split} U(x) &= exp[i\Phi(x)/\mathbf{f}] \in \mathbf{SU(3)} \\ \Phi &\equiv \lambda_a \phi_a = \sqrt{2} \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^+ & K^+ \\ \pi^- & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^0 \\ K^- & \bar{K}^0 & -\frac{2\eta}{\sqrt{6}} \end{pmatrix} \\ \mathcal{L}_{eff} &= \frac{\mathbf{f}^2}{4} \, Tr \left[\partial^{\mu} U^{\dagger} \partial_{\mu} U \right] + \frac{B\mathbf{f}^2}{2} \, Tr \left[\mathcal{M}(U + U^{\dagger}) \right] + \dots \\ \mathbf{f} &\simeq \mathbf{0.1 \, GeV} \\ \mathbf{NON-LINEAR} \\ \mathbf{SIGMA MODEL} + \begin{pmatrix} explicit \ symmetry \ breaking: \\ mass \ term \\ \mathcal{M} = \begin{pmatrix} m_u & 0 & 0 \\ 0 & m_d & 0 \\ 0 & 0 & m_s \end{pmatrix} \end{split}$$

CHIRAL SU(3) EFFECTIVE LAGRANGIAN - including Baryons -

BARYON (octet) FIELD:

$$\Psi_B \equiv \frac{1}{\sqrt{2}} \lambda_a \Psi_B^a = \begin{pmatrix} \frac{\Sigma^0}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^+ & p \\ \Sigma^- & -\frac{\Sigma^0}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ \Xi^- & \bar{\Xi}^0 & -\frac{2\Lambda}{\sqrt{6}} \end{pmatrix}$$

Effective LAGRANGIAN: $\mathcal{L}_{eff} = \mathcal{L}_{mesons}(\Phi) + \mathcal{L}_{B}(\Phi, \Psi_{B})$ $\mathcal{L}_{B} = Tr \left[\bar{\Psi}_{B} (i \gamma_{\mu} \mathcal{D}^{\mu} - M_{0}) \Psi_{B} \right]$ $+ \mathbf{F} Tr \left[\bar{\Psi}_{B} \gamma_{\mu} \gamma_{5} [\mathcal{A}^{\mu}, \Psi_{B}] \right] + \mathbf{D} Tr \left[\bar{\Psi}_{B} \gamma_{\mu} \gamma_{5} \{ \mathcal{A}^{\mu}, \Psi_{B} \} \right] + \dots$ $\mathbf{F} = \mathbf{0.47} \pm \mathbf{0.01} \qquad \mathbf{D} = \mathbf{0.80} \pm \mathbf{0.01} \qquad (\mathbf{F} + \mathbf{D} = g_{A} = 1.27)$

- Chiral covariant derivative: $\mathcal{D}^{\mu}\Psi_B=\partial^{\mu}\Psi_B+[\mathcal{V}^{\mu},\Psi_B]$
- vector and axial vector chiral fields:

$$\mathcal{V}^{\mu} = \frac{1}{8\mathbf{f}^2} [\Phi, \partial^{\mu} \Phi] + \mathcal{O}(\Phi^4) \qquad \qquad \mathcal{A}^{\mu} = -\frac{i}{2\mathbf{f}} \partial^{\mu} \Phi + \mathcal{O}(\Phi^3)$$

CHIRAL SU(3) EFFECTIVE FIELD THEORY

Interacting systems of NAMBU-GOLDSTONE BOSONS (pions, kaons) coupled to BARYONS

$$\mathcal{L}_{eff} = \mathcal{L}_{mesons}(\Phi) + \mathcal{L}_B(\Phi, \Psi_B)$$

• Leading **DERIVATIVE** couplings (involving $\partial^{\mu} \Phi$) determined by spontaneously broken **CHIRAL SYMMETRY**

LOW-ENERGY $\bar{\mathrm{K}}\mathrm{N}$ systems

• Poles and thresholds:

Non-perturbative coupled-channels approach based on Chiral SU(3) Dynamics

 $(\rightarrow next section)$

Tomozawa - Weinberg Interaction

Model-independent leading order terms from chiral effective meson-baryon Lagrangian

Example: TW interaction in $K^-p \rightarrow K^-p$ channel

$$\delta \mathbf{H}_{int}^{WT} = -\frac{1}{2\,\mathbf{f}^2} \int d^3x \, \left[\bar{\Psi}_p(x) \,\gamma^\mu \,\Psi_p(x) \right] \, \left[K^+(x) \, i \partial_\mu K^-(x) \right]$$

 $K^-_{K^-} p$

Interpretation in terms of **vector meson exchange**:

Vector meson exchange \rightarrow TW interaction in the limit $q^2 << m_v^2$

Kaon- and Antikaon-Nucleon Interactions - Leading Order -

Estimate of $\mathbf{K}^{\pm}\mathbf{N}$ interaction strengths at zero momentum:

T matrix elements $(\omega = \sqrt{s} - M_N)$

$$\mathbf{T}^{(WT)}(K^-p \to K^-p) = -\mathbf{T}^{(WT)}(K^+p \to K^+p) = \frac{\omega}{\mathbf{f}^2}$$
$$\mathbf{T}^{(WT)}(K^-n \to K^-n) = -\mathbf{T}^{(WT)}(K^+n \to K^+n) = \frac{\omega}{2\,\mathbf{f}^2}$$

Leading order kaon / antikaon self-energy in (static) nuclear matter: $(\Pi(\omega,\vec{q}=0;\rho)=-\mathbf{T}\,\rho)$

$$\Pi_{WT}^{\pm} = \pm \frac{\omega}{\mathbf{f}^2} \begin{bmatrix} \frac{3}{4}(\rho_p + \rho_n) + \frac{1}{4}(\rho_p - \rho_n) \end{bmatrix} = 2\omega U_{WT}^{\pm} \quad \begin{array}{l} \text{repulsive for } \mathbf{K}^+ \\ \text{attractive for } \mathbf{K}^- \end{bmatrix}$$

Schrödinger type threshold potential for \mathbf{K}^- in $\mathbf{N} = \mathbf{Z}$ nuclear matter

$$U_{WT}^{-} = -\frac{3}{8 \, {f f}^2} \,
ho \, \sim \, -{f 50} \, \, {f MeV} \qquad {f at} \qquad
ho =
ho_0 = {f 0.16} \, \, {f fm^{-3}}$$

- Solution Empirical facts from kaonic hydrogen and $\,{
 m K}^-{
 m p}\,$ scattering
- Nature and properties of the $oldsymbol{\Lambda}(\mathbf{1405})$
- Solution Effective (energy dependent and complex) $ar{\mathbf{K}} \, \mathbf{N}$ interaction
- Two-poles scenario of chiral SU(3) coupled-channels dynamics
- $\pi\,{m \Sigma}$ invariant mass distributions

LOW-ENERGY $\bar{\mathrm{K}}\mathrm{N}$ systems

Chiral perturbation theory with strangeness is **NOT** applicable:

sacrifice rigorous power counting in favor of important physics: summation of **dominant** chiral SU(3) interactions to **all** orders

Non-perturbative coupled-channels approach

Dynamical generation of $\Lambda(1405)$ as quasi-bound $\bar{\mathbf{K}}\mathbf{N}$ state embedded in strongly interacting $\pi\Sigma$ continuum

(early history: R.H. Dalitz et al.; Phys. Rev. 153 (1967) 1617)

CHIRAL SU(3) DYNAMICS with COUPLED CHANNELS

N. Kaiser, P. B. Siegel, W.W.: Nucl. Phys. A 594 (1995) 325

... plus subsequent work by many groups (A. Ramos et al., M. Lutz and E. Kolomeitsev, D. Jido et al.)

Kernel \mathbf{K}_{ij} from CHIRAL SU(3) EFFECTIVE MESON-BARYON LAGRANGIAN

CHIRAL SU(3) COUPLED CHANNELS DYNAMICS

$$\mathbf{T_{ij}} = \mathbf{K_{ij}} + \sum_{\mathbf{n}} \mathbf{K_{in}} \, \mathbf{G_n} \, \mathbf{T_{nj}}$$

Leading s-wave I = 0 meson-baryon interactions (Tomozawa-Weinberg) Note: ENERGY DEPENDENCE characteristic of Nambu-Goldstone Bosons

Note: **all** matrix elements are of roughly **comparable magnitude**

Technische Universität München

Loop integrals (with meson-baryon Green functions) using dimensional regularization:

$$\tilde{G}(q^2) = \int \frac{d^d p}{(2\pi)^d} \frac{i}{[(q-p)^2 - M_B^2 + i\epsilon][p^2 - m_{\phi}^2 + i\epsilon]}$$

finite parts including subtraction constants $a(\mu)$:

$$G(q^{2}) = a(\mu) + \frac{1}{32\pi^{2}q^{2}} \left\{ q^{2} \left[\ln\left(\frac{m_{\phi}^{2}}{\mu^{2}}\right) + \ln\left(\frac{M_{B}^{2}}{\mu^{2}}\right) - 2 \right] + (m_{\phi}^{2} - M_{B}^{2}) \ln\left(\frac{m_{\phi}^{2}}{M_{B}^{2}}\right) - 8\sqrt{q^{2}} \left|\mathbf{q}_{cm}\right| \operatorname{artanh}\left(\frac{2\sqrt{q^{2}} \left|\mathbf{q}_{cm}\right|}{(m_{\phi} + M_{B})^{2} - q^{2}}\right) \right\}$$

RESULTS (part I)

KAONIC HYDROGEN

DEAR (Frascati); G. Beer et al., Phys. Rev. Lett. 94 (2005) 212302

• K⁻p SCATTERING LENGTH

RESULTS (part III)

CONSTRAINTS for SUBTHRESHOLD EXTRAPOLATIONS

- Sensitivity of $\pi \Sigma$ mass spectrum to ${f K}^-{f p}$ threshold conditions
 - need SIDDHARTA data (almost final)
 - need accurate $\pi {old \Sigma}$ mass distributions

... in order to have sufficient predictive power for subthreshold extrapolations

RESULTS (part IV)

Detailed analysis of uncertainties

B. Borasoy, R. Nissler, W.W., Eur. Phys. J. A25 (2005) 79B. Borasoy, U.-G. Meissner, R. Nissler, Phys. Rev. C74 (2006) 055201

R. Nissler PhD thesis (2008)

NEWS from **SIDDHARTA**

Chiral SU(3) Coupled Channels Dynamics

reduction of uncertainties expected in view of new SIDDHARTA data

CHIRAL SU(3) COUPLED CHANNELS DYNAMICS

$$\mathbf{T_{ij}} = \mathbf{K_{ij}} + \sum_{\mathbf{n}} \mathbf{K_{in}} \, \mathbf{G_n} \, \mathbf{T_{nj}}$$

Leading s-wave I = 0 meson-baryon interactions (Tomozawa-Weinberg)

The TWO POLES scenario

D. Jido et al. Nucl. Phys. A725 (2003) 181

T. Hyodo, W.W.: Phys. Rev. C77 (2008) 03524

Equivalent $\overline{\mathbf{K}}\mathbf{N}$ effective interaction should produce quasibound state at 1420 MeV (not 1405 MeV)

The TWO POLES scenario (contd.)

Chiral dynamics predicts significantly **weaker attraction** than Akaishi - Yamazaki (local, energy independent) potential

Technische Universität München

- Two-pole scenario and its implications
- Non-universality of $\pi \Sigma$ mass spectra
- Present empirical situation and new developments

$\pi \Sigma$ mass spectra

Chiral SU(3) dynamics with uncertainty analysis

(here: based on Tomozawa-Weinberg interaction with $\mathbf{f}\simeq\mathbf{f_K}$)

"old" data

R.J. Hemingway, Nucl. Phys. B253 (1985) 742 ANKE data (COSY / Jülich) $\mathbf{pp}
ightarrow \mathbf{K}^+ \mathbf{p} \, \pi^0 \mathbf{\Sigma}^0$ I. Zychor et al.

Phys. Lett. B660 (2008) 167

$\pi \Sigma$ MASS SPECTRA (contd.)

 ${f p\,p
ightarrow p\,K^+\,\{\Sigma^0\pi^0\}}$ I. Zychor et al. ANKE data: Phys. Lett. B660 (2008) 167

$\pi \Sigma$ MASS SPECTRA (contd.)

 \bigcirc Kaonic (in-flight) production of $\Lambda(1405)$ from deuterium

$\pi \Sigma$ MASS SPECTRA (contd.)

Photoproduction of $\Lambda(1405)$ (CLAS @ JLAB) (see also LEPS / SPring-8)

Note: shift of $oldsymbol{\Lambda}(1405)$ spectrum as compared to "standard" PDG listing

- Antikaon interactions with few-nucleon systems
- Solution The quest for quasibound $ar{\mathbf{K}}$ -nuclear states
- Outlooks: kaon condensation in neutron stars ?

Brief History, Part I

Kaons and Antikaons in Nuclear Matter

In-medium Chiral SU(3) Dynamics with Coupled Channels

Kaon spectrum in matter determined by:

$$\omega^2 - \vec{\mathbf{q}}^2 - \mathbf{m}_{\mathbf{K}}^2 - \mathbf{\Pi}_{\mathbf{K}}(\omega, \vec{\mathbf{q}}; \rho) = \mathbf{0}$$

Note: In-medium \overline{K} width drops when mass falls below $\pi \Sigma$ threshold

Brief History, Part II Kaon Condensation in Neutron Matter

first suggested by D. Kaplan, A. Nelson (1985) on the basis of attractive K⁻N Tomozawa - Weinberg term

at high density, energetically favourable to condense K⁻

Brief History, Part III Deeply Bound Antikaon-Nuclear Clusters ?

Y. Akaishi, T. Yamazaki, Phys. Rev. C65 (2002) 044005

... too simple, but has motivated a great deal of recent activities

Technische Universität München

Prototype Antikaon-Nuclear Few-Body System: K⁻pp

3-Body (Faddeev)
 Calculations
 Variational Calculations

Issues in both approaches: energy dependence of basic input amplitudes, subthreshold / off-shell extrapolations, necessary approximations

K⁻pp System: variational calculation

A. Doté, T. Hyodo, W.W.: Nucl. Phys. A 804 (2008) 197, Phys. Rev. C 79 (2009) 014003

$$\mathbf{H} = \mathcal{T}_{\mathbf{N_1}} + \mathcal{T}_{\mathbf{N_2}} + \mathbf{V}_{\mathbf{NN}} + \mathcal{T}_{\mathbf{K}} + \mathbf{V}_{\mathbf{\bar{K}N_1}} + \mathbf{V}_{\mathbf{\bar{K}N_2}} - \mathcal{T}_{\mathbf{c.m.}}$$

• wave function:

"projection before variation"

$$\begin{split} |\Psi\rangle &= \Phi(\vec{r}_{1},\vec{r}_{2},\vec{r}_{K})|S_{NN}=0\rangle \left| \left[(NN)_{t=1}\,\bar{K} \right]_{T=1/2}^{T_{3}=1/2} \right\rangle \\ & \text{Gaussian wave packets} \\ \Phi(\vec{r}_{1},\vec{r}_{2},\vec{r}_{K}) &= \sum F(\vec{r}_{1},\vec{r}_{2})\,G(\vec{r}_{1})G(\vec{r}_{2})\,G(\vec{r}_{K}) \end{split}$$

3500

2.0

Results: Variational Calculations

A. Doté, T. Hyodo, W.W.: Nucl. Phys. A 804 (2008) 197, Phys. Rev. C 79 (2009) 014003

Input: Energy dependent $\overline{K}N$ effective interaction from chiral SU(3) dynamics ; realistic NN interaction (Argonne v18)

ullet $\mathbf{K}^-\mathrm{pp}$ binding energy and width using several chiral model sets

Result: weak binding ${f B}({f K}^-{f pp})=19\pm 3\,{f MeV}$ $\Gamma=40-70\,{f MeV}$

- but: $\overline{\mathbf{K}}\mathbf{N}\mathbf{N} \leftrightarrow \pi \Sigma \mathbf{N}$ 3-body dynamics incomplete
- additional increase of width by $ar{\mathbf{K}}\mathbf{N}\mathbf{N} o \mathbf{Y}\mathbf{N}$ absorption

 $\delta \Gamma_{\mathbf{abs}} \simeq \mathbf{10} \,\, \mathbf{MeV}$

K⁻pp System: Coupled-Channels Faddeev Approach

effect of separable approximation on subthreshold behaviour ?

K⁻**pp System**: Coupled-Channels Faddeev Approach

(contd.)

Importance of full **3-body** coupled-channels dynamics

... tends to increase binding as compared to variational approaches (with effective single-channel interactions)

Recent advanced calculation: Importance of full, **energy dependent** $\bar{\mathbf{K}}\mathbf{N}$ and $\pi\Sigma$ interactions

Two-pole structure also seen in **3-body** amplitude

weak binding of $\bar{\mathrm{K}}\mathrm{NN}$ compound

OVERVIEW

Binding energies and widths of quasibound $\{ar{K}[NN]_{T=1}\}_{I=1/2}$

	Variational					
F	B [M	${ m eV}$ Γ	two-body input:			
	48	61	phenomenological potential (energy independent)	[1]		
	20 ± 3	40 - 70	chiral SU(3) dynamics	[2]		
	40 - 80	40 - 85	coupled channels phenomenological (incl. p wave)	[3]		

Faddeev3-body coupled channeΒ [MeV] Γtwo-body input:				
50 - 70	90 - 110	phenomenological	[4]	
45 - 80	45 - 70	(energy independent) chiral SU(3) dynamics	[5]	
$14^{*)}$	$58^{*)}$	(energy dependent) * ⁾ KbarNN pole position	[6]	

[1] T.Yamazaki,Y.Akaishi Phys. Lett. B535 (2002) 70 Phys. Rev. C76 (2007) 045201

[2] A. Doté, T. Hyodo, W.W.
 Nucl. Phys. A804 (2008) 197
 Phys. Rev. C79 (2009) 014003

[3] S.Wycech, A.M. Green Phys. Rev. C79 (2009) 014001

[4] N.V. Shevchenko, A. Gal, J. Mares
Phys. Rev. Lett. 98 (2007) 082301
(+ J. Révay)
Phys. Rev. C76 (2007) 044004

[5] Y. Ikeda, T. Sato
Phys. Rev. C76 (2007) 035203
Phys. Rev. C79 (2009) 035201

[6] Y. Ikeda, H. Kamano, T. Sato arXiv:1004.4877 [nucl-th] (2010)

OVERVIEW

Binding energies and widths of quasibound $\{ar{K}[NN]_{T=1}\}_{I=1/2}$

OVERVIEW

Binding energies and widths of quasibound $\{ar{\mathbf{K}}[\mathbf{NN}]_{\mathbf{T}=\mathbf{1}}\}_{\mathbf{I}=\mathbf{1}/\mathbf{2}}$

energy dependent [1] T.Yamazaki, Y.Akaishi Phys. Lett. B535 (2002) 70 Phys. Rev. C76 (2007) 045201 [2] A. Doté, T. Hyodo, W.W. Nucl. Phys. A804 (2008) 197 Phys. Rev. C79 (2009) 014003 [3] S.Wycech, A.M. Green Phys. Rev. C79 (2009) 014001 [4] N.V. Shevchenko, A. Gal, J. Mares Phys. Rev. Lett. 98 (2007) 082301 (+ |. Révay) Phys. Rev. C76 (2007) 044004 [5] Y. Ikeda, T. Sato Phys. Rev. C76 (2007) 035203 Phys. Rev. C79 (2009) 035201

[6] Y. Ikeda, H. Kamano, T. Sato arXiv:1004.4877 [nucl-th] (2010)

Antikaon Bound States in Heavier Nuclei ?

(exploratory studies)

Solve Klein-Gordon equation:

$$\left[\omega^{2} + \vec{\nabla}^{2} - \mathbf{m}_{\mathbf{K}}^{2} - \mathbf{\Pi}(\omega; \vec{\mathbf{r}})\right] \phi_{\mathbf{K}}(\vec{\mathbf{r}}) = \mathbf{0}$$

• ... with **kaon self-energy**:

$$\begin{split} \Pi(\omega; \, \vec{\mathbf{r}}) &= -\mathbf{T}_{\mathbf{K}^{-}\mathbf{p}}^{s-wave}(\omega) \, \rho_{\mathbf{p}}(\vec{\mathbf{r}}) - \mathbf{T}_{\mathbf{K}^{-}\mathbf{n}}^{s-wave}(\omega) \, \rho_{\mathbf{n}}(\vec{\mathbf{r}}) \\ &+ \tilde{\mathbf{C}}_{\mathbf{K}^{-}\mathbf{p}}^{p-wave}(\omega) \, \vec{\nabla} \rho_{\mathbf{p}}(\vec{\mathbf{r}}) \vec{\nabla} + \, \tilde{\mathbf{C}}_{\mathbf{K}^{-}\mathbf{n}}^{p-wave}(\omega) \, \vec{\nabla} \rho_{\mathbf{n}}(\vec{\mathbf{r}}) \vec{\nabla} \\ &+ \delta \Pi_{\mathbf{corr}}(\rho_{\mathbf{p}}, \rho_{\mathbf{n}}) + \delta \Pi_{\mathbf{abs}}(\omega; \, \rho_{\mathbf{p}}, \rho_{\mathbf{n}}) \, + \delta \Pi_{\mathbf{coul}}(\omega; \, \rho_{\mathbf{p}}) \\ \hline \mathbf{correlations} \quad \mathbf{absorption} \quad \mathbf{Coulomb} \end{split}$$

Woods-Saxon distributions for $ho_{f p}({f ar r})$, $ho_{f n}({f ar r})$

Search for **bound state** solutions $\omega = \operatorname{Re} \omega - \frac{1}{2}\Gamma$

chnische Universität München

Antikaon - Nuclear Quasibound States

Technische Universität München

Antikaon Absorption on Nucleon Pairs

T. Sekihara, D. Jido, Y. Kahada-En´yo Phys. Rev. C79 (2009) 062201

•

Result: non-mesonic decay width

 $\Gamma(\Lambda^*\,{f N}
ightarrow{f Y}\,{f N})\simeq 22\,{f MeV}$

at normal nuclear matter density

Related Work

J. Mares, E. Friedman, A. Gal, Nucl Phys. A 770 (2006) 84

... qualitatively similar conclusions reached

Multi ${\rm K}^-\text{-}{\rm Nuclear}$ Systems

D. Gazda, E. Friedman, A. Gal, J. Mares Phys. Rev. C77 (2008) 045206 & arXiv: 0906.5344 [nucl-th]

Relativistic mean-field model for antikaons, nucleons and hyperons

... prevents kaon condensation in this approach

6. Kaon Condensation in Outlook : NEUTRON STARS ?

Kaon Condensation in Neutron Matter

first suggested by D. Kaplan, A. Nelson (1985) on the basis of attractive K⁻N Tomozawa - Weinberg term

NEUTRON STARS and the **EQUATION OF STATE** of **DENSE BARYONIC MATTER**

New Semi-Empirical Constraints from NEUTRON STARS in BINARIES

... using observables such as apparent surface, flux during cooling ...

Implications for the EQUATION of STATE

Kaon Condensate or Quark Matter ?

Implications for the EQUATION of STATE (contd.)

- Quark matter and kaon condensate ruled out ?
 - Clarify uncertainties of ÖBG and SLB analysis !

Summary part l

Low-Energy QCD: spontaneous chiral symmetry breaking scenario well established

Chiral SU(3) x SU(3) Effective Field Theory : Successful framework for low-energy hadron physics with s-quarks

Structure of ${f \Lambda}({f 1405})$ governed by

chiral SU(3) coupled-channels (two-poles scenario)

Looking forward to:

high-precision $ar{\mathbf{K}}\mathbf{N}$ threshold data

much improved $\pi oldsymbol{\Sigma}$ mass spectra

SIDDHARTA ... JLab, J-PARC, AMADEUS, GSI

Summary part II

Antikaons interacting with baryonic few- and many-body systems:

- Extrapolations to **far-subthreshold** region still an issue
- Weak binding + large width from chiral SU(3) dynamics
- DISTO (and FINUDA) signals are **not** understood in terms of deeply bound $\bar{\mathbf{K}}\mathbf{NN}$ state ($\rightarrow \pi \mathbf{YN}$ dynamics ?)
- Possible **constraints** from astrophysics / **neutron stars** :

- Nucleons + hyperons favored over kaon condensate ?
- Looking forward to advanced mass-radius analysis of neutron stars

The End

thanks to:

Bugra BorasoyAkinobu DotéSalvatore FiorillaTetsuo HyodoYoichi IkedaNorbert KaiserRobin Nissler

