

Weak Decay Studies with FINUDA

Stefania Bufalino INFN-Sezione di Torino

Summary

- Hypernuclear weak decay
- FINUDA @ DAΦNE LNF-INFN
- Hypernuclear decay study in FINUDA
- Mesonic weak decay (MWD)
- Non-Mesonic weak decay (NMWD)
- Conclusions

Weak Decay modes of Λ hypernuclei (1)

The two main decay mechanism inside a hypernucleus are

- Mesonic Weak decay
- Non Mesonic Weak Decay (NMWD)
- Mesonic weak decay like Λ free weak decay:
 - $-\Lambda \rightarrow p\pi^{-}$ B.R. 63.9% ($\Gamma_{\pi^{-}}$)lifetime $\tau_{\Lambda}^{\text{free}} = 263 \text{ ps}$
nucleons emitted with a $-\Lambda \rightarrow n\pi^{0}$ B.R. 35.8% ($\Gamma_{\pi^{0}}$)momentum q ~ 100MeV/c
- Negligible semi-leptonic and weak radiative decay modes:

Weak Decay modes of Λ hypernuclei (2)

- Λ embedded in a nucleus
 - $-\Lambda n \rightarrow nn$ (Γ_n) "neutron-induced decay"
 - $\Lambda p \rightarrow np$ (Γ_p) "proton-induced decay"
 - $\Lambda NN \rightarrow nNN$ (Γ_2) "two nucleons-induced decay"

Physics Motivations

- MWD:
 - J^{π} assignment
 - π^- -nucleus optical potential
- NMWD:
 - 4-baryon strangeness-changing weak interaction
 - $\Delta I=1/2$ from *s*-shell hypernuclei (⁴_{Δ}H)
 - Γ_n/Γ_p (? ... systematics)
 - $\Gamma_{\rm 2N}$, FSI contributions

FINUDA @ DA Φ NE

Hypernuclear decay study in FINUDA Strategy: coincidence measurement charged Mesonic channel charged Non-Mesonic channel

Hypernuclear decay study in FINUDA: strategy

Mesonic weak decay spectra: ⁷_ALi

- Correspondence with the calculated strenght functions
- ✓ T. Motoba et al, Progr. Theor. Phys. Suppl. 117 (1994) 477.
- ✓ A. Gal, Nucl. Phys. A 828 (2009) 72.
- Formation of different excited states of the daughter nucleus
- Initial hypernucleus spin $J^{\pi} ({}^{7}_{\Lambda} Li_{g.s.}) = 1/2^{+} (Sasao, PLB 579 (2004) 258.)$

Mesonic weak decay spectra: ⁷_ALi

- Correspondence with the calculated strenght functions
- ✓ T. Motoba et al, Progr. Theor. Phys. Suppl. 117 (1994) 477.
- ✓ A. Gal, Nucl. Phys. A 828 (2009) 72.
- Formation of different excited states of the daughter nucleus
- Initial hypernucleus spin $J^{\pi}({}^{7}_{\Lambda}\mathbf{Li}_{g.s.}) = 1/2^{+}$ (Sasao, PLB 579 (2004) 258.)

Mesonic weak decay spectra: ⁷_ALi

- Correspondence with the calculated strenght functions
- ✓ T. Motoba et al, Progr. Theor. Phys. Suppl. 117 (1994) 477.
- ✓ A. Gal, Nucl. Phys. A 828 (2009) 72.
- Formation of different excited states of the daughter nucleus
- Initial hypernucleus spin $J^{\pi}({}^{7}_{\Lambda}Li_{g.s.}) = 1/2^{+}$ (Sasao, PLB 579 (2004) 258.)

Mesonic weak decay spectra: ⁹_ABe

- Correspondence with the calculated strenght functions
 T. Motoba et al, Progr. Theor. Phys. Suppl.
- 117 (1994) 477.
- ✓ A. Gal, Nucl. Phys. A 828 (2009) 72.
- Initial hypernucleus spin $J^{\pi} ({}^{9}_{\Lambda} Be_{g.s.}) = 1/2^{+}$ O.Hashimoto NPA 639 (1998) 93c.

Mesonic weak decay spectra: ⁹_^Be

- Correspondence with the calculated strenght functions
- ✓ T. Motoba et al, Progr. Theor. Phys. Suppl. 117 (1994) 477.
- ✓ A. Gal, Nucl. Phys. A 828 (2009) 72.
- Initial hypernucleus spin $J^{\pi}({}^{9}_{\Lambda}\mathbf{Be}_{g.s.}) = 1/2^{+}$ O.Hashimoto NPA 639 (1998) 93c.

60

Mesonic weak decay spectra: ⁹_ABe

Mesonic weak decay spectra: ${}^{11}_{\Lambda}B$

FINUDA Coll. and A. Gal, PLB 681 (2009) 139

- Correspondence with the calculated strenght functions
- ✓ H. Bando et al, Pers. Meson Science (1992) p.571
- A. Gal, Nucl. Phys A 828 (2009) 72.
- Two contributions of the ¹¹C ground state 5/2⁻ and its 7/2⁻ excited state
- Initial hypernucleus spin $J^{\pi}({}^{11}_{\Lambda}\mathbf{B}_{g.s.}) = 5/2^+$: experimental confirmation (Sato et al., PRC 71 (2005) 025203) by different observable

Mesonic weak decay spectra: ${}^{11}_{\Lambda}B$

- Correspondence with the calculated strenght functions
- ✓ H. Bando et al, Pers. Meson Science (1992) p.571
- A. Gal, Nucl. Phys A 828 (2009) 72.
- Two contributions of the ¹¹C ground state 5/2⁻ and its 7/2⁻ excited state
- Initial hypernucleus spin $J^{\pi}({}^{11}_{\Lambda}\mathbf{B}_{g.s.}) = 5/2^+$: experimental confirmation (Sato et al., PRC 71 (2005) 025203) by different observable

FINUDA Coll. and A. Gal, PLB 681 (2009) 139

Mesonic weak decay spectra: ${}^{11}_{\Lambda}B$

FINUDA Coll. and A. Gal, PLB 681 (2009) 139

- Correspondence with the calculated strenght functions
- ✓ H. Bando et al, Pers. Meson Science (1992) p.571
- A. Gal, Nucl. Phys A 828 (2009) 72.
- Two contributions of the ¹¹C ground state 5/2⁻ and its 7/2⁻ excited state
- Initial hypernucleus spin $J^{\pi}({}^{11}_{\Lambda}\mathbf{B}_{g.s.}) = 5/2^+$: experimental confirmation (Sato et al., PRC 71 (2005) 025203) by different observable

Mesonic weak decay spectra: ¹⁵_AN

- Correspondence with the calculated strenght functions
- ✓ T. Motoba et al, Nucl. Phys. A 489 (1988) 683.
- ✓ A. Gal, Nucl. Phys. A 828 (2009) 72.
- ${}^{15}_{a}N_{g.s}$ spin not known. $J^{\pi}({}^{15}_{a}N_{g.s.}) = 3/2^{+}$ D.J.Millener, A.Gal, C.B.Dover Phys. Rev. C 31 (1985) 499.

Spin ordering not obtained from γ -rays of ${}^{16}_{\Lambda}$ O M.Ukai et al. Phys. Rev.C 77 (2008) 054315.

• First experimental determination of for $J^{\pi}({}^{15}_{\Lambda}N_{g.s.}) = 3/2^+$ from decay rate value (and spectrum shape)

Mesonic weak decay spectra: ¹⁵[,]N

60

- Correspondence with the calculated strenght functions
- T. Motoba et al, Nucl. Phys. A 489 (1988) 683.
- A. Gal, Nucl. Phys. A 828 (2009) 72.
- ${}^{15}_{\alpha}N_{a.s}$ spin not known. $J^{\pi}({}^{15}_{\alpha}N_{g.s.}) = 3/2^+$ D.J.Millener, A.Gal, C.B.Dover Phys. Rev. C 31 (1985) 499.

Spin ordering not obtained from γ -rays of ${}^{16}_{\Lambda}$ O M.Ukai et al. Phys. Rev.C 77 (2008) 054315.

 First experimental determination of for $J^{\pi}({}^{15}_{\Lambda}N_{g.s.}) = 3/2^{+}$ from decay rate value (and spectrum shape)

Mesonic weak decay spectra: ¹⁵^AN

FINUDA Coll. and A. Gal, PLB 681 (2009) 139

- Correspondence with the calculated strenght functions
- T. Motoba et al, Nucl. Phys. A 489 (1988) 683.
- ✓ A. Gal, Nucl. Phys. A 828 (2009) 72.
- ${}^{15}_{a}N_{g.s}$ spin not known. $J^{\pi}({}^{15}_{a}N_{g.s.}) = 3/2^{+}$ D.J.Millener, A.Gal, C.B.Dover Phys. Rev. C 31 (1985) 499.

Spin ordering not obtained from γ -rays of ${}^{16}_{\Lambda}$ O M.Ukai et al. Phys. Rev.C 77 (2008) 054315.

• First experimental determination of for $J^{\pi}({}^{15}_{\Lambda}N_{g.s.}) = 3/2^+$ from decay rate value (and spectrum shape)

489 (1988) 683

NPA.

T. Motoba

Mesonic decay ratio: $\Gamma_{\pi-} / \Gamma_{\Lambda}$

$\Gamma_{\rm tot} / \Gamma_{\Lambda} = (0.990 \ 0.094) + (0.018 \ 0.010) \bullet A$

fit from measured values for A=4-12 hypernuclei

Mesonic decay: results

- MWD π^- spectra for $^7{}_{\Lambda}$ Li, $^9{}_{\Lambda}$ Be, $^{11}{}_{\Lambda}$ B and $^{15}{}_{\Lambda}$ N
- spin-parity assignment confirmed for $^7{}_\Lambda \text{Li},\,^9{}_\Lambda \text{Be},\,^{11}{}_\Lambda \text{B}$ g.s.
- new spin-parity assignment for ${\rm ^{15}}_{\Lambda}\rm N$, based on decay rate (and spectrum shape)
- MWD decay rates calculated and compared with theoretical calculations and previous measurements
- nuclear structure effects

Non Mesonic weak decay spectra: the method

Non Mesonic Weak Decay spectra

FINUDA Coll. and G. Garbarino, PLB 685 (2010) 247

FSI & ΛNN contribution evaluation: the method

FSI & Λ NN contribution evaluation: systematics

FINUDA Coll. and G. Garbarino, PLB 685 (2010) 247

FSI & ΛNN contribution evaluation

 $A_{low} = 0.5 N(\Lambda p \rightarrow np) + N(\Lambda np \rightarrow nnp) + N_{p}^{FSI-low}$

 $A_{high} = 0.5 N(\Lambda p \rightarrow np) + N_p^{FSI-high}$

$$\frac{N(\Lambda np \rightarrow nnp)}{N(\Lambda p \rightarrow np)} = \frac{\Gamma_{np}}{\Gamma_{p}} \approx \frac{\Gamma_{2}}{\Gamma_{p}} \xrightarrow{\text{assumption}} \Gamma_{np} : \Gamma_{np} = 0.83 : 0.12 : 0.04$$

$$\frac{A_{low}}{A_{low} + A_{high}} = \frac{0.5 N(\Lambda p \rightarrow np) + N(\Lambda np \rightarrow nnp) + N_{p}^{FSI-low}}{N(\Lambda p \rightarrow np) + N(\Lambda np \rightarrow nnp) + N_{p}^{FSI-low} + N_{p}^{FSI-low}}$$

Non-Mesonic Weak Decay

NMWD, FSI & 2N: results

p-induced NMWD proton spectra from ⁵ He to ¹⁶ O

• <u>first experimental indication of the relevant rôle played by the two-nucleon induced</u> <u>mode in the NMWD of hypernuclei</u>

<u>contribution as large as almost 24% of all the non-mesonic weak decays</u>

very large contributions from 2N suggested by theoretical calculation
W.Alberico, A.De Pace, G.Garbarino and A.Ramos, Phys. Rev. C 61 (2000) 044314.
G. Garbarino, A.Parreno and A.Ramos, Phys. Rev. C 69 (2004) 054603.

E. Bauer and G. Garbarino , NPA 828 (2009) 29.

Γ₂/Γ_{NMWD} experimental indications:
 FINUDA value: 0.24 ± 0.10
 H. Bhang et al., EPJ A33 (2007), 259: ~ 0.4 ¹²_AC
 J.D.Parker et al., PRC 76 (2007), 035501: ≤ 0.24 (95% CL) ⁴_AHe
 M.Kim et al., PRL 103 (2009) 182502: 0.29 ± 0.13 ¹²_AC

Triple coincidence analysis

Analysis of $(\pi$ -,n,p) coincidence

Neutron detection efficiency $\sim 10\%$

Neutron energy resolution ~9% at 80 MeV

TOF allows n/γ discrimination

Background prevails if no correlations or selections are imposed

 N_n (cosθ≥- 0.8, E_p< µ–20 MeV): 2N + FSI and small contribution of 1N

 N_n = number of n in coincidence with (π -,p)

Number of neutrons for all targets (from A=5 to A=16)

No spectra shape analysis (20 events for each target)

Background study (events from K-np absorption)

Acceptance correction

Normalization to the number of protons with energy greater than the μ value of the gaussian fits of the proton spectra from FINUDA Coll. and G. Garbarino, PLB 685 (2010) 247

Non-Mesonic Weak Decay from np coincidence

Low statistic but direct measurement- \rightarrow error lowered by a factor 3

Triple coincidence (n+n+p) events @ FINUDA exclusive $\Lambda np \rightarrow nnp {}^{7}{}_{\Lambda}Li \rightarrow {}^{4}He+p+n+n$ decay event

FINUDA E	Experiment
Run n.:	9589
Eventin.1	4640
Date:	26/03/07

🗆 FRONT view 🗔	
Raw data	
Rec. hits	
Pattern Recogn.	
Track Fitting	
Zoom	
Pick Info	
<erase> <quit></quit></erase>	

p $_{\pi-}$ = 276.93 MeV/c E_{tot} = 178.3 MeV Q-value = 167 MeV p miss = 216.6 MeV/c

E(n1) = 110.2 MeV E(n2) = 16.9 MeV E(p) = 51.0 MeV

First direct experimental evidence of 2N-induced NMWD !!

Conclusions

- ✓ First systematic study of p-induced NMWD from ${}^{5}_{\Lambda}$ He to ${}^{16}_{\Lambda}$ O
- ✓ Energy threshold never reached before: 15 MeV
- Evaluation of the FSI and 2N-induced NMWD: values in agreement with theoretical calculation and latest experimental results
- ✓ First direct evidence of the relevant contribution of the 2N stimulated NMWD
- ✓ Results confirmed with smaller errors by means of the analisys of $(\pi$ -,n,p) coincidences
- ✓ First detection of clear events with pnn emitted from the 2N-induced NMWD

..... thank you!