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Abstract

All types of models with two PT -symmetric point interactions compatible with supersym-
metry are presented. Positive, bounded metric operator is constructed for these models.
Method of reference modes is used to find self-adjoint extensions of the Hamiltonian with
Scarf I potential.
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1 Introduction

Quasi-Hermitian models are of the great importance in a framework of PT -symmetric
Quantum Mechanics because of the possible probabilistic interpretation in a modified
Hilbert space [1]. More mathematically oriented discussion of quasi-Hermicity, i.e. the
formal definition and stressing the danger in a naive approach to the construction of
metric operators, is presented in [2]. Closed formula for the metric operator Θ is found
for a solvable quasi-Hermitian model with one PT -symmetric point interaction in [3]. All
essential properties of quasi-Hermitian operator are proved carefully here. Our first aim
is to investigate possible solvable quasi-Hermitian models with two PT -symmetric point
interactions allowing supersymmetry. Systems with two point interactions compatible with
supersymmetry in a self-adjoint case are found in [4]. In order to generalize these results
to the PT -symmetric case we need the description of PT -symmetric point interactions
provided by [5]. Our second aim is to add missing discussion on domains of definition
of the Hamiltonians with Scarf I potential and to help understanding of ’problematic’
settings of this potential mentioned in [6]. Method of reference modes [7] should provide
a suitable tool for the description of self-adjoint extensions.
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2 Self-adjoint extensions of symmetric operators

Observables in the Quantum Mechanics are represented by self-adjoint operators. We
recall the formal definitions of the adjoint of operator [8].

Definition 1. Let A be a densely defined linear operator on a Hilbert space H. Let

Dom(A∗) = {ψ ∈ H|(∃η ∈ H)(∀ϕ ∈ Dom(A))(〈ψ,Aϕ〉 = 〈η, ϕ〉)}

For each ψ ∈ Dom(A∗) we define A∗ψ := η. A∗ is called adjoint of A.

Definition 2. A densely defined linear operator A on a Hilbert space H is called sym-
metric if A ⊂ A∗, that is, if Dom(A) ⊂ Dom(A∗) and Aψ = A∗ψ for all ψ ∈ Dom(A).
Equivalently, A is symmetric if and only if 〈ψ,Aϕ〉 = 〈Aψ,ϕ〉 for all ϕ,ψ ∈ H. A is called
self-adjoint if A = A∗, that is, if and only if A is symmetric and Dom(A) = Dom(A∗).

Usual starting point for the definition of physical observable is symmetric operator
acting on a suitable domain such as C∞0 . Extension of this domain may lead to self-adjoint
operator. Existence of the self-adjoint extension is not guaranteed for every symmetric
operator and there may exist more self-adjoint extensions as well. Every self-adjoint
extension corresponds to the different physical situation. Problem of finding self-adjoint
extensions of symmetric operators is well described in mathematical literature [9, 10].
Basic criterion for self-adjointness may be given with the help of indices of deficiency.

Definition 3. Suppose that A is a symmetric operator. Let

K+ := Ker(i−A∗) = Ran(i−A)|

K− := Ker(i+A∗) = Ran(−i+A)|

K+ and K− are called the deficiency subspaces of A. The pair of numbers n+, n− given
by n+(A) := dim(K+), n−(A) := dim(K−) are called the deficiency indices of A.

Theorem 4. Let A be a closed symmetric operator with deficiency indices n+ and n−.
Then A has self-adjoint extension if and only if n+ = n−. There is one-to-one correspon-
dence between self-adjoint extension of A and unitary maps from K+ onto K−. If U is
such an map then the corresponding closed symmetric extension AU has the domain

Dom(AU ) = {ψ + ψ+ + Uψ+|ψ ∈ Dom(A), ψ+ ∈ K+}
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and
AU (ψ + ψ+ + Uψ+) = Aψ + iψ+ − iUψ+.

Definition 5. A symmetric operator A is called essentially self-adjoint if its closure A is
self-adjoint.

Theorem 6. Let A be a symmetric operator. Then the following are equivalent:

1. A is essentially self-adjoint

2. n+ = n− = 0

3. Ran(A± i) are dense.

Equality of deficiency indices is necessary for existence of self-adjoint extensions. Following
von Neumman’s theorem provides a simple criterion.

Definition 7. An antilinear map C : H → H : C(αϕ + βψ) = ᾱCϕ + β̄Cψ is called a
conjugation if it is norm-preserving and C2 = I.

Theorem 8. (von Neumann’s theorem) Let A be a symmetric operator and suppose that
there exists a conjugation C with C : Dom(A) → Dom(A) and AC = CA. Then A has
equal deficiency indices and therefore has self-adjoint extensions.

2.1 Point interactions in one dimension

We consider one point interaction at x = 0. Corresponding Hilbert space is H = L2(R)
and starting Hamiltonian reads

H0 = − d2

dx2
(1)

with the domain
Dom(H0) = C∞0 (R− {0}). (2)

H0 is symmetric operator and it is not difficult to show that

Dom(H∗0 ) =
{
ψ ∈ H | ψ ∈ AC2(R− {0})

}
. (3)

It follows From von Neumann’s theorem that deficiency indices are equal and explicit
calculations give n+ = n− = 2. H0, the closure of H0, may be found easily with regard of
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the property A = A∗∗ (valid for every symmetric operator A). Theorem 4 and vanishing
limits of the functions from Dom(H0) at x = 0 provide the result that all self-adjoint
extensions of H0, denoted by HU , are restrictions of H∗0

Dom(HU ) =
{
ψ ∈ Dom(H∗0 ) | (U − I)Ψ(0) + iL0(U + I)Ψ′(0) = 0

}
, (4)

where L0 is arbitrary non zero real constant, U ∈ U(2) and

Ψ(0) =

(
ψ(0+)
ψ(0−)

)
, Ψ′(0) =

(
ψ′(0+)
−ψ′(0−)

)
. (5)

Symbols 0± denote limits limx→0±.
For later convenience, we parametrize matrix U in a following way

Ug(θ+, θ−) = exp
{
iθ+P

+
g + iθ−P

−
g

}
, (6)

where

P±g = 1
2(I ± g), g = ~α.~σ,

~α ∈ R3, ~α2 = 1, ~σ are the Pauli matrices.

(7)

It is easy to show that P±g are projectors satisfying

(P±g )2 = P±g , P
±
g P

∓
g = 0, P+

g + P−g = I. (8)

2.2 Singular potentials

We consider differential expression

H = − d2

dx2
+ V (x) (9)

on interval (a, b), where −∞ ≤ a < b ≤ ∞ and V is real, locally integrable function,
V ∈ L1

loc(a, b). The classification of these expressions is given by following definition [10].

Definition 9. Differential expression (9) is called regular if b−a <∞ and V ∈ L1(a, b), it
is called singular otherwise. The endpoint a is called regular if a > −∞ and if there exists
c > a such that V ∈ L1(a, c), it is called singular otherwise. The endpoint b is classified
similarly.
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We define operators Hmin and Hmax in H = L2(a, b) acting as differential expression (9).

Dom(Hmax) =
{
ψ ∈ L2(a, b) | ψ ∈ AC2 and Hψ ∈ L2(a, b)

}
(10)

Dom(Hmin) = {ϕ ∈ Dom(Hmax) | (∀ψ ∈ Dom(Hmax))(W [ϕ,ψ](b)−W [ϕ,ψ](a) = 0)} ,
(11)

where W denotes a Wronskian

W [ϕ,ψ](x) = ϕ(x)ψ′(x)− ϕ′(x)ψ(x) (12)

and expressions W [ϕ,ψ](a),W [ϕ,ψ](b) are understood as appropriate limits. Both these
limits are finite even for singular H. Integration by parts yields∫ d

c
(Hϕ ψ − ϕ Hψ)dx = W [ϕ,ψ](c)−W [ϕ,ψ](d), (13)

for every c > a, d < b and ϕ,ψ ∈ Dom(Hmax). Since ϕHψ ∈ L1(a, b) limit c→ a+ at the
left hand side of (13) is finite and similarly for d→ b−.

Relation between Hmin and Hmax is described by following theorem [10]

Theorem 10. Let H be a differential expression (9) on interval (a,b), where −∞ ≤ a <

b ≤ ∞. Then Hmin is unique closed, symmetric operator obeying H∗min = Hmax. Indices
of deficiency for operator are n+ = n− = n, 0 ≤ n ≤ 2. For the regular H n = 2 and

Dom(Hmin) = {ϕ ∈ Dom(Hmax) | ψ(a) = ψ′(a) = ψ(b) = ψ′(b) = 0}. (14)

Although the theorem 4 yields all self-adjoint extensions HU of Hmin, description of
its domains is not very suitable, particularly for a singular H. The domain of HU may
be specified by boundary conditions for every regular H [10], however functions and its
derivatives in the domain of HU may have infinite limits at a, b for singular H. General
results of [7] provide more convenient way how to characterize Dom(HU). We recall
another terminology for behaviour of potential V [9].

Definition 11. We say that V (x) is in the limit circle case at a (respectively at b) if for
some, and therefore all, λ , all solutions of

−ϕ′′(x) + V (x)ϕ(x) = λϕ(x) (15)

are square integrable at a (respectively at b). If V (x) is not in the limit circle case at a
(respectively at b), it is said to be in the limit point case.
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At a limit point case no boundary condition is needed for ensuring self-adjointness of
the Hamiltonian [7], however in a limit circle point we need to describe the self-adjoint
domain by some conditions. We assume singular endpoint a = 0 in a limit circle case fur-
ther. We use reference modes, i.e. two independent, real solutions R1,2 of the Schrödinger
equation for the same real eigenvalue

HR1,2 = ER1,2. (16)

Wronskian of these reference modes W [R1, R2] is constant and non-zero. Real eigenvalue E
is chosen arbitrarily and reference modes are not required to obey any boundary condition.
Essential fact is that limits W [ψ,R1,2]±0 are finite. We generalize the boundary vectors
Ψ,Ψ′ (5) and denote them Φ,Φ′

Φ =

 W [ψ,R1](0+)

W [ψ,R1](0−)

 , Φ′ =

 W [ψ,R2](0+)

−W [ψ,R1](0−)

 . (17)

It is proved that the condition

(U − I)Φ + iL0(U + I)Φ′ = 0, U ∈ U(2) (18)

provides required self-adjoint extensions [7].
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3 PT -symmetry

3.1 PT -symmetry, pseudo-Hermiticity, quasi-Hermiticity

Since 1998, when numerical studies of the Hamiltonian

H = − d2

dx2
+ ix3 (19)

showed that its spectrum is discrete, real, positive and bounded from below [12], the
PT -symmetric Hamiltonians have been intensively investigated. Operator P represents a
parity and T a complex conjugation

(Pψ)(x) = ψ(−x), (T ψ)(x) = ψ(x). (20)

PT -symmetric operator A satisfies

[A,PT ]ψ = 0 for all ψ ∈ Dom(A). (21)

It is straightforward and easy to show that eigenvalues of a PT -symmetric operator are
real or they form complex conjugate pairs.
PT -symmetric operators have often properties called pseudo-Hermiticity [13] and quasi-

Hermiticity [1].

Definition 12. Densely defined operator A acting on a Hilbert space H is called pseudo-
Hermitian, if there exists an operator η with properties

1. η ∈ B(H)

2. η∗ = η

3. ηA = A∗η.

Definition 13. Densely defined operator A acting on a Hilbert space H is called quasi-
Hermitian, if there exists an operator Θ with properties

1. Θ ∈ B(H)

2. Θ > 0

3. ΘA = A∗Θ.
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Relations between the terms PT -symmetry, pseudo- and quasi-Hermiticity are not
fully described yet. It is obvious that every quasi-Hermitian operator is pseudo-Hermitian,
however a converse is not true. The class of diagonalizable PT -symmetric operators is
composed of pseudo-Hermitian, which are often P-pseudo-Hermitian, i.e. η = P in the
definition. However, not every P-pseudo-Hermitian operator is PT -symmetric [13].

Quasi-Hermiticity is important property, because it allows us to define new scalar
product

〈·, ·〉Θ := 〈·,Θ·〉 (22)

and the quasi-Hermitian operator is a symmetric operator in this new scalar product.
Moreover the quasi-Hermitian operator may be self-adjoint (or extended to the self-adjoint)
and it may be considered as an observable.

Operator Θ is often called a ‘metric‘ in a physical literature. The problem of finding
and constructing of the Θ operator is partly solved for the class of operators having a
discrete, real and nondegenerate spectrum and the eigenfunctions form a biorthonormal
complete set [13]. If A is an operator of this class then metric operator may be found as
a sum

Θ :=
∑
n

cn〈ϕn, ·〉ϕn, (23)

where cn are arbitrary positive numbers and ϕn are eigenfunctions of A∗. The convergency
of the sum (23) is not obvious and it must be proved for particular case, as well as the
properties of Θ stated in the definition 13. Example of the closed formula of metric
obtained by (23) is given in [3].

3.2 PT -symmetric point interactions in one dimension

We consider one PT -symmetric point interaction at x = 0. Different point interactions
are described by boundary conditions at the origin. Specification of allowed boundary
conditions are given by following theorem [5].

Theorem 14. The family of PT -symmetric second derivative operators with point in-
teractions at the origin coincides with the set of restricitions of the second derivative
operator Lmax = − d2

dx2 , defined on AC2(R − {0}), to the domain of functions satisfying
the boundary conditions at the origin of one of the following two types
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1.  ψ(0+)

ψ′(0+)

 = B

 ψ(0−)

ψ′(0−)

 (24)

with the matrix B equal to

B = eiθ


√

1 + bceiφ b

c
√

1 + bce−iφ

 (25)

with the real parameters B ≥ 0, c ≥ −1/b3, θ, φ ∈ 〈0, 2π)

2.

h0ψ
′(0+) = h1e

iθψ(0+)

h0ψ
′(0−) = −h1e

−iθψ(0−)

(26)

with the real phase parameter θ ∈ 〈0, 2π) and with the parameter h= (h0, h1) taken
from the (real) projective space P1.

Boundary conditions of the first type are called connected, conditions of the second
type are called separated. We will deal only with connected boundary conditions further.

Although the authors [5] stated that these restricted operators are both PT -symmetric
and P-pseudo-Hermitian for the entire range of parameters, we show that P-pseudo-
Hermiticity is ensured only for θ = 0 (other ranges of parameters are preserved).

If we take ψ from Dom(L∗) (L is a restriction of Lmax), then with regard of the
definition of the adjoint operator the equality

〈ψ,Lϕ〉 = 〈L∗ψ,ϕ〉 (27)

must be satisfied for all ϕ ∈ Dom(L). When we express rhs and use integration by parts
and boundary conditions describing Dom(L) (24) we arrive at

ϕ′(0−)
[
ψ(0−)− ψ(0+)ei(φ−θ)

√
1 + bc− ψ′(0+)e−iθb

]
+

+ϕ(0−)
[
−ψ′(0−)− ψ(0+)e−iθc+ ψ′(0+)e−i(φ+θ)

√
1 + bc

]
= 0.

(28)
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Since boundary values of ϕ at x→ 0− may be chosen arbitrarily, we conclude that ψ must
fulfill

ψ(0−) = ψ(0+)ei(φ−θ)
√

1 + bc− ψ′(0+)e−iθb

ψ′(0−) = −ψ(0+)e−iθc+ ψ′(0+)e−i(φ+θ)
√

1 + bc.

(29)

If L is P-pseudo-Hermitian then L∗ = PLP and hence Dom(L∗) = PDom(L). Boundary
conditions corresponding to PDom(L) read

ψ(0−) = ψ(0+)ei(φ+θ)
√

1 + bc− ψ′(0+)eiθb

ψ′(0−) = −ψ(0+)eiθc+ ψ′(0+)e−i(φ−θ)
√

1 + bc.

(30)

Hence, the equality of the domains is satisfied only if θ = 0.
We rewrite boundary conditions (24) using boundary vectors Ψ,Ψ′ (5) so that the

description of PT -symmetric point interaction has the compatible form with self-adjoint
case

(UPT − I)Ψ + (UPT + I)Ψ′ = 0, (31)

where UPT corresponds to the original matrix B (25)

UPT =


(b−c)eiϕ+

√
1+bc(e2iϕ−1)

(b+c)eiϕ+
√

1+bc(e2iϕ+1)
2e(θ+ϕ)

(b+c)eiϕ+
√

1+bc(e2iϕ+1)

2e(−θ+ϕ)

(b+c)eiϕ+
√

1+bc(e2iϕ+1)

(b−c)eiϕ−
√

1+bc(e2iϕ−1)

(b+c)eiϕ+
√

1+bc(e2iϕ+1).

 (32)
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4 Point interactions with SUSY

We investigate PT -symmetric model on finite interval (−l, l) with two point interactions
and determine a class of models compatible with supersymmetry. At first we summarize
results of [4] dealing with self-adjoint setting.

4.1 Self-adjoint point interactions with SUSY

We consider two point interactions at x = 0 and x = l. Point interactions are specified by
(4) for Ψ(0),Ψ(l). We use the parametrization of U in a form (6)

Ug(θ+, θ−) at x = 0, Ug(θ̄+, θ̄−) at x = l. (33)

In order to express boundary conditions at x = ±0,±l in more convenient way we introduce
operators P,Q,R

(Pψ)(x) := ψ(−x), (Rψ)(x) := (ϑ(x)− ϑ(−x))ψ(x), Q := −iRP, (34)

where ϑ is a Heaviside step function. We label the operators P1 ≡ P, P2 ≡ Q, P3 ≡ R.
The set of these operators forms an algebra of Pauli matrices, i.e.

[Pl,Pm] = 2iεlmnPn,

{Pl,Pm} = 2δlmI.

(35)

Next we introduce operator G associated to g = ~α.~σ

G := ~α. ~P, (36)

obeying G2 = I, G∗ = G. It allows us to decompose function ψ into two eigenfunctions of
G

ψ± :=
1
2

(I ± G)ψ, ψ = ψ+ + ψ−, Gψ± = ±ψ±. (37)
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We may show by straightforward calculations that boundary conditions (4) at x = 0 and
x = l for different (θ+, θ−), (θ̄+, θ̄−), read

sin θ+
2 ψ+(0+) + L0 cos θ+2 ψ

′
+(0+) = 0, sin θ−

2 ψ−(0+) + L0 cos θ−2 ψ
′
−(0+) = 0,

sin θ+
2 ψ+(0−)− L0 cos θ+2 ψ

′
+(0−) = 0, sin θ−

2 ψ−(0−)− L0 cos θ−2 ψ
′
−(0−) = 0,

sin θ̄+
2 ψ+(+l) + L0 cos θ̄+2 ψ

′
+(+l) = 0, sin θ̄−

2 ψ−(+l) + L0 cos θ̄−2 ψ
′
−(+l) = 0,

sin θ̄+
2 ψ+(−l)− L0 cos θ̄+2 ψ

′
+(−l) = 0, sin θ̄−

2 ψ−(−l)− L0 cos θ̄−2 ψ
′
−(−l) = 0.

(38)

We restrict values of (θ+, θ−), (θ̄+, θ̄−) to those which allows supersymmetric Hamil-
tonian,i.e. it is written in terms of supercharge Q, H = 2Q2. Hence supercharge Q is
expected to be proportional to the derivative, Q ∝ d

dx . The basic property of supercharge
is that if ϕ is an eigenfunction of H then Qϕ is also eigenfunction of H corresponding to
the same eigenvalue (or Qϕ = 0). However, for general boundary conditions (38) it is not
guaranteed that Qϕ satisfies (38) although φ does.

We take an eigenfunction ϕ of H

Hϕ = Eϕ (39)

and denote χ ≡ Qϕ. Since supercharge is proportional to derivative boundary values of χ
are related to those of ϕ′

Ψχ(0) ≡

 χ(0+)

χ(0−)

 = M

 ϕ′(0+)

−ϕ′(0−)

 , (40)

where M is an invertible matrix. ϕ is an eigenfunction of H, hence ϕ′′ is proportional to
ϕ and

Ψ′χ(0) ≡

 χ′(0+)

−χ′(0−)

 = EM̃

 ϕ(0+)

ϕ(0−)

 , (41)

where M̃ is an invertible matrix again. When we combine (4),(40),(41) we arrive at

(U − I)M̃−1Ψ′χ(0) + iEL0(U + I)M−1Ψχ(0) = 0. (42)
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Boundary conditions have to be energy independent and Ψχ, Ψ′χ are not zero vectors
simultaneously. Therefore (U ± I) must be singular matrix, i.e. eigenvalues of U are ±1.
This constraint restricts general form of U (6) to

U = Ug(π, 0) = exp
{
i
π

2
(I + ~α.~σ)

}
, ~α2 = 1. (43)

Thus connection conditions may be expressed explicitly for ψ± (38)

type A : ψ+(0+) = ψ′−(0−) = 0 type B : ψ′+(0+) = ψ−(0−) = 0

ψ+(l) = ψ′−(−l) = 0 ψ′+(l) = ψ−(−l) = 0

(44)

where type B conditions are given by replacing ~α by ~−α.
We consider two nonequivalent models (A,A) and (A,B), i.e. boundary conditions of

the type A at both x = 0 and x = l for (A,A) and of the type A at x = 0 and of the type
B at x = l for (A,B). Remaining possibilities are equivalent to the previous ones [4].

4.1.1 Model of the type (A,A)

Connection conditions are given by

ψ+(0+) = ψ′−(0−) = ψ+(l) = ψ′−(−l) = 0. (45)

The eigenfunctions of H are found as

ψn+(x) = Cn

(
ϑ(x)− ϑ(−x)α1+iα2

1+α3

)
sin(nπl x), n ∈ N

ψn−(x) = Cn

(
ϑ(x)− ϑ(−x)α1+iα2

1−α3

)
cos(nπl x), n ∈ N0,

(46)

where Cn are normalization constants. Since H commutes with G these eigenfunctions
where found as eigenfunctions of G as well

Gψ± = ±ψ±. (47)

Energy eigenvalues read

En =
(nπ
l

)2
, n ∈ N0. (48)

Energy levels are doubly degenerate except of E0.

16



4.1.2 Model of the type (A,B)

Connection conditions are given by

ψ+(0+) = ψ′−(0−) = ψ′+(l) = ψ−(−l) = 0. (49)

The eigenfunctions of both H and G are found as

ψn+(x) = Cn

(
ϑ(x)− ϑ(−x)α1+iα2

1+α3

)
sin( (n−1)π

2l x), n ∈ N

ψn−(x) = Cn

(
ϑ(x)− ϑ(−x)α1+iα2

1−α3

)
cos( (n−1)π

2l x), n ∈ N,
(50)

where Cn are normalization constants. Energy eigenvalues are doubly degenerate for all
levels (unlike for the (A,A) type)

En =
(

(n− 1)π
2l

)2

, n ∈ N. (51)

Degeneracy of levels was expected with regard of requiring connection conditions to
be compatible with supersymmetry. The existence of supersymmetry (however broken in
the (A,B) type) is confirmed by following construction of supercharges satisfying

{Qa, Qb} = Hδab

Q∗a = Qa, a, b ∈ {1, 2}.
(52)

Supercharge Qa should be proportional to derivative d
dx and map Qaψ± ∝ ψ∓, i.e. it

should exchange eigenfunctions of G and therefore anticommute with G

{Qa,G} = 0, a, b ∈ {1, 2}. (53)

It can be easily shown [4] that supercharges Qa have form

Qa = i

√
2

2
GaP3

d

dx
, a, b ∈ {1, 2}, (54)

where
Ga = ~γa. ~P, (~γa)2 = 1 and ~γa.~α = ~γ1.~γ2 = 0. (55)
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4.2 PT -symmetric point interactions with SUSY

We consider a similar model as previous one with two point interactions at x = 0 and x = l,
however the point interactions are PT -symmetric. PT -symmetric point interactions are
given by boundary conditions (31) which are similar to the self-adjoint case, nevertheless
matrix U (32) is not unitary. In order to receive a system compatible with supersymmetry
we follow almost the same procedure (40,41,42) as before and obtain suitable boundary
conditions. General U matrix (32) with parameters b, c,Θ, ϕ is restricted to

UPT =

 i tanϕ eiθ

cosϕ

e−iθ

cosϕ −i tanϕ

 . (56)

We denote
β1 := − cos θ

cosϕ
, β2 :=

sin θ
cosϕ

, β3 := −i tanϕ (57)

and we see
~β2 = 1, β1,2 ∈ R, β3 ∈ iR. (58)

The UPT matrix has very similar form as U matrix in self-adjoint case fortunately(43)
(although these matrices are very different without SUSY constraint),

UPT =

 −β3 −β1 + iβ2

−β1 − iβ2 β3

 , U =

 −α3 −α1 + iα2

−α1 − iα2 α3

 . (59)

This fact allows us to generalize previous results of self-adjoint case to the PT -symmetric
one

UPT = exp
{
i
π

2
(I + ~β.~σ

}
), G := ~β. ~P. (60)

Properties of G are slightly changed

G2 = I,G∗ 6= G, [G,PT ] = 0, (61)

however we may decompose any function ψ to ψ± as before (37). Boundary conditions
expressed in terms of ψ± have very similar explicit form as (44). Hence we arrive at
two nonequivalent models of the type (A,A) and (A,B). We prove that both models are
quasi-Hermitian.

18



4.2.1 Model of the type (A,A)

Eigenvaules of H are the same as in self-adjoint case, eigenfunctions differ only in substi-
tuting α→ β, i.e.

ψn+(x) = Cn

(
ϑ(x)− ϑ(−x)β1+iβ2

1+β3

)
sin(nπl x), n ∈ N

ψn−(x) = Cn

(
ϑ(x)− ϑ(−x)β1+iβ2

1−β3

)
cos(nπl x), n ∈ N0.

(62)

Supercharges are given by (54) again,

Qa =
√

2
2
GaP3i

d

dx
, a, b ∈ {1, 2}, (63)

where
Ga = ~γa. ~P, (~γa)2 = 1 and ~γa.~β = ~γ1.~γ2 = 0. (64)

Metric operator for this model reads

Θ = I − β3

β1 + iβ2
P+P +

β3

β1 − iβ2
P−P, (65)

where P± are orthogonal projectors

(P±ψ)(x) = ϑ(±x)ψ(x), (P±)2 = P± = (P±)∗, P+P− = P−P+ = 0. (66)

We prove all properties of a metric operator (definition 13. Θ is a bounded operator.

‖Θ‖ ≤ ‖I‖+
∣∣∣∣ β3

β1 + iβ2

∣∣∣∣ ‖P+‖‖P‖+
∣∣∣∣ β3

β1 − iβ2

∣∣∣∣ ‖P−‖‖P‖ ≤ 1 + 1 + 1, (67)

∣∣∣∣ β3

β1 + iβ2

∣∣∣∣ < 1. (68)

Θ is self-adjoint. When we take the adjoint

Θ∗ = I − −β3

β1 − iβ2
PP+ +

−β3

β1 + iβ2
PP−, (69)

we arrive at Θ∗ = Θ since

PP± = P∓P, β1,2 ∈ R, β3 ∈ iR, (~β)2 = 1. (70)
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Θ is positive.

〈ψ,Θψ〉 = ‖ψ‖2 − β3

β1+iβ2

∫ l
0 ψ(x)ψ(−x)dx+ β3

β1−iβ2

∫ 0
−l ψ(x)ψ(−x)dx ≥

≥ ‖ψ‖2 −
∣∣∣ β3

β1+iβ2

∣∣∣∣∣∣Int∣∣∣∣∣∣1− β1−iβ2

β1+iβ2

Int
Int

∣∣∣, (71)

where

Int :=
∫ l

0
ψ(x)ψ(−x)dx (72)

|Int| ≤
∫ l

0
|ψ(x)||ψ(−x)|dx ≤ 1

2

∫ l

0
|ψ(x)|2 + |ψ(−x)|2 dx ≤ 1

2
(
‖P+ψ‖2 + ‖P−ψ‖2

)
≤ 1

2
‖ψ‖2.

(73)
These estimates yield all together

〈ψ,Θψ〉 ≥

(
1− |β3|√

1 + |β3|2

)
︸ ︷︷ ︸

c0

‖ψ‖2 ≥ 0. (74)

Moreover
〈ψ,Θψ〉 ≥ c0‖ψ‖2, c0 > 0 ⇒ 0 /∈ σ(Θ), (75)

hence Θ is invertible and Θ−1 is bounded.
Finally, it is necessary to verify equality of the domains ΘA = A∗Θ, i.e. ΘDom(H) =

Dom(H∗). Equality of the action of operators is obvious. Dom(H) is described by bound-
ary conditions (45) expressed in terms of ψ±. Boundary conditions for Dom(H∗) may be
easily obtained from the definition of adjoint operator (1), explicitly

Dom(H) :

(β1 + iβ2)ψ(0+) + (1− β3)ψ(0−) = 0, (β1 + iβ2)ψ(l) + (1− β3)ψ(−l) = 0,

(β1 + iβ2)ψ′(0+) + (1 + β3)ψ′(0−) = 0, (β1 + iβ2)ψ′(l) + (1 + β3)ψ′(−l) = 0,

Dom(H∗) :

(β1 + iβ2)ψ(0+) + (1 + β3)ψ(0−) = 0, (β1 + iβ2)ψ(l) + (1 + β3)ψ(−l) = 0,

(β1 + iβ2)ψ′(0+) + (1− β3)ψ′(0−) = 0, (β1 + iβ2)ψ′(l) + (1− β3)ψ′(−l) = 0.

(76)
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It is straightforward to calculate limits (for ±l analogously)

(Θψ)(0+) = ψ(0+)− β3

β1+iβ2
ψ(0−)

(Θψ)(0−) = ψ(0−) + β3

β1−iβ2
ψ(0+)

(77)

and check that Θψ satisfies boundary conditions for Dom(H∗).
Construction of Θ operator is based on decomposition of a vector into the orthonormal

basis and Parseval equality. When we express sum (23), we may identify particular parts
with appropriate operators (65) since

{
An sin

(
nπ
l x
)}∞

n=1
,
{
An cos

(
nπ
l x
)}∞

n=0
,

A0 = 1√
2l
, An = 1√

l
for n ∈ N

(78)

form the orthonormal bases of both L2(−l, 0) and L2(0, l).
All requirements imposed on metric operator (definition 13) are satisfied and therefore

Hamiltonian H is quasi-Hermitian. Since Θ is invertible it is not difficult to show that H
is a self-adjoint operator in a Hilbert space with 〈·,Θ·〉 scalar product.

4.2.2 Model of the type (A,B)

We summarize analogous results for the model of the type (A,B). Eigenfunctions and
eigenvalues read

ψn+(x) = Cn

(
ϑ(x)− ϑ(−x)β1+iβ2

1+β3

)
sin( (n−1)π

2l x),

ψn−(x) = Cn

(
ϑ(x)− ϑ(−x)β1+iβ2

1−β3

)
cos( (n−1)π

2l x),

En =
(

(2n−1)π
2l

)2
, n ∈ N.

(79)

Supercharges have the same form as in previous model (63), however zero energy state
is missing. Hamiltonian is quasi-Hermitian again, metric operator has more complicated
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form

Θ = P+(O1 +O2)P+ + P−(O1 +O2)P− − β1−iβ2

1+β3
P+O1P

− − β1+iβ2

1−β3
P−O1P

+−

−β1−iβ2

1−β3
P+O2P

− − β1+iβ2

1+β3
P−O2P

+,

(80)

where P± are the same projectors as in previous model (66) and O1,2 are projectors given
by action on orthonormal bases {en}∞n=0, {fn}∞n=1 of L2(−l, l)

e0(x) = 1√
2l
, e2k−1(x) = 1√

l
sin (2k−1)π

2l x, e2k(x) = 1√
l
cos kπl x

f2k−1(x) = 1√
l
cos (2k−1)π

2l x, f2k(x) = 1√
l
sin kπ

l x

(81)

O1e2k = 0, O1e2k−1 = e2k−1,

O2f2k = 0, O2f2k−1 = f2k−1,

O2
1 = O1 = O∗1, O2

2 = O2 = O∗2.

(82)
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5 Scarf I potential

We consider Hamiltonian on finite interval (−π
2 ,

π
2 ) with so called Scarf I potential [6],

with both singular ends

V (x) =
(
α2 + β2

2
− 1

4

)
1

cos2 x
+
α2 − β2

2
sinx
cos2 x

, α, β ≥ 0. (83)

We define usual operators Hmax and Hmin acting on H = L2(−π
2 ,

π
2 ) with the domains

Dom(Hmax), Dom(Hmin) (10,11). We describe Ker(H∗min − i) in order to specify the
deficiency indices depending on parameters α, β. The Schrödinger equation Hψ = Eψ

reads

−z(1− z) ψ′′(z)− 1− 2z
2

ψ′(z) +
1 + 4(z − 1)α2 − 4zβ2

16z(z − 1)
ψ(z) = k2ψ(z), (84)

after the substitution
z =

1− sinx
2

, E = k2. (85)

Another substitution
ψ(z) = z

1
4
−α

2 (1− z)
1
4

+β
2ϕ(z) (86)

leads to

4z(z − 1)ϕ′′(z) + 4 [α− 1 + z(2− α+ β)]ϕ′(z) +
[
(1− α+ β)2 − 4k2

]
ϕ(z) = 0. (87)

Two linear independent solutions ϕ1, ϕ2 are given in the form of hypergeometric functions

ϕ1(z) = F
(
−α+β+1

2 − k, −α+β+1
2 + k; 1− α, z

)
ϕ2(z) = zαF

(
α+β+1

2 − k, α+β+1
2 + k; 1 + α, z

)
,

(88)

and for the previous function ψ

ψ1(z) = z
1
4
−α

2 (1− z)
1
4

+β
2 F
(
−α+β+1

2 − k, −α+β+1
2 + k; 1− α, z

)
ψ2(z) = z

1
4

+α
2 (1− z)

1
4

+β
2 F
(
α+β+1

2 − k, α+β+1
2 + k; 1 + α, z

)
.

(89)

A behaviour of the solutions ψi at z = 0, i.e. x = π
2 , is given only by the prefactors,

however the hypergeometric function has to be taken into the consideration at z = 1,
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x = −π
2 x = π

2 x = ±π
2

Finite Dom(Hmax) Finite Dom(Hmax) Finite Dom(Hmax)

ψ1 0 < β < 1
2 0 < β < 1 0 < α < 1

2 0 < α < 1 0 < α < 1
2 0 < α < 1

0 < β < 1
2 0 < β < 1

ψ2 0 < β < 1
2 0 < β < 1 0 < α 0 < α 0 < α 0 < α

0 < β < 1
2 0 < β < 1

Table 1: The behaviour of solutions at endpoints

i.e. x = −π
2 , as well. We summarize the properties of the solutions for the case that

hypergeometric functions do not degenerate to polynomial.
The special values of parameters (α, β ∈

{
0, 1

2 , 1
}

) are excluded. Since the case k2 = i

is characterized by these non polynomial solutions, we may determine the deficiency indices
easily.

n±

0 0 < α, β > 1,

1 α > 1, 0 < β < 1 ψ2 ∈ Dom(Hmax)

2 0 < α < 1, 0 < β < 1 ψ1,2 ∈ Dom(Hmax)

Table 2: Deficiency indices

5.1 Case n± = 0

Operator Hmin is essentially self-adjoint in the range of parameters 0 < α, β > 1, both
ends are in a limit point case. Moreover, H∗min = Hmax and Hmin is closed in the entire
range of parameters. Therefore

Hmin = Hmin = H∗min = Hmax ≡ H0 (90)

in this case. Every eigenfunction for real eigenvalue has to belong to Dom(Hmin) =
Dom(Hmax) ≡ Dom(H0). Solutions of Schrödinger equation ψ1,2 are square integrable
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only if the hypergeometric functions degenerates to the polynomials, i.e.

k =
1− α+ β

2
+ n, k =

1 + α+ β

2
+ n, n ∈ N0. (91)

The eigenfunctions ψ(1,2)
n belonging to energies E(1,2)

n may be expressed in the terms of
Jacobi polynomials

ψ
(1)
n (z) = C

(1)
n z

1
4
− 1
α (1− z)

1
4

+ 1
βP

(−α,β)
n (1− 2z)

ψ
(2)
n (z) = C

(2)
n z

1
4

+ 1
α (1− z)

1
4

+ 1
βP

(α,β)
n (1− 2z)

(92)

E(1)
n =

(
1− α+ β

2
+ n

)2

, E(2)
n =

(
1 + α+ β

2
+ n

)2

, n ∈ N0, (93)

where C(1,2)
n are normalization constants, P (±α,β)

n are Jacobi polynomials. We see that the
square integrability of ψ(1)

n is ensured only for α < 1.

En ψn

0 < α < 1 E
(1)
n , E

(2)
n ψ

(1)
n , ψ

(2)
n ∈ Dom(H0)

1 < α E
(2)
n ψ

(2)
n ∈ Dom(H0)

Table 3: Eigenvalues and eigenfunctions for n± = 0 case

Eigenfunctions ψ(2)
n are regular for all considered values of parameters α, β and they

vanish at the both ends, i.e. z = 0, 1. However, ψ(1)
n may go to infinity at z = 0 end for

α > 1
2 .

5.2 Case n± = 1

Although a method of reference modes can be applied in this case (endpoint x = π/2 is in a
limit point case, x = −π/2 in a limit circle case) we refer to the theorem 4 only. Deficiency
subspaces Ker(H∗min ∓ i) are characterized by the functions Φ(±) that correspond to the
solutions ψ2 (89) and k2 = ±i.

φ(+)(z) = z
1
4

+α
2 (1− z)

1
4

+β
2 F
(
α+β+1

2 −
√
i, α+β+1

2 +
√
i; 1 + α, z

)
φ(−)(z) = z

1
4

+α
2 (1− z)

1
4

+β
2 F
(
α+β+1

2 −
√
−i, α+β+1

2 +
√
−i; 1 + α, z

)
.

(94)
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It follows from Φ(+) = Φ(−) that the norms of these functions are equal

‖φ(+)‖ = ‖φ(−)‖. (95)

Operator U : Ker(H∗min − i) → Ker(H∗min + i) : Φ(+) 7→ eiτΦ(−), τ ∈ 〈0; 2π) is therefore
norm preserving and it describes the domain self-adjoint extensions of Hmin

Dom(HU ) = {ψ + Cφ(+) + eiΘCφ(−) | ψ ∈ Dom(Hmin), C ∈ C.} (96)

5.3 Case n± = 2

Both endpoints are in a limit circle case. We apply the reference modes method. Reference
modes are chosen as the solutions of (16) with E = E

(1)
1 (92, 89), i.e.

R1(x) = (1− sinx)
1
4
−α

2 (1 + sinx)
1
4

+β
2

R2(x) = (1− sinx)
1
4

+α
2 (1 + sinx)

1
4

+β
2 F
(
α, 1 + β; 1 + α, 1−sinx

2

)
.

(97)

Their Wronskian W [R1, R2](x) may be determined explicitly

W [R1, R2](x) = −21+βα (98)

what is obviously a non-zero constant as it should be. We calculate generalized boundary
vectors Φ,Φ′ (17) for general linear combination of solutions (89) and selected reference
modes.

ψ(x) = C1ψ1(x) + C2ψ2(x),

ψ1(x) = (1− sinx)
1
4
−α

2 (1 + sinx)
1
4

+β
2 F
(
−α+β+1

2 − k, −α+β+1
2 + k; 1− α, 1−sinx

2

)
,

ψ2(x) = (1− sinx)
1
4

+α
2 (1 + sinx)

1
4

+β
2 F
(

+α+β+1
2 − k, +α+β+1

2 + k; 1 + α, 1−sinx
2

)
.

(99)

Explicit forms of Wronskians W [ψ,R1,2] expressed in the z variable are

W [ψ,R1](z) = C1W11(z) + C2W12(z),

W [ψ,R2](z) = C1W21(z) + C2W22(z),

(100)
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W11(z) = 2β−α−1

1−α (1− z)β+1z1−α ((1− α+ β)2 − 4k2
)
×

×F
(

3−α+β
2 − k, 3−α+β

2 + k; 2− α, z
)
,

W12(z) = 2β−1

1+α (1− z)β+1[4α(1 + α)F
(

1+α+β
2 − k, 1+α+β

2 + k; 1 + α, z
)

+

+z
(
(1 + α+ β)2 − 4k2

)
F
(

3+α+β
2 − k, 3+α+β

2 + k; 2 + α, z
)

]

W21(z) = −2β+1αF
(

1−α+β
2 − k, 1−α+β

2 + k; 1− α, z
)

+

+2β−1

1−α (1− z)β+1z
(
(1− α+ β)2 − 4k2

)
F (α, 1 + β; 1 + α, z)×

×F
(

3−α+β
2 − k, 3−α+β

2 + k; 2− α, z
)

W22(z) = 2α+β−1zα[4α
(
(1− z)β+1F (α, 1 + β; 1 + α, z)− 1

)
×

×F
(

1+α+β
2 − k, 1+α+β

2 + k; 1 + α, z
)

+ 1
1+α(1− z)β+1z

(
(1 + α+ β)2 − 4k2

)
×

×F (α, 1 + β; 1 + α, z)F
(

3+α+β
2 − k, 3+α+β

2 + k; 2 + α, z
)

].

(101)

Limits at z → 0+ are easier to calculate and results are simple

W [ψ,R1](0+) = 21+βαC2

W [ψ,R2](0+) = −21+βαC2.

(102)

On the other hand, calculation of the limits at z → 1− is much more difficult and the
results are much more complicated as well

W [ψ,R1](1−) = C1W11(1−) + C2W12(1−)

W [ψ,R2](1−) = C1W21(1−) + C2W22(1−),

(103)
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W11(1−) = 21−α+βΓ[1−α]Γ[1+β]

Γ[ 1−α+β
2
−k]Γ[ 1−α+β

2
+k]

,

W12(1−) = 21+βΓ[1+α]Γ[1+β]

Γ[ 1+α+β
2
−k]Γ[ 1+α+β

2
+k]

,

W21(1−) = 21+βα

(
Γ[1−α]Γ[−β]

Γ[ 1−α−β
2
−k]Γ[ 1−α−β

2
+k]

+ π2

sin(πα) sin(πβ)Γ[α−β]Γ[ 1−α+β
2
−k]Γ[ 1−α+β

2
+k]

)
,

W22(1−) = 22+βΓ[2+α]Γ[1−β]
(1+α)2β

(
((1+α+β)2−4k2)Γ[2+α]Γ[1+β]

Γ[α−β]Γ[ 1−α+3β
2

−k]Γ[ 1−α+3β
2

+k]
− 4α(1+α)

Γ[ 1+α−β
2
−k]Γ[ 1+α−β

2
+k]

)
.

(104)

If we insert the generalized boundary vectors into the condition (18) and search for
non-trivial solutions, we receive the condition for eigenvalues.
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6 Conclusions

In the first part of our results we found models with two PT -symmetric point interactions
compatible with supersymmetry. Supersymmetry allows only ’very weak’ interactions both
in self-adjoint and PT -symmetric case. The PT -symmetric models are exactly solvable
and their properties turned out to be close to the self-adjoint case - same eigenvalues and
only slightly changed eigenfunctions. Moreover, we showed that both of PT -symmetric
models are quasi-Hermitian and we constructed positive and bounded metric operator Θ
(in the closed formula form). Possible generalization to higher numbers of interactions
seems to be straightforward, although the feasibility of used method to construct the
metric depends significantly on the structure of eigenfunctions of the Hamiltonian. If
the ’almost separated’ form (62) is preserved (particularly for the (A,A) types of models)
then other examples of not very complicated formulas for metric operators may be found
analogously to presented results. During our calculations we had to correct the result of
[5] concerning the P-pseudo-Hermiticity of a Hamiltonian with one PT -symmetric point
interaction.

In the second part we classified the endpoints of singular Scarf I potential, we de-
termined dependence of indices of deficiency on parameters α, β giving different settings
potential and we described self-adjoint extensions of the Hamiltonian for all three possible
cases. The results show that prescribing of boundary conditions for the functions in the
self-adjoint domain may be correct only in the essentially self-adjoint case. The domains
for the other cases may be specified by boundary conditions given for limits of Wronskians
(with selected reference modes). The explicit calculations containing the condition for
eigenvalues are presented for n± = 2 case. Since the self-adjoint case has already showed
the non-trivial structure of the domains the PT -symmetric extension have to be described
carefully. This part of the work should serve as the initial step to answering the questions
stated in [6] for both self-adjoint and PT -symmetric case.
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