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Abstract. Let 1 < p ≤ q < +∞ and let v, w be weights on (0, +∞) satisfying:

(?) v(x)xρis equivalent to a non-decreasing function on (0, +∞)

for some ρ ≥ 0;

[w(x)x]1/q ≈ [v(x)x]1/p for all x ∈ (0, +∞).

We prove that if the averaging operator (Af)(x) := 1
x

R x
0 f(t) dt, x ∈ (0, +∞),

is bounded from the weighted Lebesgue space Lp((0, +∞); v) into the weighted

Lebesgue space Lq((0, +∞); w), then there exists ε0 ∈ (0, p− 1) such that the

operator A is also bounded from the space Lp−ε((0, +∞); v(x)1+δxγ) into

the space Lq−εq/p((0, +∞); w(x)1+δxδ(1−q/p)xγq/p) for all ε, δ, γ ∈ [0, ε0).
Conversely, assuming that the operator

A : Lp−ε((0, +∞); v(x)1+δxγ)→ Lq−εq/p((0, +∞); w(x)1+δxδ(1−q/p)xγq/p)

is bounded for some ε ∈ [0, p−1), δ ≥ 0 and γ ≥ 0, we prove that the operator
A is also bounded from the space Lp((0, +∞); v) into the space Lq((0, +∞); w).

In particular, our results imply that the class of weights v for which (?)

holds and the operator A is bounded on the space Lp((0, +∞); v) possesses
similar properties to those of the Ap-class of B. Muckenhoupt.

1. Introduction

Let 1 < p < +∞ and let v be a weight on (0,+∞), i.e., a measurable func-
tion which is positive a.e. on (0,+∞). By Lp(v) ≡ Lp((0,+∞); v) we denote the
weighted Lebesgue space of all measurable functions f on (0,+∞) for which the
norm

‖f‖p,v =
(∫ +∞

0

|f(x)|pv(x) dx
)1/p

is finite.
We shall consider one of very important operators in the mathematical analysis,

the averaging operator A defined by

(Af)(x) :=
1
x

∫ x

0

f(t) dt, x ∈ (0,+∞).

It is well known (see [B] or [OK]) that if 1 < p < +∞ and w, v are weights on
(0,+∞), then the averaging operator A : Lp(v) → Lq(w) is bounded if and only if

(1) B := sup
r>0

(∫ +∞

r

w(t)t−q dt
)1/q (∫ r

0

v(t)1−p′ dt
)1/p′

< +∞,

where p′ = p/(p− 1).
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Throughout the paper we use the following convention: For two non-negative
expressions (i.e. functions or functionals) F and G the symbol F . G (or F & G)
means that F ≤ cG (or cF ≥ G), where c is a positive constant independent of
appropriate quantities involved in F and G. We shall write F ≈ G (and say that
F and G are equivalent) if both relations F . G and F & G hold.

Our main results are the following two theorems.

Theorem 1. Let 1 < p ≤ q < +∞ and let v, w be weights on (0,+∞) such that:

(2) v(x)xρ is equivalent to a non-decreasing function on (0,+∞) for some ρ ≥ 0;

(3) [w(x)x]1/q ≈ [v(x)x]1/p for all x ∈ (0,+∞).

Assume that the averaging operator A : Lp(v) → Lq(w) is bounded. Then there
exists ε0 ∈ (0, p− 1) such that the operator

A : Lp−ε(v(x)1+δxγ) → Lq−εq/p(w(x)1+δxδ(1−q/p)xγq/p)

is also bounded for all ε, δ, γ ∈ [0, ε0).

Theorem 2. Let 1 < p ≤ q < +∞ and let v, w be weights on (0,+∞) such that
(2) and (3) hold. Assume that the averaging operator

A : Lp−ε(v(x)1+δxγ) → Lq−εq/p(w(x)1+δxδ(1−q/p)xγq/p)

is bounded for some ε ∈ [0, p−1), δ ≥ 0 and γ ≥ 0. Then the operator A : Lp(v) →
Lq(w) is also bounded.

Remark 1. Assumptions of Theorem 1 (or Theorem 2) ensure that(∫ +∞

r

w(t)t−q dt
)1/q (∫ r

0

v(t)1−p′ dt
)1/p′

≈ 1 for all r > 0,

which means that (w, v) is the optimal couple of weights for which (1) holds.
Note also that assumption (3) is satisfied when w = v and q = p.

Theorem 1 is a particular case of the following assertion.

Theorem 3. Let 1 < p ≤ q < +∞ and let v, w be weights on (0,+∞) such that (2)
and (3) hold. Assume that the averaging operator A : Lp(v) → Lq(w) is bounded.
Then there exist p0 ∈ (1, p) and ε0 > 0 such that the operator

A : LP (v(x)1+δxγ) → LQ(w(x)1+δxδ(1−Q/P )xγQ/P )

is also bounded for all P ∈ (p0,+∞) and for every δ, γ ∈ [0, ε0), where Q = Pq/p.

Remark 2. If 1 < p < +∞ and v is a weight on (0,+∞), then we write v ∈Mp when
the averaging operator A is bounded on the space Lp(v), that is, when (1) holds
with q = p and w = v. Let Ap, 1 < p < +∞, be the Ap-class of B. Muckenhoupt
of those weights v on (0,+∞) for which the Hardy-Littlewood maximal operator
associated with the interval (0,+∞) is bounded on the space Lp(v). Recall that
Ap ⊂ Mp. Denote by Cp, 1 < p < +∞, the Cp-class of Calderón (introduced in
[BMR]) of those weights v on (0,+∞) for which both the operator A and its adjoint
operator A′ are bounded on the space Lp(v).

If (2) holds with ρ = 0, then v is equivalent to a non-decreasing function on
(0,+∞). It is known (cf. [CU, Theorem 6.1] or [CM, Proposition 2.3]) that a non-
decreasing weight v satisfies v ∈ Mp if and only if it belongs to the Ap-class.
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Moreover, it can be shown that a non-decreasing weight v from the class Mp also
belongs to the Cp-class. Since

v ∈ Ap =⇒ v ∈ Ap−ε for some ε ∈ (0, p− 1),

v ∈ Ap =⇒ v1+ε ∈ Ap for some ε > 0,

v ∈ Ap =⇒ v ∈ Aq for all q ∈ [p,+∞],

v ∈ Cp =⇒ v(x)xε ∈Mp for some ε > 0

(cf. [M] or [GR] for the first three implications, and [BMR, Proposition 2.4] for the
last one), Theorem 3 with ρ = 0 also follows from properties of weights v ∈ Ap∩Cp.
(This is clear if, in addition, p = q in Theorem 3. If p < q, one can show that it is
again true due to condition (3).)

On the other hand, there are weights in the Mp-class which satisfy (2) but which
do not belong to Ap ∩ Cp. A simple example is v(t) = tβ , t > 0, with β ≤ −1.
(Note that the weight v(t) = tβ , t > 0, with β ∈ R, belongs to the Ap-class or the
Cp-class if and only if −1 < β < p− 1. However, v belongs to the Mp-class if and
only if β < p− 1.)

Remark 3. Denote by Dp, 1 < p < +∞, the subset of the Mp-class consisting
of those weights v on (0,+∞) which satisfy condition (2). In particular, our re-
sults imply that the Dp-class possesses similar properties to those of the Ap-class.
Namely,

v ∈ Dp =⇒ v ∈ Dp−ε for some ε ∈ (0, p− 1),

v ∈ Dp =⇒ v1+ε ∈ Dp for some ε > 0,(4)

v ∈ Dp =⇒ v ∈ Dq for all q ∈ [p,+∞).

Moreover,
v ∈ Dp =⇒ v(x)xε ∈ Dp for some ε > 0.

It is well-known that a weight v ∈ Ap possesses a better integrability than
that mentioned in the Ap-condition and that such a weight v satisfies a reverse
Hölder inequality. Implication (4) shows that also a weight v ∈ Dp possesses better
integrability properties than those mentioned in the definition of the Dp-class (cf.
(1) with w = v and q = p). It is even possible to prove that certain reverse Hölder
inequalities hold for such a weight (cf. [O]).

The paper is organized as follows. In Section 2 we prove Theorem 1. Section 3
is devoted to the proof of Theorem 2. Finally, in Section 4 we prove Theorem 3.

Acknowledgement. We would like to thank Mario Milman for the information
concerning properties of Cp-weights.

2. Proof of Theorem 1

To prove Theorem 1, we shall use the following two assertions.

Lemma A (see [N, Lemma 2]). Let ϕ : (0,+∞) → (0,+∞). If there is a constant
c0 > 0 such that

(5)
∫ +∞

r

ϕ(t)
dt
t
≤ c0ϕ(r) for all r > 0,

then there exist positive constants α1 and c such that∫ +∞

r

ϕ(t)tα
dt
t
≤ cϕ(r)rα for all r > 0 and α ∈ [0, α1).



4 BOHUMÍR OPIC AND JIŘÍ RÁKOSNÍK

Remark 4. In fact, it is proved in [N] that the last inequality holds for all r > 0
and some α > 0. However, checking the proof of Lemma 2 in [N], one can see that
Lemma A holds, e.g., with α1 = (2c0)−1 (and then one can put c = 2c0), where c0
is the constant in (5).

Lemma A∗. Let ϕ : (0,+∞) → (0,+∞). If there is a constant c0 > 0 such that∫ r

0

ϕ(t)
dt
t
≤ c0ϕ(r) for all r > 0,

then there exist positive constants β1 and c such that∫ r

0

ϕ(t)t−β dt
t
≤ cϕ(r)r−β for all r > 0 and β ∈ [0, β1).

Proof. Lemma A∗ can be obtained from Lemma A by the change of variables t 7→
t−1. �

In addition, we shall also need the following lemma.

Lemma B. Let 1 < p ≤ q < +∞ and let v, w be weights on (0,+∞) such that (2)
and (3) hold. Assume that the averaging operator A : Lp(v) → Lq(w) is bounded.
Then there exists a positive constant α0 such that

(6)
∫ r

0

[v(t)tα]1−p′ dt ≈ [v(r)rα+1−p]1−p′

and

(7)
∫ +∞

r

w(t)tα−q dt ≈ w(r)rα+1−q

for all r > 0 and α ∈ [0, α0).

Proof. Assume that all the assumptions of Lemma B are satisfied. Since the func-
tion t 7→ v(t)tα+ρ, α ≥ 0, is equivalent to a non-decreasing function on (0,+∞),∫ r

0

[v(t)tα]1−p′ dt =
∫ r

0

[v(t)tα+ρ]1−p′tρ(p′−1) dt(8)

& [v(r)rα+ρ]1−p′
∫ r

0

tρ(p′−1) dt

≈ [v(r)rα+ρ]1−p′rρ(p′−1)+1

= [v(r)rα+1−p]1−p′ for all r > 0 and α ≥ 0.

Consequently, we obtain from (1), (8) (with α = 0) and (3) that

(9)
∫ +∞

r

w(t)t−q dt ≤ Bq(∫ r

0
v(t)1−p′ dt

)q/p′
- v(r)q/pr−q/p′ ≈ w(r)r1−q

for all r > 0. Setting ϕ(r) = w(r)r1−q, we can rewrite estimate (9) in the form∫ +∞

r

ϕ(t)
dt
t

. ϕ(r) for all r > 0.

Thus, by Lemma A, there exist constants α1 > 0 and c > 0 such that

(10)
∫ +∞

r

w(t)tα−q dt =
∫ +∞

r

ϕ(t)tα
dt
t
≤ cϕ(r)rα = cw(r)rα+1−q

for all r > 0 and α ∈ [0, α1).
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On the other hand, using (3) and the fact that the function t 7→ [v(t)tρ+1]q/ptα,
α ≥ 0, is equivalent to a non-decreasing function on (0,+∞), we arrive at∫ +∞

r

w(t)tα−q dt ≈
∫ +∞

r

[v(t)tρ+1]q/ptαt−ρq/p−q−1 dt(11)

% [v(r)rρ+1]q/prα

∫ +∞

r

t−ρq/p−q−1 dt

≈ [v(r)r]q/prαr−q

= w(r)rα+1−q for all r > 0 and α ≥ 0.

Thus, (10) and (11) imply that (7) holds for all r > 0 and α ∈ [0, α1).
Condition (1) and the first three estimates in (11) (with α = 0) yield∫ r

0

v(t)1−p′ dt ≤ Bp′(∫ +∞
r

w(t)t−q dt
)p′/q

(12)

-
1(

[v(r)r]q/pr−q
)p′/q

= v(r)1−p′r for all r > 0.

Rewriting (12) in terms of the function ψ(t) = v(t)1−p′t, t > 0, and applying
Lemma A*, we obtain that there are constants β1 > 0 and c1 > 0 such that

(13)
∫ r

0

v(t)1−p′t−β dt ≤ c1v(r)1−p′r1−β

for all r > 0 and β ∈ [0, β1). Setting α = β/(p′ − 1) and α2 = β1/(p′ − 1), we can
rewrite (13) in the form∫ r

0

[v(t)tα]1−p′ dt - [v(r)rα+1−p]1−p′

for all r > 0 and α ∈ [0, α2). Together with (8), this shows that (6) holds for all
r > 0 and α ∈ [0, α2).

Now, it suffices to put α0 = min{α1, α2}. �

Remark 5. On using (3), one can rewrite (7) as

(14)
∫ +∞

r

w(t)tα−q dt ≈ v(r)q/prα−q+q/p

for all r > 0 and α ∈ [0, α0).

Remark 6. Let all the assumptions of Lemma B be satisfied. Then the operator

A : Lp(v(x)xα) → Lq(w(x)xαq/p)

is also bounded for all α ∈ [0, α0 p/q). Indeed, making use of estimates (6) and (14)
(with α replaced by αq/p), we see that (1) holds with v(t) replaced by v(t)tα and
with w(t) replaced by w(t)tαq/p for all α ∈ [0, α0 p/q).

Proof of Theorem 1. Let the assumptions of Theorem 1 be satisfied. By (6) and
(7) (with α = 0), for all r > 0,

(15)
∫ r

0

v(t)1−p′ dt ≈ v(r)1−p′ r

and

(16)
∫ +∞

r

w(t)t−q dt ≈ w(r)r1−q.
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Take δ, γ ≥ 0, ε ∈ [0, p − 1) and put p(ε) := p − ε, q(ε) := q − εq/p. Clearly,
p(ε), p(ε)′ ∈ (1,+∞), p′ − p(ε)′ ≤ 0 and p(ε)/p = q(ε)/q = 1− ε/p. Thus,

κ :=
p′ − p(ε)′

1− p′
+ δ

1− p(ε)′

1− p′
≥ 0

and the function

t 7→
(∫ t

0

v(τ)1−p′ dτ
)κ

is non-decreasing on (0,+∞). Consequently, applying (15), we obtain

∫ r

0

[v(t)1+δtγ ]1−p(ε)′ dt =
∫ r

0

v(t)1−p′v(t)κ(1−p′)tγ(1−p(ε)′) dt(17)

≈
∫ r

0

v(t)1−p′
(
t−1

∫ t

0

v(τ)1−p′ dτ
)κ

tγ(1−p(ε)′) dt

≤
(∫ r

0

v(τ)1−p′ dτ
)κ ∫ r

0

v(t)1−p′t−κ+γ(1−p(ε)′) dt

≈ v(r)κ(1−p′)rκ

∫ r

0

[v(t)tα]1−p′ dt,

where

α ≡ α(ε, δ, γ)

:=
−κ+ γ(1− p(ε)′)

1− p′

=
p′ − p(ε)′

(1− p′)(p′ − 1)
+ δ

1− p(ε)′

(1− p′)(p′ − 1)
+ γ

1− p(ε)′

1− p′
≥ 0.

Since the function (ε, δ, γ) 7→ α(ε, δ, γ) is non-negative and continuous on the set
[0, p − 1) × [0,+∞) × [0,+∞) and α(0, 0, 0) = 0, there is ε1 ∈ (0, p − 1) such
that α(ε, δ, γ) ∈ [0, α0) provided that ε, δ, γ ∈ [0, ε1), where the number α0 is from
Lemma B. Therefore, (17) and (6) imply that∫ r

0

[v(t)1+δtγ ]1−p(ε)′ dt . v(r)(1+δ)(1−p(ε)′) rγ(1−p(ε)′)+1

for all r > 0 and ε, δ, γ ∈ [0, ε1). Hence,

(18)
(∫ r

0

[v(t)1+δtγ ]1−p(ε)′ dt
)1/p(ε)′

. v(r)−(1+δ)/p(ε) r−γ/p(ε) r1/p(ε)′

for all r > 0 and ε, δ, γ ∈ [0, ε1).

Applying (7) (with α = 0), the fact that the function t 7→
(∫ +∞

t
w(τ)τ−q dτ

)δ

tδ(1−q/p),
δ ≤ 0, is non-increasing on (0,+∞) and (14) (with α = 0), we get∫ +∞

r

w(t)1+δtδ(1−q/p)tγq/pt−q(ε) dt(19)

≈
∫ +∞

r

w(t)
(
tq−1

∫ +∞

t

w(τ)τ−q dτ
)δ

t(γ+ε)q/p−qtδ(1−q/p) dt

≤
(∫ +∞

r

w(τ)τ−q dτ
)δ

rδ(1−q/p)

∫ +∞

r

w(t)t(γ+ε)q/p+δ(q−1)−q dt

≈ [v(r)q/pr−q+q/p]δrδ(1−q/p)

∫ +∞

r

w(t)t(γ+ε)q/p+δ(q−1)−q dt.
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Now, using (14) (with (γ+ε)q/p+δ(q−1) instead of α) to estimate the last integral,
we arrive at

(20)
∫ +∞

r

w(t)t(γ+ε)q/p+δ(q−1)−q dt ≈ v(r)q/pr(γ+ε+1)q/p+δ(q−1)−q

for all r > 0 provided that (γ + ε)q/p+ δ(q− 1) ∈ [0, α0). Therefore, (19) and (20)
imply that

(21)
(∫ +∞

r

w(t)1+δtδ(1−q/p)tγq/pt−q(ε) dt
)1/q(ε)

- v(r)(1+δ)/p(ε) rγ/p(ε) r−1/p(ε)′

for all r > 0 and ε, δ, γ ∈ [0, ε2), where ε2 := min{α0 p/(3q), α0/(3(q − 1))}.
Putting ε0 = min{ε1, ε2} and using estimates (18) and (21) in (1) (with w(t),

v(t), q and p replaced by w(t)1+δtδ(1−q/p)tγq/p, v(t)1+δtγ , q(ε) and p(ε), respec-
tively), we obtain the desired result. �

3. Proof of Theorem 2

Assume that the assumptions of Theorem 2 are satisfied. Put p(ε) := p − ε

and q(ε) := q − εq/p. The Hölder inequality with the exponents (p(ε)′−1)(1+δ)
(p′−1) and

(p(ε)′−1)(1+δ)
(p(ε)′−1)(1+δ)−(p′−1) implies that, for all r > 0,

(22)
∫ r

0

v(t)1−p′ dt ≤
(∫ r

0

[v(t)1+δ]1−p(ε)′ dt
) p′−1

(p(ε)′−1)(1+δ)

r
(p(ε)′−1)(1+δ)−p′+1

(p(ε)′−1)(1+δ) .

Using the fact that the function t 7→ tγ(p(ε)′−1) is non-decreasing on the interval
(0,+∞), we obtain

(23)
∫ r

0

[v(t)1+δ]1−p(ε)′ dt ≤ rγ(p(ε)′−1)

∫ r

0

[v(t)1+δtγ ]1−p(ε)′ dt for all r > 0.

Fix ρ ≥ max{ρ(1 + δ) − γ, 0}. One can easily verify that (2) and (3) holds with
v(x)xρ, w(x), v(x), q and p replaced by (v(x)1+δxγ)xρ, w(x)1+δxδ(1−q/p)xγq/p,
v(x)1+δxγ , q(ε) and p(ε), respectively. Thus, we can apply Lemma B (with v(x)xρ,
w(x), v(x), q and p replaced by (v(x)1+δxγ)xρ, w(x)1+δxδ(1−q/p)xγq/p, v(x)1+δxγ ,
q(ε) and p(ε), respectively). Hence, taking α = 0 in (6) and (7), we obtain, for all
r > 0,

(24)
∫ r

0

[v(t)1+δtγ ]1−p(ε)′ dt ≈ [v(r)1+δrγ ]1−p(ε)′r

and

(25)
∫ +∞

r

w(t)1+δtδ(1−q/p)tγq/pt−q(ε) dt ≈ w(r)1+δrδ(1−q/p)rγq/pr1−q(ε).

Combining estimates (22)–(24), we arrive at

(26)
(∫ r

0

v(t)1−p′ dt
)1/p′

. v(r)−1/pr1/p′ for all r > 0.

On the other hand, Hölder’s inequality with the exponents 1 + δ and (1 + δ)/δ
gives∫ +∞

r

w(t)t−q dt ≤
(∫ +∞

r

w(t)1+δtδ(1−q/p)tγq/pt−q(ε) dt
) 1

1+δ (
r

q
p−

γq
δp−

εq
δp−q

) δ
1+δ

,

which, together with (25) and (3), implies that

(27)
(∫ +∞

r

w(t)t−q dt
)1/q

. w(r)1/qr−1/q′ ≈ v(r)1/pr−1/p′ for all r > 0.
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Estimates (26) and (27) used in (1) yield the desired result. �

4. Proof of Theorem 3

With respect to Theorem 1, it is sufficient to prove that the operator
A : LP (v(x)) → LQ(w(x)) is bounded if p < P < +∞ and Q/P = q/p.

Using the monotonicity of the function t 7→ tq−Q, t > 0, and (14) (with α = 0),
we obtain (∫ +∞

r

w(t)t−Q dt
)1/Q

≤
(
rq−Q

∫ +∞

r

w(t)t−q dt
)1/Q

≈
(
rq−Qv(r)q/pr−q+q/p

)1/Q

= v(r)1/P r−1/P ′
for all r > 0.

Moreover, the Hölder inequality (with the exponents 1−p′

1−P ′ and 1−p′

P ′−p′ ) and (6) (with
α = 0) imply that(∫ r

0

v(t)1−P ′
dt

)1/P ′

≤
(∫ r

0

v(t)1−p′ dt
) 1−P ′

(1−p′)P ′

r
P ′−p′

(1−p′)P ′

≈ [v(r)1−p′r]
1−P ′

(1−p′)P ′ r
P ′−p′

(1−p′)P ′

= v(r)−1/P r1/P ′
for all r > 0.

Consequently, the result follows from (1) (with p and q replaced by P and Q,
respectively). �
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Hölder inequalities. Preprint 187, IM ASCR, Prague, 2009.
[OK] B. Opic and A. Kufner, Hardy-type inequalities. Pitman Research Notes in Mathematics

Series 219, Longman Scientific & Technical, Harlow, 1990.
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