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ABSTRACT. Let 1 < p < ¢ < 400 and let v, w be weights on (0, +00) satisfying:
(*) v(z)x”is equivalent to a non-decreasing function on (0, +00)

for some p > 0;

[w(z)z]/? = [v(z)z]/P  for all x € (0, +00).
We prove that if the averaging operator (Af)(z) := % Jo f@)dt, x € (0,400),

is bounded from the weighted Lebesgue space LP((0, +00); v) into the weighted
Lebesgue space L4((0,+00); w), then there exists eg € (0,p — 1) such that the
operator A is also bounded from the space LP~%((0,4o00);v(x)'t%z7) into
the space LI759/P((0, +00); w(x) t025(1=a/P)x74/P) for all €,8,y € [0,e0).
Conversely, assuming that the operator

A LP72((0, +00); v(ax) T0zY) — LI759/P((0, +00); w(w) T2 (1 =a/P) gva/p)

is bounded for some ¢ € [0,p—1), § > 0 and v > 0, we prove that the operator
A is also bounded from the space LP ((0, +00); v) into the space L((0, +00); w).

In particular, our results imply that the class of weights v for which (%)
holds and the operator A is bounded on the space LP((0,+00);v) possesses
similar properties to those of the Ajp-class of B. Muckenhoupt.

1. INTRODUCTION

Let 1 < p < 400 and let v be a weight on (0, 4+00), i.e., a measurable func-
tion which is positive a.e. on (0,400). By LP(v) = LP((0,400);v) we denote the
weighted Lebesgue space of all measurable functions f on (0,400) for which the

norm
“+oo 1/p
v = P d
TR ( [ wr) x)
is finite.

We shall consider one of very important operators in the mathematical analysis,
the averaging operator A defined by

(Af)(z) == :117/0:6 f@)de, =z € (0,+00).

It is well known (see [B] or [OK]) that if 1 < p < 400 and w, v are weights on
(0, +00), then the averaging operator A : LP(v) — L9(w) is bounded if and only if

+oo 1/q r , 1/p’
(1) B :=sup (/ w(t)t™ 1 dt) (/ v(t)P dt> < +o0,
r>0 r 0

where p’ =p/(p—1).
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Throughout the paper we use the following convention: For two non-negative
expressions (i.e. functions or functionals) F' and G the symbol F < G (or F 2 G)
means that F < ¢G (or ¢F > @), where ¢ is a positive constant independent of
appropriate quantities involved in F' and G. We shall write F' &~ G (and say that
F and G are equivalent) if both relations F' < G and F' 2 G hold.

Our main results are the following two theorems.

Theorem 1. Let 1 < p < g < +4oo and let v, w be weights on (0,400) such that:

(2) v(z)x? is equivalent to a non-decreasing function on (0,400) for some p > 0;

(3) [w(z)z]"? ~ [v(z)z]'?  for all z € (0,+00).

Assume that the averaging operator A : LP(v) — Li(w) is bounded. Then there
exists €9 € (0,p — 1) such that the operator

A L7 (u(z) oY) — LI75/P (g () O 00 —a/P) gva/py
is also bounded for all £,8,~v € [0,ep).

Theorem 2. Let 1 < p < g < 400 and let v, w be weights on (0,+00) such that
(2) and (3) hold. Assume that the averaging operator

A LP_E(v(x)l""sx”) N Lq—Eq/p(w(w)1+6x5(1—Q/p)xW/p)

is bounded for somee € [0,p—1), 6 > 0 and v > 0. Then the operator A : LP(v) —
L(w) is also bounded.

Remark 1. Assumptions of Theorem 1 (or Theorem 2) ensure that

+o0 1/q r , 1/p’
(/ w(t)t™4 dt> </ v(t) P dt) ~ 1 forall r >0,
r 0

which means that (w,v) is the optimal couple of weights for which (1) holds.
Note also that assumption (3) is satisfied when w = v and ¢ = p.

Theorem 1 is a particular case of the following assertion.

Theorem 3. Let 1 < p < g < 400 and let v, w be weights on (0, +00) such that (2)
and (3) hold. Assume that the averaging operator A : LP(v) — L(w) is bounded.
Then there exist py € (1,p) and €9 > 0 such that the operator

A: LY (v(x) H027) — L9 (w(x) T0x2(1-Q/P) 1R/ P)
is also bounded for all P € (pg,+00) and for every 6,7 € [0,e0), where @ = Pq/p.

Remark 2. If 1 < p < 400 and v is a weight on (0, +00), then we write v € M,, when
the averaging operator A is bounded on the space LP(v), that is, when (1) holds
with ¢ = p and w = v. Let A, 1 < p < 400, be the A,-class of B. Muckenhoupt
of those weights v on (0, +00) for which the Hardy-Littlewood maximal operator
associated with the interval (0,400) is bounded on the space L?(v). Recall that
A, C M,. Denote by Cp, 1 < p < 400, the Cp-class of Calderén (introduced in
[BMR]) of those weights v on (0, +00) for which both the operator A and its adjoint
operator A’ are bounded on the space LP(v).

If (2) holds with p = 0, then v is equivalent to a non-decreasing function on
(0,+400). It is known (cf. [CU, Theorem 6.1] or [CM, Proposition 2.3]) that a non-
decreasing weight v satisfies v € M, if and only if it belongs to the A,-class.
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Moreover, it can be shown that a non-decreasing weight v from the class M, also
belongs to the C),-class. Since

veA,=veAd_, for some € € (0,p — 1),
ved, = vite e Ap for some ¢ > 0,

ve A, =veAi, for all ¢ € [p, +o0],
veC, = v(z)x* € M, forsomee >0

(cf. [M] or [GR] for the first three implications, and [BMR, Proposition 2.4] for the
last one), Theorem 3 with p = 0 also follows from properties of weights v € A,NC,.
(This is clear if, in addition, p = ¢ in Theorem 3. If p < ¢, one can show that it is
again true due to condition (3).)

On the other hand, there are weights in the M,,-class which satisfy (2) but which
do not belong to A, N Cp,. A simple example is v(t) = t°, ¢t > 0, with 8 < —1.
(Note that the weight v(t) = ¢, ¢ > 0, with 3 € R, belongs to the A,-class or the
Cp-class if and only if —1 < 3 < p — 1. However, v belongs to the M,-class if and
only if 8 <p—1.)

Remark 3. Denote by Dp, 1 < p < +oo, the subset of the M,-class consisting
of those weights v on (0,4o00) which satisfy condition (2). In particular, our re-
sults imply that the D,-class possesses similar properties to those of the A,-class.
Namely,

veD,=veD,_. for some ¢ € (0,p — 1),
4) ve D, =" €D, for some € > 0,
veED,=veD, for all ¢ € [p, +00).

Moreover,
ve D, = v(z)z® € D, for some € > 0.

It is well-known that a weight v € A, possesses a better integrability than
that mentioned in the A,-condition and that such a weight v satisfies a reverse
Hoélder inequality. Implication (4) shows that also a weight v € D,, possesses better
integrability properties than those mentioned in the definition of the D,-class (cf.
(1) with w = v and ¢ = p). It is even possible to prove that certain reverse Holder
inequalities hold for such a weight (cf. [O]).

The paper is organized as follows. In Section 2 we prove Theorem 1. Section 3
is devoted to the proof of Theorem 2. Finally, in Section 4 we prove Theorem 3.

Acknowledgement. We would like to thank Mario Milman for the information
concerning properties of Cp,-weights.

2. PROOF OF THEOREM 1
To prove Theorem 1, we shall use the following two assertions.

Lemma A (see [N, Lemma 2]). Let ¢ : (0,+00) — (0,+00). If there is a constant
co > 0 such that

tee L dt
(5) / @(t)T < cop(r) forallr >0,
T
then there exist positive constants oy and ¢ such that

oo dt
/ <p(t)ta7 < ep(r)r® forallr >0 and a € [0, a1).
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Remark 4. In fact, it is proved in [N] that the last inequality holds for all r > 0
and some « > 0. However, checking the proof of Lemma 2 in [N], one can see that
Lemma A holds, e.g., with a; = (2¢p) ™! (and then one can put ¢ = 2¢g), where ¢
is the constant in (5).

Lemma A*. Let ¢ : (0,400) — (0,400). If there is a constant ¢y > 0 such that

" dt
‘P(t)T < cop(r) forallr >0,
0

then there exist positive constants 81 and ¢ such that

/ cp(t)tiﬁ% < cp(r)r=?  forallr >0 and B € [0, 51).
0

Proof. Lemma A* can be obtained from Lemma A by the change of variables t —
t*l‘ O

In addition, we shall also need the following lemma.

Lemma B. Let 1 < p < g < 400 and let v, w be weights on (0,+00) such that (2)
and (3) hold. Assume that the averaging operator A : LP(v) — L(w) is bounded.
Then there exists a positive constant ag such that

©) [ b= s ey
and

+oo
(7) / ’U)(t)ta_q dt ~ U}(T)Ta+1_q

for allr >0 and o € [0, ap).

Proof. Assume that all the assumptions of Lemma B are satisfied. Since the func-
tion ¢ — v(£)t“TP, o > 0, is equivalent to a non-decreasing function on (0, +00),

(8) / W] dt = / [(#)te e o =) gy
0 0
[v(r)r”p]l_p// @' =1 q¢

0
~ [u(r)rete) e e =D+

vV

)
= [o(r)r*t PP forall r >0 and a > 0.

Consequently, we obtain from (1), (8) (with o = 0) and (3) that

B4 /
< ,U(T)q/prfq/p s w(r)rlfq

(Jy v an ™~

—+oo
(9) / w(t)t1dt <
for all r > 0. Setting ¢(r) = w(r)r'=9, we can rewrite estimate (9) in the form

tee L dt
/ go(t)T S(r) forall r > 0.

Thus, by Lemma A, there exist constants «; > 0 and ¢ > 0 such that

+o0 +o0 dt
(10) / w(t)t* 1dt = / @(t)t“T < cp(r)r® = cw(r)roti=a

for all » > 0 and « € [0, 7).
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On the other hand, using (3) and the fact that the function ¢ — [v(¢)tP+1]9/Pte,
a > 0, is equivalent to a non-decreasing function on (0, 4+00), we arrive at

+oo 400
(11) / w(®)t* " 1dt =~ / [U(t)tpﬂ]q/lﬂtat*pq/pqu1 dt

~

+oo
= [v(r)r”+1]Q/pro‘/ t—ra/p=a—1 gy
[v(r)r]Q/pro‘rfq
= w(r)r*™¢ for all r > 0 and a > 0.

Thus, (10) and (11) imply that (7) holds for all » > 0 and « € [0, ).
Condition (1) and the first three estimates in (11) (with oo = 0) yield

%

’

r , BP
(12) /v(t)l_p dt < —7a
0 (fj“ w(t)t—a dt)
y 1

([o(ryrjoser—a)”’®
= o(r)Pr  forallr>0.

Rewriting (12) in terms of the function ¢(t) = v(t)'"?'t, t > 0, and applying
Lemma A*, we obtain that there are constants 3; > 0 and ¢; > 0 such that

(13) / o) P At < ()PP
0

for all > 0 and 8 € [0, 01). Setting o = 8/(p' — 1) and oo = f1/(p' — 1), we can
rewrite (13) in the form

/ e dt 2 (et e
0

for all » > 0 and « € [0, a2). Together with (8), this shows that (6) holds for all
r>0and a € [0, a2).
Now, it suffices to put ap = min{ay, as}. O

Remark 5. On using (3), one can rewrite (7) as
+oo
(14) / w(H)t* 9 dt ~ v(r)Y/Pro—Tta/p

for all » > 0 and « € [0, avp).
Remark 6. Let all the assumptions of Lemma B be satisfied. Then the operator
A LP(v(x)z®) — LI (w(z)z*/P)

is also bounded for all « € [0, ap p/q). Indeed, making use of estimates (6) and (14)
(with « replaced by aq/p), we see that (1) holds with v(t) replaced by v(¢)t® and
with w(t) replaced by w(t)t*4/? for all a € [0, ag p/q).

Proof of Theorem 1. Let the assumptions of Theorem 1 be satisfied. By (6) and
(7) (with a = 0), for all r > 0,

(15) / ()P dt mo(r) P
0
and

+oo
(16) / w(t)t=1 dt ~ w(r)r'—.
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Take §, v > 0, e € [0,p — 1) and put p(e) := p — ¢, q(¢) := g — q/p. Clearly,
p(e),p(e) € (1,400), p' —p(e)’ <0 and p(e)/p = q(¢)/q =1 — ¢/p. Thus,
P —pe)  1-p()
= >
K =y +9 —y = 0

t— (/Otv(r)l—')' d7>

is non-decreasing on (0, +00). Consequently, applying (15), we obtain

and the function
K

(17)/[v(t)lwﬂ]l*p(s)/dt = / o () P ()P (=p(e)) gy
0 0

K

T t
/ v(t)lfp/ (tl/ ,U(T)lfp’ dT) £7A=p(e)) g
0 0
T K T
(/ U(T)l—P' dT) / U(t)l—p’t—n+'y(l—p(s)’)dt
0 0

~ o(r)r=P s / ()t dt,
0

Q

IA

where

a = afg,d,7y)
—r+7(1 —p(e))
1—p
P —p(e) 1—p(e) N pe)’

I=p)' -1 (A=-p)@ -1 1—p =
Since the function (e, d,v) — a(e,d,v) is non-negative and continuous on the set
[0,p — 1) x [0,4+00) x [0,400) and «(0,0,0) = 0, there is e; € (0,p — 1) such
that a(e,d,7) € [0, ap) provided that ¢,6,v € [0,e1), where the number «ag is from
Lemma B. Therefore, (17) and (6) imply that

/T[U(t)uétv]lfp(s)’ dt < v(r) 1+ A=p(E)) pr(1=p(e))+1
0

for all > 0 and €,d,v € [0,e1). Hence,

r 1/p(e)’
(18) (/ [U(t)1+5t’v]1—p(6)' dt) < U(T)—(1+6)/p(€) r/p(E) p1/p(e)
0

for all r > 0 and €,d,7 € [0,&1).
5
Applying (7) (with a = 0), the fact that the function ¢ — (f:oo w(r)T ¢ dT) t9(1=a/p),
§ <0, is non-increasing on (0, 400) and (14) (with a = 0), we get

+oo
(19) / w(t)1+5t6(17‘1/p)t'¥q/1>t*q(€) dt
+oo +o00 )
%/ w(t) (tq—l/ U)(T)T_qd’l'> ((r+e)a/p—as(1-a/p) gy
r t

+o0 8 +oo
< < / w(T)quT) 5(1-a/p) / ()t a/p a4 gy

—+o0
~ [U(T)q/prqurq/p]Sré(lfq/p)/ w(t)tOFe/pHola=1)=a g4

T
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Now, using (14) (with (y+¢&)q/p+0d(g—1) instead of @) to estimate the last integral,
we arrive at

“+o0
(20) / w(t)tOTEPHIa=D=a gt o () 0/ PpOtetba/pHola—1) =g

for all > 0 provided that (y+¢)g/p+d(q—1) € [0,ap). Therefore, (19) and (20)
imply that

+o0 1/q(e)
(21) </ w(t)1+5t5(1*q/p)t7q/pt*q(5) dt) =< v(r)(1+5)/”(6) yv/p(e) p=1/p(e)’

for all » > 0 and €, 4,7 € [0,e2), where €2 := min{ag p/(3¢), a0/ (3(¢ — 1)) }.
Putting €g = min{ey,e2} and using estimates (18) and (21) in (1) (with w(¢),

v(t), ¢ and p replaced by w(t)!Tot0(I=a/P)pra/p 4 ()1H9¢7 g(£) and p(e), respec-

tively), we obtain the desired result. O

3. PROOF OF THEOREM 2

Assume that the assumptions of Theorem 2 are satisfied. Put p(e) := p — ¢
and ¢(e) := g — eq/p. The Holder inequality with the exponents pE =D+ hg

(p'—1)
(p(s)(?,(al)) (Ii)é)lj(i)/q) implies that, for all » > 0,

p —1
(p(e) =1)(1+8)  (p(e) =1)(1+8)—p'+1
r  (p(e) =1)(1+9)

(22) / w(t) P dt < (/ [o(£) )P 4y
0 0
Using the fact that the function ¢ +— tr(pe)'=1) ig non-decreasing on the interval

(0, +00), we obtain

(23) / [w(t) ) —PE) gt < () =D / [v(t)" 0 PE) At for all r > 0.
0 0

Fix p > max{p(1 4+ d) — ~v,0}. One can easily verify that (2) and (3) holds with
v(x)z”, w(z), v(x), ¢ and p replaced by (v(z)'T0x7)xP, w(x) Hog00—a/p)ga/p,
v(2)' 027, q(¢) and p(e), respectively. Thus, we can apply Lemma B (with v(x)x?,
w(x), v(z), ¢ and p replaced by (v(x)'Fox7)aP, w(x) Hoxd(1=a/PIgya/P 4 (z) 1057,
q(e) and p(e), respectively). Hence, taking o = 0 in (6) and (7), we obtain, for all
r >0,

(24) / [U(t)1+5t7]1fp(€)’ dt ~ [U(r)lthsT,'y]],p(E)/r
0
and
+oo
(25) / w(t)1+5t5(1—‘1/p)tW/pt_Q(E) dt ~ w(r)1““57”6(1_‘1/17)7“7‘1/1)7“1_‘1(5),

Combining estimates (22)—(24), we arrive at

’

T 1/p
(26) (/ v(t)' P dt> < o(r)"YPrP for all ¢ > 0.
0

On the other hand, Hoélder’s inequality with the exponents 1+ § and (1 + 6)/§
gives

+oo +oo ﬁ -
/ w(t)t™1dt < (/ w(t)1+6t6(17q/p)t“/q/ptfq(s) dt> (T%_%Z—ﬁ—q) 3 ,

which, together with (25) and (3), implies that

+o0 1/q ) )
(27) (/ w(t)t™ dt) S w(T)l/qT_l/q ~ v(?‘)l/”r_l/p for all » > 0.
I
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Estimates (26) and (27) used in (1) yield the desired result. O

4. PROOF OF THEOREM 3

With respect to Theorem 1, it is sufficient to prove that the operator
A LP(v(z)) — L2(w(x)) is bounded if p < P < 400 and Q/P = q/p.
Using the monotonicity of the function t +— t¢~% ¢ > 0, and (14) (with a = 0),

we obtain
+oo 1/Q +oo
(/ w(t)t=? dt) < <rq_Q/ w(t)t™1 dt)

(quQv(T)q/prfﬁq/p) e

= v(r)l/Pr_l/Pl for all > 0.

1/Q

%

Moreover, the Holder inequality (with the exponents 11__—12/, and ;,_—_p;,) and (6) (with
a = 0) imply that

(/Orv(t)lp' dt)l/P,

1—P’

T \TF ey
v(t) 7P dt r(A=p)P
0

_p/ .7
[’U(?")l_plr] (11,;3)13/ T(llip/fpil

=o(r)" PP forall v > 0.

Consequently, the result follows from (1) (with p and ¢ replaced by P and @,
respectively). O

IN
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