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NTERACTIONS AMONG THE MEDIAL PREFRONTAL CORTEX,
IPPOCAMPUS AND MIDLINE THALAMUS IN EMOTIONAL

ND COGNITIVE PROCESSING IN THE RAT
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bstract—The medial prefrontal cortex (mPFC) participates
n several higher order functions including selective atten-
ion, visceromotor control, decision making and goal-
irected behaviors. We discuss the role of the infralimbic
ortex (IL) in visceromotor control and the prelimbic cortex
PL) in cognition and their interactions in goal-directed be-
aviors in the rat. The PL strongly interconnects with a rela-
ively small group of structures that, like PL, subserve cog-
ition, and together have been designated the ‘PL circuit.’
hese structures primarily include the hippocampus, insular
ortex, nucleus accumbens, basolateral nucleus of the amyg-
ala, the mediodorsal and reuniens nuclei of the thalamus
nd the ventral tegmental area of the midbrain. Lesions of
ach of these structures, like those of PL, produce deficits in
elayed response tasks and memory. The PL (and ventral
nterior cingulate cortex) (AC) of rats is ideally positioned to
ntegrate current and past information, including its affective
ualities, and act on it through its projections to the ventral
triatum/ventral pallidum. We further discuss the role of nu-
leus reuniens of thalamus as a major interface between the
PFC and the hippocampus, and as a prominent source of

fferent limbic information to the mPFC and hippocampus.
e suggest that the IL of rats is functionally homologous

o the orbitomedial cortex of primates and the prelimbic
and ventral AC) cortex to the lateral/dorsolateral cortex of
rimates, and that the IL/PL complex of rats exerts signif-

cant control over emotional and cognitive aspects of goal-
irected behavior. © 2006 IBRO. Published by Elsevier Ltd.
ll rights reserved.

ey words: infralimbic cortex, prelimbic cortex, nucleus
euniens, hippocampus, memory, working memory.

Tel: �1-561-297-2362; fax: �1-561-297-2363.
-mail address: Vertes@ccs.fau.edu (R. P. Vertes).
bbreviations: AC, anterior cingulate cortex; ACC, nucleus accum-
ens; ACTH, adrenocorticotropic hormone; AGm, medial agranular
frontal) cortex; BLA, basolateral nucleus of amygdala; BST, bed
ucleus of the stria terminalis; CEA, central nucleus of the amyg-
ala; DLPFC, dorsolateral prefrontal cortex; EC, entorhinal cortex;
EF, frontal eye fields; HF, hippocampal formation; ICA, interca-

ated nucleus of the amygdala; IL, infralimbic cortex; LTD, long term
epression; LTP, long term potentiation; MD, mediodorsal nucleus
f thalamus; M1, primary motor cortex; mPFC, medial prefrontal
ortex; NTS, nucleus of the solitary tract; OMPFC, orbitomedial
refrontal cortex; PAG, periaqueductal gray; PFC, prefrontal cortex;
HA-L, Phaseolus vulgaris leucoagglutinin; PL, prelimbic cortex;
PF, paired pulse facilitation; PT, paratenial nucleus; PV, paraven-

ricular nucleus; RAM, radial arm maze; RE, nucleus reuniens of
(
halamus; SNc, substantia nigra-pars compacta; VTA, ventral teg-
ental area; WM, working memory.
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1

t is well recognized that the prefrontal cortex (PFC) par-
icipates in several higher order functions including selec-
ive attention, visceromotor control, working memory (WM),
ecision making and goal-directed behavior.

The present review focuses on the role of ventral
egions of the rat medial prefrontal cortex (mPFC) in the
ntegration of emotional and cognitive aspects of behav-
or. We discuss: (1) anatomical/functional differences
etween dorsal and ventral regions of the mPFC; (2)
natomical differences between the infralimbic (IL) and
relimbic (PL) cortices; (3) possible functional homolo-
ies between the PFC of rats and primates; (4) anatom-

cal loops between the hippocampus and mPFC via
ucleus reuniens (RE) of the midline thalamus; (5) phys-

ological actions of the hippocampus on the mPFC; (6)
hysiological effects of RE on the hippocampus; (7) RE
s a major source of limbic information for the hip-
ocampus and mPFC; (8) the role of the IL in viscero-
otor control and the prelimbic cortex in limbic/cognitive

unctions; and (9) interactions between RE, the hip-
ocampus and IL/PL in emotion/cognition. We suggest

hat the IL of rats is primarily involved in visceromotor
unctions, homologous to the orbitomedial cortex of pri-
ates, and the PL (and ventral anterior cingulate, AC) is

nvolved in limbic/cognitive activity, homologous to the
ateral/dorsolateral cortex of primates, and that the IL/PL
omplex of rats exerts significant control over emotional
nd cognitive aspects of behavior.

unctional and anatomical differences between
he dorsal and ventral mPFC of rats

he mPFC of rats consists of four main divisions which
rom dorsal to ventral are the medial agranular (AGm) (or
edial precentral), the AC (dorsal and ventral divisions),

he PL and the IL (Berendse and Groenewegen, 1991; Ray
nd Price, 1992; Price, 1995; Swanson, 1998; Öngür and
rice, 2000; Heidbreder and Groenewegen, 2003). The
arious subdivisions of the mPFC appear to serve sepa-
ate and distinct functions. For instance, dorsal regions of
PFC (AGm and AC) have been linked to various motor
ehaviors, while ventral regions of mPFC (PL and IL) have
een associated with diverse emotional, cognitive, and mne-
onic processes (Heidbreder and Groenewegen, 2003).

Early reports in rats showed that stimulation of
Gm/AC generated eye movements (Hall and Lindholm,
974; Donoghue and Wise, 1982), which together with the
emonstration that AGm/AC projects to oculomotor sites

Beckstead, 1979; Hardy and Leichnetz, 1981; Neafsey
ved.
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t al., 1986a; Leichnetz and Gonzalo-Ruiz, 1987; Leich-
etz et al., 1987; Reep et al., 1987; Stuesse and Newman,
990), led to the proposal that AGm/AC of rats was equiv-
lent to the frontal eye fields (FEF) of primates (Leonard,
969; Reep et al., 1984, 1987; Leichnetz and Gonzalo-
uiz, 1987; Guandalini, 1998). Subsequent studies con-
rmed AGm involvement in eye movement control, and
urther showed that AGm stimulation produced other types
f movements including those of the vibrissa, head and
indlimbs (Neafsey and Sievert, 1982; Sanderson et al.,
984; Sinnamon and Galer, 1984; Gioanni and Lamarche,
985; Neafsey et al., 1986a). Accordingly, it has been
ariously proposed that the AGm/AC of rats is homologous
o the FEF, supplementary motor and premotor cortices of
rimates (Neafsey et al., 1986a; Reep et al., 1987, 1990;
assingham et al., 1988; Conde et al., 1995).

In contrast to motor-associated properties of the dorsal
PFC, the ventral mPFC (IL and PL) has been functionally

inked to the limbic system. As will be discussed, the IL
rofoundly influences visceral/autonomic activity. IL stim-
lation produces changes in respiration, gastrointestinal
otility, heart rate and blood pressure (Terreberry and
eafsey, 1983; Burns and Wyss, 1985; Hurley-Gius and
eafsey, 1986; Verberne et al., 1987; Hardy and Holmes,
988) and has been viewed as a visceromotor center
Hurley-Gius and Neafsey, 1986; Neafsey, 1990). PL, on
he other hand, has been directly implicated in cognitive
rocesses. PL lesions produce pronounced deficits in de-

ayed response tasks (Brito and Brito, 1990; Seamans
t al., 1995; Delatour and Gisquet-Verrier, 1996, 1999,
000; Floresco et al., 1997; Ragozzino et al., 1998; Dalley
t al., 2004) similar to those seen with lesions of the lateral
FC of primates (Kolb, 1984; Goldman-Rakic, 1987, 1994;
roenewegen and Uylings, 2000).

As would be expected by a functional differentiation,
here are distinct anatomical differences between dorsal
nd ventral regions of the mPFC. Specifically, the dorsal
PFC, particularly AGm, distributes to sensori-motor re-
ions of the brain including motor and somatosensory
ortices, dorsal striatum, ventral and lateral nuclei of thal-
mus, tectum/pretectum and the brainstem reticular forma-

ion, but essentially avoids ‘limbic’ regions of the forebrain
nd hindbrain (Reep et al., 1984, 1990, 2003; Conde et al.,
995; Guandalini, 1998; Reep and Corwin, 1999; Cheat-
ood et al., 2003; Voorn et al., 2004; Gabbott et al., 2005).
y contrast, the ventral mPFC (IL/PL) strongly connects
ith limbic structures prominently including other regions
f ‘limbic’ cortex, bed nucleus of the stria terminalis (BST),
ucleus accumbens (ACC), amygdala, midline thalamus
nd widespread regions of the hypothalamus and brain-
tem (Room et al., 1985; Sesack et al., 1989; Hurley et al.,
991; Takagishi and Chiba, 1991; Buchanan et al., 1994;
onde et al., 1995; Chiba et al., 2001; Vertes, 2002, 2004;
abbott et al., 2003, 2005). In addition, the hippocampus

ventral CA1 and subiculum) projects to IL/PL but not to the
orsal mPFC (Jay and Witter, 1991; Laroche et al., 2000;

ertes et al., 2002). t
ifferential projections of the infralimbic
nd prelimbic cortices

n a recent comparison of IL and PL projections in the
at, we showed that, with a few exceptions, PL and IL
istribute differently throughout the brain (Vertes, 2004).
hese differential patterns of projections are summa-

ized in Fig. 1. As illustrated (Fig. 1), IL distributes signif-
cantly to: (1) neighboring regions of the orbitofrontal cor-
ex including the medial and lateral orbital cortices, PL
nd AC; (2) anterior piriform cortex, dorsal and ventral

aenia tecta, and anterior olfactory nucleus of the olfactory
orebrain; (3) medial and lateral preoptic areas, substantia
nnominata, BST, lateral septum and horizontal limb of
iagonal band nucleus of the basal forebrain; (4) the me-
ial, basomedial, cortical and central nuclei of the amyg-
ala; (5) the midline thalamus; (6) dorsomedial, lateral,
erifornical, posterior, and supramammillary nuclei of the
ypothalamus; and (7) the substantia nigra-pars compacta
SNc), periaqueductal gray (PAG), parabrachial nucleus
nd nucleus of the solitary tract (NTS) of the brainstem.
ig. 2 shows dense terminal labeling in BST and the me-
ial and lateral preoptic areas following a Phaseolus vul-
aris leucoagglutinin (PHA-L) injection in IL (Vertes, 2004).

With respect to IL modulation of visceral functions, IL
istributes to sites that directly affect autonomic/viscero-
otor activity including the parabrachial nucleus, NTS and

he intermediolateral cell column of the spinal cord, as well
s to several structures that project to, and influence,
utonomic nuclei of the brainstem/spinal cord (Cechetto
nd Saper, 1990; Neafsey et al., 1986b; Neafsey, 1990;
urley et al., 1991; Takagishi and Chiba, 1991; Buchanan
nd Powell, 1993; Verberne and Owens, 1998; Vertes,
004; Gabbott et al., 2005). The latter includes the medial
nd lateral preoptic areas, BST, central nucleus of the
mygdala (CEA), and the lateral and posterior hypothala-
us (Saper et al., 1976, 1979; Hopkins and Holstege,
978; Schwaber et al., 1982; Veening et al., 1984; Moga
nd Gray, 1985; Grove, 1988; Moga et al., 1989, 1990a,b;
oewy, 1991; Rizvi et al., 1991, 1992, 1996; Allen and
echetto, 1992; Vertes and Crane, 1996; Petrovich and
wanson, 1997; Murphy et al., 1999; Floyd et al., 2001).
his indicates direct as well as indirect IL actions on a
etwork of interconnected nuclei subserving autonomic/
isceral control.

By contrast with IL, the PL sends few projections to
visceral-related sites’ of the forebrain and brainstem
Fig. 1). Main PL targets are: (1) the orbitofrontal, anterior
iriform, agranular insular (dorsal and ventral divisions)
nd entorhinal cortices; (2) the anterior olfactory nucleus
nd dorsal taenia tecta of the olfactory forebrain; (3) medial
arts of the dorsal striatum, the ACC (core and shell),
lfactory tubercle, and the claustrum of the basal forebrain;
4) the midline thalamus; (5) the basolateral nucleus of the
mygdala (BLA); and (6) the ventral tegmental area (VTA),
Nc, PAG, supralemniscal nucleus (Vertes and Crane,
997) and the dorsal and median raphe nuclei of the
rainstem (Fig. 1)(Vertes, 2004). Fig. 3 depicts dense
erminal labeling in the anterior part of the ACC, the olfac-
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ig. 1. Schematic sagittal sections summarizing the main projection sites of the IL (A) and PL (B). Note that IL projections are much more widespread
han PL projections, particularly to the basal forebrain, amygdala and hypothalamus. Sections are modified from the rat atlas of Paxinos and Watson
1986). For illustrative purposes several sagittal planes are collapsed onto single sagittal sections. Abbreviations: AA, anterior area of amygdala; AHN,
nterior nucleus of hypothalamus; AI,d,v, agranular insular cortex, dorsal, ventral divisions; AM, anteromedial nucleus of thalamus; AON, anterior
lfactory nucleus; BMA, basomedial nucleus of amygdala; C, cerebellum; CEM, central medial nucleus of thalamus; CLA, claustrum; COA, cortical
ucleus of amygdala; C-P, caudate/putamen; DBh, nucleus of the diagonal band, horizontal limb; DMH, dorsomedial nucleus of hypothalamus; DR,
orsal raphe nucleus; EN, endopiriform nucleus; IAM, interanteromedial nucleus of thalamus; IC, inferior colliculus; IMD, intermediodorsal nucleus of
halamus; IP, interpeduncular nucleus; LHy, lateral hypothalamic area; LPO, lateral preoptic area; LS, lateral septal nucleus; MEA, medial nucleus of
mygdala; MO, medial orbital cortex; MPO, medial preoptic area; MR, median raphe nucleus; N7, facial nucleus; OT, olfactory tubercle; PBm,l,
arabrachial nucleus, medial and lateral divisions; PFx, perifornical region of hypothalamus; PN, nucleus of pons; PRC, perirhinal cortex; RH,
homboid nucleus of thalamus; SI, substantia innominata; SLN, supralemniscal nucleus (B9); SUM, supramammillary nucleus; TTd, taenia tecta,

orsal part; VLO, ventral lateral orbital cortex; VO, ventral orbital cortex. Reprinted from Vertes (2004).
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ory tubercle and the dorsal agranular insular cortex fol-
owing a PHA-L injection in PL (Vertes, 2004).

Consistent with findings in rats (Sesack et al., 1989;
ertes, 2004), an early report on cats (Room et al., 1985)
emonstrated pronounced PL projections to the ACC,
nd further noted that the PL to ACC projection was the
rst leg of a cortical loop involving PL, that is, a loop
from the prelimbic area via the ventral striatum, ventral
allidum, and the mediodorsal nucleus back to the prelim-
ic area.” This system of connections, or the ‘PL circuit’
Alexander et al., 1990; Groenewegen et al., 1990), has
ubsequently been elaborated to include several additional
tructures which in addition to PL, ACC, ventral pallidum
nd mediodorsal nucleus of thalamus (MD), include the

nsular cortex, hippocampus, claustrum, BLA, paraven-
ricular (PV) and RE of thalamus, and the VTA of the
idbrain (McDonald, 1987, 1991; Witter et al., 1988; Groe-
ewegen, 1988; Cassell et al., 1989; Sesack et al., 1989;
ahm, 1989; Berendse and Groenewegen, 1990; Kita and
itai, 1990; Berendse and Groenewegen, 1991; Heimer et
l., 1991; Jay and Witter, 1991; Kuroda and Price, 1991;
ay and Price, 1992; Groenewegen et al., 1993, 1999;
rog et al., 1993; Miyamoto and Jinnai, 1994; Shinonaga
t al., 1994; Moga et al., 1995; Wright and Groenewegen,
995; Bacon et al., 1996; Carr and Sesack, 1996; Mc-
onald et al., 1996; Wright et al., 1996; Zahm et al., 1996;
aurice et al., 1997; O’Donnell et al., 1997; Mulder et al.,
998; Vertes, 2002, 2004; Gabbott et al., 2003; Pare,
003; Jasmin et al., 2004).

As will be discussed, this extended PL circuitry, con-
isting of a main loop through ventral striopallidal–thalamo-

ig. 2. Darkfield photomicrograph of a transverse section through the
orebrain showing patterns of labeling in the basal forebrain produced
y an injection in the IL. Note dense terminal labeling in the BST, the
entral part of the lateral preoptic area (LPO), and the medially adja-
ent medial preoptic area. Abbreviation: ACo, anterior commissure.
cale bar�600 �m. Reprinted from Vertes (2004).
ortical circuits, with additional interconnections with the
o
(

nsular cortex, hippocampus, claustrum, BLA of amygdala,
V and RE of the midline thalamus, and SNc/VTA of the
idbrain, appears to represent an important circuitry in-

olved in cognitive processing.
In summary, IL and PL project differentially throughout

he brain (Fig. 1). IL predominantly distributes to autonomic/
isceral-related sites, supporting its role in visceromotor
ctivity. PL (and ventral AC) primarily projects to limbic
ites associated with cognitive behaviors, supporting its
ole in cognitive/mnemonic functions.

PFC of rats: possible homologies to the PFC
f primates

he PFC of primates consists of three major divisions: orbital,
edial and lateral parts (Fuster, 2001). The orbital and me-
ial divisions serve well-recognized roles in emotional behav-

or and the dorsolateral prefrontal cortex (or lateral)
DLPFC) in ‘executive’ functions of the PFC (Barbas, 1995,
000a; Öngür and Price, 2000; Fuster, 2001).

The connections of the orbitomedial PFC (OMPFC)
nd DLPFC support respective roles in emotional and
xecutive behaviors. The OMPFC receives direct and in-
irect input from all sensory modalities and distributes to
utonomic/visceral sites of the amygdala, diencephalon
nd brainstem. Specifically, the OMPFC receives afferents
rom all sensory cortices (Morecraft et al., 1992; Barbas,
993; Carmichael and Price, 1995b), and information
eaching it mainly originates from second and third order
ensory processing regions that largely code global
ather than specific attributes of a stimulus. For in-

ig. 3. Darkfield photomicrograph of a transverse section through the
ostral forebrain showing labeling contralaterally in the forebrain produced
y an injection in the PL. Note dense collection of ventrolaterally-oriented

abeled fibers terminally bound for the dorsal agranular insular cortex
AId). Note also massive labeling throughout the extent of the anterior
ole of ACC as well as significant labeling in the ventrally adjacent

lfactory tubercle (OT). Scale bar�600 �m. Reprinted from Vertes
2004).
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tance, several reports have shown that auditory projec-
ions to OMPFC arise from auditory association areas of
he superior temporal gyrus (rostral parabelt region)
Barbas et al., 1999; Hackett et al., 1999; Romanski et
l., 1999) which contains ‘broadly tuned’ cells that re-
pond maximally to complex species-specific vocaliza-
ions (Rauschecker et al., 1995; Kosaki et al., 1997).

Price and co-workers (Öngür and Price, 2000) have
ubdivided the OMPFC into two networks with differing
onnections and functions: medial and orbital PFC net-
orks. The medial network includes regions on the medial
all of the PFC and a few orbital areas, while the orbital
etwork consists of most of the orbital cortex as well as the

nsular cortex. With respect to sensory inputs to the
MPFC, they report that the caudal part of the orbital PFC

eceives cortical afferents from all sensory modalities and
his information, in turn, converges on the rostral orbital
ortex which accordingly represents a multisensory in-
egration zone (Carmichael et al., 1994; Carmichael and
rice, 1995b). By contrast with orbital network, the me-
ial network receives few direct sensory projections
Carmichael and Price, 1995b).

In addition to direct sensory input from sensory corti-
es, the OMPFC receives indirect multisensory information
rom the amygdala, mainly via basal groups of the amyg-
ala (Turner et al., 1980; Porrino et al., 1981; Amaral and
rice, 1984; Barbas and De Olmos, 1990; Carmichael and
rice, 1995a; Ghashghaei and Barbas, 2002), and from

he MD (Porrino et al., 1981; Aggleton and Mishkin, 1984;
usschen et al., 1987).

As would be expected from its role in emotional behav-
or, the OMPFC also receives substantial input from the
imbic forebrain, particularly pronounced from the amyg-
ala, ventral striatum (ACC), hippocampus and parahip-
ocampal cortex. Ventral striatal afferents are routed

hrough the ventral pallidum (and substantia nigra, pars
eticulata) to the MD and then to OMPFC (Goldman-Rakic
nd Porrino, 1985; Ilinsky et al., 1985; Barbas et al., 1991;
ay and Price, 1993; Ferry et al., 2000; McFarland and
aber, 2002; Haber, 2003). The hippocampus (CA1 and
ubiculum) and parahippocampal gyrus are prominent
ources of direct projections to the OMPFC (Barbas and
latt, 1995; Carmichael and Price, 1995a; Bachevalier
t al., 1997; Barbas et al., 1999; Insausti and Munoz, 2001;
avenex et al., 2002; Kondo et al., 2003; Munoz and
nsausti, 2005). Hippocampal/parahippocampal fibers dis-
ribute more heavily to the medial than to the orbital PFC,
nd within both regions predominantly target the caudal
MPFC (Insausti and Munoz, 2001; Barbas et al., 1999;
unoz and Insausti, 2005).

The convergence of multisensory and limbic informa-
ion at the OMPFC suggests that the OMPFC is important
or assessing the significance of complex stimuli, or as
arbas (2000b) recently observed the OMPFC may act an

environmental integrator” serving to “capture the emo-
ional significance of events.”

The OMPFC receives multimodal information and also
cts on it; that is, directly influences emotional behavior
hrough descending projections to autonomic/visceral sites P
f the hypothalamus and brainstem. Öngür and Price
2000) contend that orbital PFC predominantly serves as a
ultimodal sensory receiving network, whereas the medial
FC represents a visceromotor (or emotomotor) system.

The OMPFC has been shown to project to several
isceral-related sites, as follows: the BST, medial preoptic
rea, central and basal nuclei of amygdala, the anterior,
edial, lateral and posterior hypothalamus and the dorso-

ateral PAG and lateral parabrachial nucleus of the brain-
tem (An et al., 1998; Öngür et al., 1998; Rempel-Clower
nd Barbas, 1998; Freedman et al., 2000; Chiba et al.,
001; Ghashghaei and Barbas, 2002; Barbas et al., 2003).
y contrast, however, with the IL of other species (Ter-

eberry and Neafsey, 1983, 1987; Sesack et al., 1989;
urley et al., 1991; Buchanan et al., 1994; Vertes, 2004),

he medial PFC (or area 25) of primates does not appear to
irectly innervate regions of the lower brainstem and spinal
ord that directly affect the viscera, such as the ventrolat-
ral medulla, NTS, and intermediolateral cell column of the
pinal cord (Freedman et al., 2000). Accordingly, Freed-
an et al. (2000) observed that the MPFC of monkeys, like
on-primates, can be regarded as a visceromotor region
ut effects on the autonomic system “are likely to be less
irect than in nonprimates.”

The specific details of OMPFC projections to autonom-
c/visceral sites continue to be elaborated. For example,
arbas et al. (2003) recently described two pathways for

he excitatory actions of the OMPFC on amygdalar–hypo-
halamic circuitry: one originating in the orbital PFC and the
ther in the medial PFC. The orbital system consists of
xcitatory projections from the OPFC to intercalated nuclei
f the amygdala (ICAs). ICAs inhibit the central nucleus of
mygdala which, in turn, inhibits (or disinhibits) hypotha-

amic nuclei to produce net excitatory effects. The medial
FC exerts excitatory actions on the hypothalamus both

hrough direct projections to the hypothalamus, and indi-
ectly through an (excitatory) relay in the BLA.

In sum, a wealth of evidence indicates that the OMPFC of
rimates serves a critical role in emotional behavior; that is,
n integrated multisensory/viscerosensory and emotomo-
or/visceromotor network.

ateral/DLPFC

s well recognized, the lateral/dorsolateral prefrontal cor-
ex of primates participates in several higher order pro-
esses which collectively have been referred to as ‘exec-
tive functions’ of the DLPFC. As discussed, critical to its
unctioning is the ability of the DLPFC to hold and manip-
late information over short delays for intended actions or
M (Baddeley, 1986; Repovs and Baddeley, 2006). In
onkeys, the PFC region responsible for WM is mainly

ocated in the caudal DLPFC, around the principal sulcus,
nd includes Brodmann’s areas 46, 8, 9 and 47/12 (Fuster,
001).

Unlike the OMPFC, the DLPFC primarily receives sen-
ory information from early stages of cortical sensory pro-
essing, involved in coding detailed aspects of the sensory
nvironment (Barbas and Mesulam, 1985; Barbas, 1988;

etrides and Pandya, 1988; Preuss and Goldman-Rakic,
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989; Distler et al., 1993; Webster et al., 1994; Schall
t al., 1995; Hackett et al., 1999; Kaas et al., 1999; Ro-
anski et al., 1999; Barbas, 2000b). For example, the
LPFC receives input from regions of the auditory cortex

hat respond to pure tones (caudal parabelt area), as op-
osed to areas processing complex auditory stimuli that
roject to the OMPFC (Leinonen et al., 1980; Hikosaka et
l., 1988; Hackett et al., 1999).

In a similar manner, the efferent projections of DLPFC
re predominantly directed to somatomotor structures of

he cortex, striatum, and brainstem (Barbas and Pandya,
989; Bates and Goldman-Rakic, 1993; Morecraft and Van
oesen, 1993; Lu et al., 1994; Petrides and Pandya, 1999,
002; Tehovnik et al., 2000; McFarland and Haber, 2002;
aber, 2003; Luppino et al., 2003; Takada et al., 2004;
iyachi et al., 2005; Hoshi, 2006). As noted by Takada et
l. (2004), this suggests that information from the DLPFC
or area 46) “is transmitted to motor related areas of the
rontal lobe and converted into motor signals to perform an
rganized set of voluntary movements.”

Although the precise routes whereby the DLPFC influ-
nces the motor cortex (M1) in motor control remains to be

ully determined, it clearly represents a multisynaptic net-
ork with relays through various frontal (motor) areas in-
luding the premotor cortex, presupplementary and sup-
lementary motor regions, and the cingulate motor area.
pecifically, using a combination of anterograde and ret-

ograde tracers, Takada et al. (2004) recently described a
etwork of connections for forelimb movement: (1) from
he DLPFC (area 46) to the premotor cortex (dorsal and
entral parts of the rostral division); (2) from the premotor
ortex to the pre-supplementary and cingulate motor ar-
as; and (3) from there to M1. This supports earlier find-

ngs showing that the DLPFC distributes heavily to the
orelimb region of the premotor cortex (Luppino et al.,
003). Subcortically, the DLPFC projects to the dorsal
motor) but not to the ventral (limbic) striatum and indi-
ectly, via the striatum, pallidum and substantia nigra, to
arts of the thalamus (ventral anterior and ventral lateral
nd lateral MD) that supply the M1 (Joel and Weiner, 1994;
arbas et al., 1991; Rouiller et al., 1999; McFarland and
aber, 2002; Middleton and Strick, 2002; Erickson and
ewis, 2004; Xiao and Barbas, 2004).

Finally, unlike the OMPFC, the DLPFC receives few, if
ny, projections from the amygdala (Barbas and De Olmos,
990) and hippocampus/parahippocampal cortex (Barbas et
l., 1999; Insausti and Munoz, 2001; Munoz and Insausti,
005), and distributes sparsely to visceral-related sites of
he forebrain and brainstem (An et al., 1998; Öngür et al.,
998; Rempel-Clower and Barbas, 1998). The DLPFC,
onetheless, has direct access to limbic (emotional/cogni-
ive) information through pronounced OMPFC projections
o the DLPFC (Barbas and Pandya, 1989). This is presum-
bly critical for an integrated (somatomotor/emotomotor)
LPFC response to environmental events (Barbas, 1995,
000a).

In summary, the orbitomedial and DLPFC of primates
re respectively involved in emotional and ‘executive’ func-
ions. As developed below, we suggest that the IL of rats l
ay be functionally homologous to the OMPFC of pri-
ates and the PL (and ventral AC) homologous to the
LPFC of primates, and that the IL/PL complex of rats, like

he OMPFC/DLPFC of primates, exerts significant control
ver emotional and cognitive aspects of behavior.

ippocampal–mPFC–midline thalamic circuitry in the
at: possible role in mnemonic functions

Hippocampal–mPFC–RE–HF circuitry. The hippocam-
us and mPFC serve well-recognized roles in mnemonic
unctions. The precise manner in which these two struc-
ures interact to process memory remains to be deter-
ined. It is clear, however, that there are strong intercon-
ections between the hippocampus and mPFC, in part,
ediated through the RE of the midline thalamus.

Several reports in various species have demonstrated
ronounced projections from the hippocampal formation
HF) to the mPFC (Swanson, 1981; Irle and Markowitsch,
982; Cavada et al., 1983; Goldman-Rakic et al., 1984;
erino et al., 1987; Jay et al., 1989; van Groen and Wyss,
990; Jay and Witter, 1991; Carr and Sesack, 1996). In
ats, hippocampal efferents to the mPFC arise from tem-
oral aspects of CA1 and the subiculum and terminate in a
estricted region of the ventral mPFC, including the medial
rbital area, IL and PL (Jay et al., 1989; Jay and Witter,
991). There are no projections from CA2/CA3 or the
entate gyrus to the mPFC (Jay and Witter, 1991). HF
bers form asymmetric synapses with pyramidal cells of
PFC (Carr and Sesack, 1996) and exert excitatory ac-

ions on them (Ferino et al., 1987; Laroche et al., 1990,
000; Jay et al., 1995).

Despite well-documented hippocampal projections to
PFC, there are essentially no return projections from the
PFC to the HF (Beckstead, 1979; Goldman-Rakic et al.,
984; Room et al., 1985; Reep et al., 1987; Sesack et al.,
989; Hurley et al., 1991; Takagishi and Chiba, 1991;
uchanan et al., 1994). Addressing this, Laroche et al.

2000) recently stated that: “Unlike other neocortical areas
uch as the perirhinal or entorhinal cortices, which are
eciprocally connected to the hippocampus (Witter et al.,
989), area CA1 and the subiculum do not, in return,
eceive direct projections from the prefrontal cortex in the
at.”

Nucleus reuniens: relay between the mPFC and
ippocampus. The RE lies ventrally on the midline, dorsal

o the third ventricle and ventral to the rhomboid nucleus of
halamus, and extends longitudinally, virtually throughout the
halamus (Swanson, 1998). RE is the largest of the midline
uclei of the thalamus. RE is the major source of thalamic
fferents to the hippocampus and parahippocampal cortical
tructures (Herkenham 1978; Wyss et al., 1979; Riley and
oore, 1981; Room and Groenewegen, 1986; Yanagihara et
l., 1987; Su and Bentivoglio, 1990; Wouterlood et al., 1990;
outerlood, 1991; Dolleman-Van der Weel and Witter, 1996;
okor et al., 2002). RE distributes densely to CA1 of Am-
on’s horn, the ventral subiculum, and the medial and lateral
ntorhinal cortex (EC), and moderately to the dorsal subicu-
um and parasubiculum (Su and Bentivoglio, 1990; Wouter-
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ood et al., 1990; Wouterlood, 1991; Bokor et al., 2002; Vertes
t al., 2006). There are essentially no RE projections to the
entate gyrus or to CA3. RE fibers form asymmetric (excita-

ory) contacts predominantly on distal dendrites of pyramidal
ells in stratum lacunosum-moleculare of CA1 (Wouterlood
t al., 1990).

In a recent examination of projections from the mPFC
o the thalamus, with a concentration on RE (Vertes,
002), we showed that the ventral mPFC (IL, PL and
entral AC) virtually exclusively targets midline/medial
tructures of the thalamus, including the paratenial (PT),
V, interanteromedial, anteromedial, intermediodorsal,
D, RE and central medial nuclei. By contrast, the dorsal
PFC (AGm and dorsal AC) distributes over a much wider

egion of the thalamus, to some midline groups, but pri-
arily to the intralaminar (central lateral, paracentral, cen-

ral medial nuclei, parafascicular), ventral (ventromedial
nd ventrolateral) and lateral (ventral anterolateral, lateral
orsal and lateral posterior) nuclei of thalamus. All four
ivisions of the mPFC project heavily to RE; the ventral
IL/PL) mPFC more strongly than the dorsal mPFC.

The pattern of distribution of prelimbic fibers to the
halamus is schematically illustrated in Fig. 4. As depicted,
abeling is restricted to midline nuclei of thalamus and
ithin the midline is particularly dense within mediodorsal
ucleus (mainly medial MD) and RE throughout the extent
f the thalamus. At the rostral thalamus (Fig. 4A–C), label-

ng spreads dorsoventrally throughout the midline,
hereas at the caudal thalamus (Fig. 4D–G) labeling is
ssentially localized to the PV and mediodorsal nuclei,
orsally, and RE, ventrally. As illustrated in Fig. 5, labeling
as pronounced within the PV, PT and RE at the rostral

halamus, stronger ipsilaterally than contralaterally.
In the absence of direct mPFC projections to hip-

ocampus and EC, the findings that IL/PL projects
trongly to RE (Vertes, 2002, 2004), coupled with the
emonstration that RE is the major (or virtually sole)
halamic input to the hippocampus, suggests that RE is

critical relay in the transfer of information from mPFC
o the hippocampus. This system of connections (mPF-
–RE– hippocampus) would appear to be the primary

oute from the prefrontal cortex to the hippocampus, and
ccordingly would complete an important loop between
he hippocampus and mPFC; that is, a loop from HF to
L/PL and then to RE and back to the hippocampus:
A1/subiculum¡IL/PL¡RE¡CA1/subiculum.

Physiological interactions of structures of the HF¡IL/
L¡RE¡HF loop. With respect to physiological interac-

ions of nodes of the hippocampal-prefrontal–thalamic
oop, the physiological effects of HF on the mPFC have
een well characterized, whereas other parts of the loop
ave been less well described (RE¡HF) or remain to be
xamined (mPFC¡RE).

Although hippocampal fibers innervating the mPFC ter-
inate on both pyramidal cells and interneurons of IL/PL

Carr and Sesack, 1996; Gabbott et al., 2002), they pre-
ominantly form excitatory contacts with dendritic spines of

yramidal cells (Jay et al., 1992). Consistent with this e
rofile, low amplitude stimulation of HF activates pyramidal
ells of the mPFC at monosynaptic latencies (Ferino et al.,
987; Laroche et al., 1990). Laroche et al. (1990) demon-
trated that approximately 40% of PL cells were excited by
ippocampal stimulation at short (monosynaptic) latencies.
n like manner, Degenetais et al. (2003) reported that
ingle pulse stimulation of the hippocampus induced early
mean latency, 14.6 ms) EPSPs in 91% (106/116) of intra-
ellularly recorded pyramidal cells of PL of rats. The
PSPs were followed by prolonged IPSPs presumably

nvolving recurrent inhibitory actions on pyramidal cells.
Hippocampal stimulation also produces persistent

hanges at the mPFC: paired pulse facilitation (PPF) and
ong term potentiation (LTP). Paired stimulation of HF gives
ise to short lasting facilitatory actions (PPF) on single units,
eld potentials (Laroche et al., 1990; Mulder et al., 1997) and
onosynaptically-elicited EPSPs (Degenetais et al., 2003) at

L/PL, whereas tetanic stimulation produces a rapidly-in-
uced and stable LTP at PL in both anesthetized (Laroche et
l., 1990) and behaving rats (Jay et al., 1996). Based on their
ndings of persistent changes at PL with HF stimulation,
egenetais et al. (2003) concluded: “the hippocampal-pre-

rontal network can participate in the formation and consoli-
ation of memories.” Finally, long term depression (LTD)
Takita et al., 1999) and depotentiation (i.e. reversal of LTP)
Burette et al., 1997) have been demonstrated at mPFC with
ow frequency HF stimulation. In summary, the hippocampus
xerts pronounced modulatory actions at the mPFC; that is,
onosynaptic excitation of IL/PL cells as well as enduring

hanges: PPF, LTP, LTD and depotentiation.
Although RE has long been recognized a major input to

he hippocampus (Herkenham, 1978), few studies have
xamined the physiological effects of RE on the hippocam-
us. Two recent reports have shown, however, that RE
xerts significant excitatory actions at CA1 of the hip-
ocampus (Dollemann-Van der Weel et al., 1997; Bertram
nd Zhang, 1999).

Dollemann-Van der Weel et al. (1997) reported that RE
timulation produced large negative-going field potentials
t stratum lacunosum-moleculare of CA1 of the hippocam-
us indicative of a prominent depolarizing actions on distal
pical dendrites of CA1 pyramidal cells, as well as a
arked facilitation (PPF) of evoked responses at CA1.
hey proposed that RE may “exert a persistent influence
n the state of pyramidal cell excitability, depolarizing cells
lose to threshold for activation by other excitatory inputs.”

Consistent with this, Bertram and Zhang (1999) com-
ared the effects of RE and CA3 stimulation on population
esponses (field EPSPs and spikes) at CA1, and reported
hat RE actions on CA1 were equivalent to, and in some
ases considerably greater than, those of CA3 on CA1.
hey concluded that the RE projection to the hippocampus
allows for the direct and powerful excitation of the CA1
egion. This thalamohippocampal connection bypasses
he trisynaptic/commissural pathway that has been thought
o be the exclusive excitatory drive to CA1.”

As discussed, IL and PL project heavily to the RE of
halamus (Vertes, 2002, 2004). To our knowledge, how-

ver, the physiological actions of the mPFC on RE have
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ig. 4. Schematic representation of selected sections through the diencephalon depicting labeling present in the thalamus produced by a PHA-L
njection in the PL. Sections aligned rostral to caudal (A–H). Abbreviations: AD, anterodorsal nucleus; AM, anteromedial nucleus; AV, anteroventral
ucleus; CA1, CA3, CA1, CA3 fields of Ammon’s horn; CC, corpus callosum; CEM, central medial nucleus; CL, central lateral nucleus; F, fornix; FI,
mbria of hippocampal formation; FR, fasciculus retroflexus; IAM, interanteromedial nucleus; IC, internal capsule; IMD, intermediodorsal nucleus;
GNd, lateral geniculate nucleus, dorsal division; LH, lateral habenula; LD, lateral dorsal nucleus; LP, lateral posterior nucleus; LV, lateral ventricle;
D,c,m, mediodorsal nucleus, central, medial divisions; PC, paracentral nucleus; PF, parafascicular nucleus; PO, posterior nucleus; PV,a, paraven-

ricular nucleus; anterior division; RH, rhomboid nucleus; RT, reticular nucleus; SM, stria medullaris, ST, stria terminalis; VAL, ventral anterior-lateral

omplex; VB, ventrobasal complex; VM, ventromedial nucleus; ZI, zona incerta; 3V, third ventricle. Reprinted from Vertes (2002).
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ot been described. We have recently found, however, that
L/PL fibers form asymmetric (excitatory) synapses (mainly
n dendritic spines) with RE neurons projecting to the
ippocampus (Vertes et al., submitted for publication).
hese findings, together with the demonstration that RE
xerts excitatory effects on the hippocampus (Dollemann-
an der Weel et al., 1997; Bertram and Zhang, 1999) and
C (Zhang and Bertram, 2002) suggest that IL/PL, indi-

ectly through RE, may activate the hippocampus/EC. In
ffect, this system of connections (IL/PL¡RE¡HF) may
epresent an important return route for the actions of the
ippocampus on the mPFC (Laroche et al., 2000).

E: prominent source of limbic afferent information
o the hippocampus and IL/PL

lthough the hippocampus receives a diverse array of
nformation, there are few direct routes to the hippocam-
us. Excluding monoaminergic afferents, direct sources of

nput are primarily restricted to the EC, medial septum,
asal nucleus of amygdala, supramammillary nucleus and
E (Witter and Amaral, 2004).

In like manner, the mPFC receives relatively limited
nput (from all sources) and surprisingly little from ‘limbic’
egions of the brain. For instance, using retrograde tech-
iques, Conde et al. (1995) described few projections from

imbic/limbic-related structures of the forebrain and brain-
tem to mPFC in rats (see their Table 2, p. 572). Specifi-
ally, relatively large retrograde tracer injections encom-

ig. 5. Darkfield photomicrograph of a transverse section through the
ostral diencephalon showing patterns of labeling at the rostral thala-
us produced by a PHA-L injection in the PL. Note pronounced

abeling in the PT dorsally and RE ventrally, stronger ipsilaterally (left
ide) than contralaterally. Abbreviations: F, fornix; SM, stria med-
llaris. Scale bar�500 �m. Reprinted from Vertes (2002).
assing PL, IL, and the dorsal peduncular area, gave rise f
o few labeled cells in the septum, medial basal forebrain,
ypothalamus, and with some exceptions, the brainstem.
his contrasted with significant afferents to the mPFC from
ther regions of the cortex and from the thalamus. Al-
hough labeling was heavy in the BLA, it was essentially
imited to this cell group of the amygdala. Consistent with
his, we also observed only minor ‘limbic’ subcortical pro-
ections to the mPFC (Vertes et al., 2002).

A significant indirect source of limbic information to the
PFC is the insular cortex (Yasui et al., 1991; Shi and
assell, 1998; Gabbott et al., 2003). The insular cortex re-
eives visceral sensory information, projects to the ventral
FC (Conde et al., 1995; Shi and Cassell, 1998; Gabbott et
l., 2003; Hoover and Vertes, 2005), and is thought to relay
isceral sensory information to visceromotor regions of the
PFC (Yasui et al., 1991).

With few direct or indirect limbic afferents to the mPFC,
limbic’ information may primarily reach the mPFC (and the
F) through midline nuclei of the thalamus, or RE (McKenna
nd Vertes, 2004; Viana Di Prisco and Vertes, 2006). In this
egard, we recently examined afferent projections to RE in
he rat and showed that RE receives a diverse and widely
istributed set of afferents, mainly from limbic/limbic-associ-
ted structures (McKenna and Vertes, 2004).

RE receives pronounced projections from several cor-
ical and subcortical sites (McKenna and Vertes, 2004).
hey include: (1) the orbitomedial, insular, ectorhinal,
erirhinal and retrosplenial cortices; (2) CA1/subiculum of
ippocampus; (3) the claustrum, lateral septum, substantia

nnominata and lateral preoptic nucleus of the basal fore-
rain; (4) the medial, basomedial and cortical nuclei of
mygdala; (5) the PV and lateral geniculate nuclei of thal-
mus; (6) the zona incerta; (7) the anterior, ventromedial,

ateral, posterior, supramammillary and dorsal premammil-
ary nuclei of the hypothalamus; and (8) the VTA, PAG,

edial and posterior pretectal nuclei, nucleus of posterior
ommissure (NPC), superior colliculus, precommissural
ucleus, parabrachial nucleus, laterodorsal and peduncu-

opontine tegmental nuclei, nucleus incertus, and the dor-
al and median raphe nuclei of the brainstem.

Although RE projections to HF have been well docu-
ented, those to other sites have been much less studied.
sing PHA-L, we recently examined the efferent projec-

ions of the RE and rhomboid nuclei of the midline thala-
us (Vertes et al., 2006). Although the input to RE is
iverse and widespread (McKenna and Vertes, 2004), RE
as found to project to fairly restricted sites of the brain,
hich in addition to HF, mainly includes the orbitomedial
refrontal and parahippocampal cortices. This is consis-
ent with earlier descriptions (Herkenham, 1978; Ohtake
nd Yamada, 1989; Wouterlood et al., 1990; Wouterlood,
991; Conde et al., 1995; Reep et al., 1996; Risold et al.,
997; Reep and Corwin, 1999; Bokor et al., 2002; Van der
erf et al., 2002). The photomicrograph of Fig. 6 shows a

ense concentration of labeled fibers in IL and PL following
PHA-L injection in RE. In essence, then, RE appears to be
critical site for the convergence of limbic/limbic-related in-
ormation from widespread sources and its subsequent trans-
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er to its main targets: the hippocampus/parahippocampal
ortex and the orbitomedial prefrontal cortex.

L: visceral motor cortex

s discussed, the IL of the mPFC exerts a pronounced
nfluence on visceral/autonomic activity through direct and
ndirect projections to autonomic sites of the brainstem and
pinal cord. IL is viewed as ‘visceral motor cortex’ (Hurley-
ius and Neafsey, 1986; Neafsey, 1990).

Although findings conflict, the actions of IL on target
tructures seem to be mainly excitatory. For instance,
owell et al. (1994) demonstrated that IL stimulation in
wake rabbits produced increases in heart rate and blood
ressure and a reduction in gastric motility, all sympathet-

c-mediated responses. In like manner, IL lesions were
ound to block increases in heart rate, respiration, ultra-
onic vocalizations and freezing behavior to conditional
motional stimuli in behaving rats (Frysztak and Neafsey,
991, 1994).

By contrast, however, several studies report that IL (or
entral mPFC) stimulation produces the opposite effect on
he viscera; that is, depressor rather than pressor re-
ponses (Hardy and Holmes, 1988; Hardy and Mack,
990; Verberne, 1996; Owens et al., 1999; Owens and
erberne, 2001). Although the reason(s) for these differ-
nces remains unclear, one possibility is that they may

nvolve the use of anesthetized compared to non-anesthe-
ized animals. Specifically, most (but not all) studies dem-

ig. 6. Darkfield photomicrograph through the rostral forebrain depict-
ng patters of labeling in the mPFC produced by a PHA-L injection in
he RE of the thalamus. Note particularly dense labeling in inner layers
f the infralimbic and prelimbic cortices. Abbreviation: InC, insular
ortex.
nstrating pressor effects with IL stimulation have been v
one with non-anesthetized animals (Burns and Wyss,
985; Powell et al., 1994; Tavares et al., 2004), whereas
eports showing depressor effects involve anesthetized
nimals (Hardy and Holmes, 1988; Hardy and Mack, 1990;
erberne, 1996; Owens et al., 1999; Owens and Verberne,
001). The same applies to the effects of mPFC injections
f excitatory amino acids on cardiovascular responses in
ats. Verberne (1996) reported that microinjections of the
-glutamate into the mPFC of anesthetized rats produced
epressor responses, whereas Resstel and Correa (2005)
howed that L-glutamate injections into PL/IL of unanes-
hetized rats generated long lasting, dose related, pressor
esponses and tachycardia. Finally, Tavares et al. (2004)
ecently compared the effects of mPFC stimulation in
nesthetized and non-anesthetized rats, showing the
ormer (anesthetized) produced depressor responses and
he latter (awake) pressor responses.

As expected from its actions on viscera, the ventral
PFC reportedly serves an important regulatory role in

uch behaviors as conditioned fear (and fear extinction),
nxiety and stress. For example, several studies have
escribed marked c-fos expression in the ventral mPFC
uring exposure to various stressors or to anxiety-inducing
anxiogenic) situations (Cullinan et al., 1995; Figueiredo et
l., 2002, 2003; Ostrander et al., 2003).

Although results vary, it seems (somewhat paradoxi-
ally) that, on balance, lesions of the ventral mPFC (IL/PL)
roduce increased levels of fear, anxiety and stress, rather
han the expected opposite. Specifically, ventral mPFC
esions reportedly produce (1) increases in ‘fear’ in both
atural and experimental settings (Holson, 1986a,b;
organ et al., 1993; (2) enhanced levels of general
nxiety to novel or stressful conditions (Silva et al.,
986; Jaskiw and Weinberger, 1990); (3) increased re-

ease adrenocorticotropic hormone (ACTH) or cortico-
terone to psychological or physical stressors (Diorio et
l., 1993; Crane et al., 2003; Figueiredo et al., 2003);
nd (4) marked deficits in fear extinction, presumably
eflecting the inability of animals to suppress fear to a
timulus that no longer signals danger (Morgan et al.,
993; Morrow et al., 1999; Quirk et al., 2000; Milad and
uirk, 2002).

If, as described, IL exerts excitatory actions on autonomic/
isceral structures, IL lesions might be expected to reduce
ympathetic tone and possibly suppress ACTH/corticoste-
one release, thereby decreasing fear/anxiety/stress and pre-
umably improving performance in tasks benefitting by
hose reductions. Perhaps, a likely explanation for the
esults that ventral mPFC lesions can, in some circum-
tances, enhance visceral activity and produce increased

evels of fear/anxiety is that the ventral mPFC contains
egions that both excite and inhibit the viscera (and/or the
ypothalamic–pituitary–adrenal axis), and depending on
he site and extent of lesions (or stimulation), one of the
wo effects would predominate.

With regard to this possibility, we suggest that dorsal
nd ventral regions of the ventral mPFC may exert oppo-
ite effects on visceral activity; that is, IL may ‘activate’ the

iscera through direct excitatory actions on autonomic/
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isceral structures, whereas PL (and ventral AC) may ‘sup-
ress’ visceral activity mainly through inhibitory actions on
L. Supporting this, Frysztak and Neafsey (1994) described
ncreases in heart rate and blood pressure with dorsal

PFC lesions, and decreases with ventral mPFC lesions.
imilarly, Powell et al. (1994) showed that stimulation dor-
ally in the mPFC (AC/PL) produced depressor responses
nd bradycardia, while IL stimulation yielded pressor re-
ponses and tachycardia.

In addition, a close examination of previously dis-
ussed studies reporting that mPFC lesions produced in-
reases in fear/anxiety and stress shows that most of the

esions were located dorsally in the mPFC (PL/AC) or
panned PL/AC and IL; few were restricted to IL. One of
he few reports (Jinks and McGregor, 1997) to systemati-
ally compare the effects of PL and IL stimulation on
motional behaviors described significant differences be-
ween the two sites. According to the authors (Jinks and
cGregor, 1997), the aim of their report was to “discrimi-
ate the functional roles of the infralimbic and prelimbic
ubregions of the MPC. To our knowledge, a functional
issociation between these two regions has not been hith-
rto attempted since previous studies reporting effects of

ventral MPC’ lesions have typically destroyed both re-
ions.” They showed that rats with PL lesions spent sig-
ificantly less time in the center of an open field or on
xposed arms of an elevated plus maze, indicating height-
ned levels of anxiety. By contrast, rats with IL lesions (but

mportantly not those with PL lesions) showed reduced
evels of fear/anxiety on a passive avoidance task; that is,
ompared with controls, IL-lesioned rats more readily
tepped down to a previously electrified grid. Although at
dds with the authors’ interpretation of their findings (Jinks
nd McGregor, 1997), we suggest that IL lesions sup-
ressed fear by dampening of excitatory drive to autonomic/
isceral structures, whereas PL lesions enhanced fear/anxi-
ty mainly by reducing inhibitory influences on IL.

The foregoing mechanism is one among several ways
n which IL and PL could interact to modulate visceral
ctivity and ‘visceral-related behaviors.’ Alternatively,
uirk and colleagues (Milad et al., 2006; Vidal-Gonzalez et
l., 2006) recently described opposing IL and PL actions in
ear extinction mediated through the amygdala. They had
reviously demonstrated (Milad and Quirk, 2002; Milad et
l., 2006) that the ventral mPFC serves a twofold role in
ear extinction: it retains information that fearful events are
o longer fearful (retention of fear extinction), and acts on
isceral structures to reduce fear (expression of fear ex-
inction). They recently showed that conditioned stimuli
tones) paired with IL stimulation decreased fear (strength-
ned fear extinction), while those paired with PL stimula-
ion increased fear (impaired fear extinction) (Vidal-Gonza-
ez et al., 2006). They indicated that the “opposite effects of
L and IL microstimulation suggest that these mPFC sub-

erritories target different brain regions important for fear
xpression” (Vidal-Gonzalez et al., 2006). Regarding ana-

omical substrates for these effects, PL projects to the
LA, and BLA, in turn, exerts excitatory effects on the CEA
o enhance fear, whereas IL projects to GABAergic inter- s
alated groups of amygdala which inhibit CEA to reduce
ear (Vertes, 2004; Berretta et al., 2005; Likhtik et al.,
005).

In summary, a number of reports have demonstrated
hat ventral regions of the mPFC affect several measures
f emotional responding in rats. We suggest that the dorsal
PFC (primarily PL) exerts a modulatory influence on IL in

isceromotor control. In effect, PL may serve to dampen IL
ctivity in situations requiring precise movements/actions,
espite elements of danger, whereas PL might augment IL
ctivity in threatening situations demanding immediate and
lobal responses: fight or flight.

L: limbic–cognitive functions

s indicated, the mPFC participates in several higher order
rocesses including selective attention, WM, decision mak-

ng, and goal-directed behaviors (Goldman-Rakic, 1987,
994; Fuster, 1989, 2001; Kolb, 1984, 1990; Petrides,
995, 1998; Barbas, 2000a,b; Öngür and Price, 2000). By
ontrast with visceromotor functions of IL, recent evidence

ndicates that the PL of rats is directly involved in limbic/
ognitive functions, homologous to the DLPFC of primates
Laroche et al., 2000). A function commonly associated
ith the prefrontal cortex, and one extensively examined,

s WM; that is, the temporary storage and utilization of
nformation over short intervals (Baddeley, 1986; Gold-

an-Rakic, 1987, 1995; Fuster, 2001; Repovs and Bad-
eley, 2006).

As well documented, lesions of the dorsolateral pre-
rontal cortex of monkeys disrupt performance on delayed
esponse tasks (Goldman and Rosvold, 1970; Passing-
am, 1975; Mishkin and Manning, 1978; Funahashi et al.,
993; Petrides, 2000; Fuster, 2001), and DLPFC cells
aintain elevated rates of discharge during the delay pe-

iod of delayed response tasks (Niki, 1974; Kojima and
oldman-Rakic, 1982; Quintana et al., 1988; Funahashi
t al., 1989; Miller et al., 1996; Chafee and Goldman-
akic, 1998; Romo et al., 1999; Sawaguchi and Yamane,
999).

The mPFC of rats has also been shown to serve a
ritical role in tasks requiring the maintenance of informa-
ion over time, including delayed alternation (Larsen and
ivac, 1978; Silva et al., 1986; van Haaren et al., 1988;
rito and Brito, 1990; Bubser and Schmidt, 1990; Kesner
t al., 1996; Delatour and Gisquet-Verrier, 1996, 1999) and
elayed matching and nonmatching to sample tasks
Shaw and Aggleton 1993; Kolb et al., 1994; Granon et al.,
994; Broersen et al., 1995; Seamans et al., 1995;
arrison and Mair, 1996; Young et al., 1996; Porter and
air, 1997). The reversible or irreversible inactivation of

he ventral mPFC, generally restricted to PL and ventral
C, produces marked deficits in delayed response tasks

nvolving short or long delays (Brito and Brito, 1990; Sea-
ans et al., 1995; Delatour and Gisquet-Verrier, 1996,
999, 2000; Floresco et al., 1997; Fritts et al., 1998;
agozzino et al., 1998, 2002; Izaki et al., 2001; Lee and
esner, 2003; Dalley et al., 2004; Di Pietro et al., 2004).
urther, cells of the mPFC in rats, like those of primates,

how sustained activity during the delay period of delay
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asks (Orlov et al., 1988; Batuev et al., 1990; Baeg et al.,
003).

The fairly unique ability of the PFC to hold and manip-
late information over short delays undoubtedly contrib-
tes to its role in higher order processing such as decision
aking or goal directed behavior (Baddeley, 1986, 1998;
uster, 2001; Wang et al., 2006). These functions gener-
lly depend upon the ability to retain information in tempo-
ary buffers, where it can be assessed (or repeatedly re-
ssessed) with respect to immediate sensory stimuli, past
vents and possible future actions, for goal directed be-
aviors (Wang, 2001). Fuster (2001) characterized WM as
related to the need to retain information for an impending
ction that is in some way dependent on that information.”
s such, it is clear that the ‘executive functions’ of the
PFC depend on the integration of information from vari-
us sources representing sensory attributes (sensorimotor
ssociation areas), value (limbic structures), and early and
ecent history (hippocampal/parahippocampal cortices).

In this regard, a number of reports in rats have de-
cribed the contribution of limbic and hippocampal inputs
o the ventral mPFC (or PL/AC) in mnemonic and execu-
ive functions of the mPFC. Phillips and co-workers (Sea-
ans et al., 1995) initially demonstrated that the bilateral

nactivation of PL in rats produced marked deficits in a
elayed, but not in a non-delayed, version of a spatial
adial arm maze (RAM) task, and subsequently that virtu-
lly identical effects (degree and pattern) were observed
n this task by disconnecting the hippocampus from PL
Floresco et al., 1997). They viewed the dysfunction as one
f ‘prospective coding,’ or the inability of rats to use infor-
ation acquired before the delay to plan, program or guide
ehavior. Subsequent reports have similarly demonstrated
hat blocking connections from the hippocampus to the
entral PFC (PL/ventral AC) disrupts performance on de-
ayed-response tasks (Floresco et al., 1999; Aujla and
eninger, 2001). Floresco et al. (1997) characterized the

ole of HF inputs to the PL in PL-mediated behaviors as
ollows: “the neural circuit linking the hippocampus and
FC provides an essential pathway by which spatial infor-
ation can be integrated into the cognitive and motor
lanning processes mediated by the PFC.”

While hippocampal–prefrontal connections appear crit-
cal for the integration of the past (HF) with the present
and possibly the future), the hippocampal input to mPFC
s seemingly not responsible for the affective component of
xperience which is obviously essential for goal directed
ehaviors. Instead, this element appears to arise from
ubcortical limbic structures, mainly, VTA, BLA of amyg-
ala, and the midline thalamus.

Using the same disconnection procedure wherein dif-
erent structures are temporarily inactivated on opposite
ides of the brain, Seamans et al. (1998) showed that the
imultaneous blockade of hippocampal inputs to PL and
opamine (D1) receptors at PL disrupted performance on
elayed, but not on non-delayed, versions of the RAM

ask. Regarding the possible role of dopamine in hip-
ocampal–prefrontal interactions, Seamans et al. (1998)

uggested that: “D1 receptors in the PFC may modulate

t
t

he transfer of spatial information from the hippocampus to
he PFC at a time when a prospective series of response
ust be organized and executed.”

In a continuing analysis of the circuitry involved in
PFC functions, Floresco et al. (1999) demonstrated that

nactivation of the MD nucleus of the thalamus also dis-
upts performance on delayed response tasks. Incorporat-
ng this finding with previous results, they described a
utative network for WM in rats. The network consists of
fferents to PL from VTA, MD and the hippocampus, me-
iating signal amplification (VTA), stimulus significance
MD) and spatial/contextual information (HF), respectively,
nd outputs from PL to the ventral striatum and ventral
allidum. In effect, a putative PL network involved in the
hort term manipulation of information for directed actions
see their Fig. 6, p. 11069).

Although this scheme incorporates some of the ele-
ents of the previously described ‘PL circuit’ (see earlier
escription and Fig. 1), other important links to PL were not

ncluded, namely, the BLA, the insular cortex, the claus-
rum, and significantly, the RE of thalamus. Fig. 7 repre-
ents a revised ‘PL circuit’ putatively responsible for higher
rder functions of PL/ventral AC in rats. The precise role of
ach of these structures (and their interactions) in WM and
oal-directed behaviors remains to be fully determined.

The potential involvement, however, of most of the
oregoing structures in memory/WM gains support from the
emonstration that their manipulation (like PL/AC itself)
ffects delayed response tasks, or WM. For instance, al-
erations of ACC (Floresco et al., 1999), ventral pallidum
Kalivas et al., 2001), BLA (Barros et al., 2002; Pare, 2003;
oozendaal et al., 2004), MD (Harrison and Mair, 1996;
loresco et al., 1999; Romanides et al., 1999; Kalivas et
l., 2001), RE (Cain and Boon, 2004) or VTA (Seamans et
l., 1998; Seamans and Yang, 2004) have been shown to
isrupt tasks requiring WM.

If, as suggested, affective/motivational and spatial/con-
extual information converge at PL for goal-directed ac-

ig. 7. The extended ‘PL circuit’ putatively responsible for limbic–
ognitive functions of the mPFC of rats. The output of PL is fairly
imited and restricted to structures identified as serving a role in
ognition and memory. These include the insular cortex (INC), ACC,
LA, the midline thalamus (mediodorsal nucleus and RE) and the
ippocampus. The projections of PL to the hippocampus are indirect
ainly through RE. With the exception of ACC, PL receives projec-
ions from each of its major targets. All interconnections among struc-
ures of the PL circuit are not shown.
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ions, this might be reflected in the activity of prelimbic
eurons. In this regard, Poucet and colleagues (Poucet et
l., 2004; Hok et al., 2005) recently described an interest-

ng type of cell in PL that putatively combines ‘motivational’
nd spatial properties. Specifically, rats were trained to run
o a specific location on a cylinder (trigger zone), and if
one successfully, food pellets were delivered from a
eeder positioned elsewhere in the cylinder (landing zone).
he food pellets, dispensed from the feeder, fell randomly

hroughout the cylinder, and were hence consumed in
ifferent parts of the cylinder. The latter was done to dis-
ssociate goal value (i.e. trigger zone) from reward value
i.e. eating of the pellet). Hok et al. (2005) reported that
5% of PL/IL cells fired selectively in the two locations
ignaling impending reward; namely, the trigger zone and
he landing zone. These cells appeared to encode value
lus place, and as such may be crucial for goal-directed
ctions of PL. According to Hok et al. (2005), “PL/IL neu-
ons have properties expected of cells encoding spatial
oals, a key component necessary for computing optimal
aths in the environment.”

CONCLUSIONS

n summary, the IL projects to autonomic/visceral-related
ites, supporting its role in visceromotor activity, whereas
L/ventral AC primarily projects to limbic-related sites that

eportedly affect cognition (Vertes, 2004; Gabbott et al.,
005). It is obviously the case, however, that complex
oal-directed behaviors entail an integration of visceral
nd cognitive elements. It seems likely that this integration
ay largely occur at the level of mPFC involving interac-

ions between IL and PL. In the rat, then, the IL/PL–ventral
C complex may exert significant control over emotional–
ognitive aspects of behavior. To conclude, the mPFC of rats
ppears functionally homologous to a fairly widespread re-
ion of the prefrontal/frontal cortex of primates subserving
otor, emotional and cognitive elements of behavior; that is,

he dorsal mPFC appears homologous to the supplementary/
remotor area, the PL/ventral AC to the lateral/DLPFC, and
L to the orbitomedial cortex of primates.
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