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PrefaeSeminar on Numerial Analysis 2011 (SNA'11) is the eighth meeting in a series of events startedin Ostrava 2003 and devoted to numerial methods neessary for mathematial modelling ofproblems in sienes and engineering. For the �rst time SNA'11 will be held in Roºnov pod Rad-ho²t¥m, a beautiful town with many attrations and friendly Beskydy mountains surrounding.Sine 2005, a part of SNA has been devoted to the so-alled Winter shool with tutorial le-tures devoted to seleted topis within the onferene sope. In this year, the shool part in-ludes invited letures devoted to operator splitting tehniques for mutiphysis problems (Ax-elsson), salable FETI algorithms for ontat problems (Dostál, Kozubek, Vondrák, Brzobohatý,Markopoulos), ill posed problems in image proessing (Hn¥tynková, Ple²inger, Strako²), prini-ples of algebrai multigrid based on smoothed aggregations (Van¥k) and analysis and numerialapproximation of non-loal damage mehanis models (Zeman, Mielke, Roubí£ek).The Winter shool is omplemented by ontributed letures devoted to many topis as aggrega-tion based methods, omputational mehanis, domain deomposition, e�ient iterative solvers,�nite element method, formulation of mathematial models, modelling of transport problems,parallel omputations, et.We would like to wish SNA'11 to be, similarly to the previous SNA meetings, a fruitful event,providing interesting letures, showing new ideas and starting or strengthening ollaboration andfriendship.On behalf of the Programme and Organizing Committee of SNA'11,Radim Blaheta and Ji°í Starý
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An overview of aggregation tehniques for two-level methodsR. Blaheta, V. SokolInstitute of Geonis AS CR, OstravaV�B - Tehnial University of Ostrava
1 IntrodutionThis paper is an e�ort to do an overview of aggregation tehniques and ompare their e�ienyon model problem with heterogeneity when used for onstrution of oarse spae for two-levelShwarz method. Aggregation tehniques are usually used in ontext of multilevel and multigridmethods for onstrution of oarse levels. Initially oarse levels were obtained from hierarhyof meshes with di�erent disretization parameters. Aggregation overomes the need for thishierarhy of meshes and needs little or no information besides the matrix of the problem to besolved.Aggregation tehniques presented in this paper an be divided into two groups: node-wise andelement-wise aggregations. The �rst group is somewhat larger and widely used, most likelybeause node-wise aggregations don't need any information about the mesh used for disretizationof the method.2 AggregationsIn this paper for the sake of simpliity we will restrit ourselves to the ase of two-level methodsonly, multilevel methods an be devised by reursive use of the two-level sheme.2.1 Two-level method with aggregationLet us onsider a problem disretized on triangulation Th by �nite element method and desribedby the linear system

Ahuh = bh, (1)solved by a two-level method. One iteration of two-level method is desribed in Algorithm 1.On lines 5 and 10 there are k1 and k2 steps of pre-smoothing and post-smoothing respetivelyby operator S, usually realized by one iteration of Gauss-Seidel or Jaobi method. In the ase oflassial multigrid methods, the prolongation operator P and restrition operator R are naturallyindued by the hierarhy of triangulations Th and TH and the matrix AH orresponds to thedisretization on TH . However in the ase of algebrai multigrid methods, the prolongation andrestrition operators and the oarse spae matrix AH are reated only by using a little informationbesides the matrix Ah thus avoiding the need to onstrut hierarhy of nested meshes.
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Algorithm 1 One iteration of two-level method1: Input:Ah, bh, u
i
h2: Output:ui+1

h3: u = ui
h4: for j = 1 to k1 do5: u = S(Ah, bh, u)6: end for7: rH = R (bh −Ahu)8: u = u+ P

(
A−1

H rH
)9: for j = 1 to k2 do10: u = S(Ah, bh, u)11: end for12: ui+1

h = uAggregation tehnique divides set of unknowns N = {1, . . . , n} into disjoint subsets Ci of aggre-gates of unknowns, so that N =
⋃k

i=1Ci , Ci
⋂

i6=j Cj = ∅. Then the prolongation and restritionoperators are de�ned R = R, P = RT by boolean matrix R:
(R)i,j

{
= 1 if j ∈ Ci

= 0 otherwise (2)2.2 Node-wise aggregationsIn this subsetion we fous on aggregation tehniques that exploits the information diretly storedin the matrix Ah, these inlude algorihms by Van¥k et al. [3℄, by Sheihl and Vainikko [2℄ and byNotay [1℄. The aggregation algorithm by Notay was primarily designed to work with algebraimultilevel sheme based on a blok approximate fatorization of matrix, however it an also beused for algebrai multilevel methods. The algorithm �rstly de�nes set of nodes Si, to whihnode i is strongly negative onneted:
Si(ε) =

{
j ∈ N : j 6= i, aij < −ε max

aik<0
|aik|

}
, (3)where parameter ε is used as threshold for strong oupling. The sets Si(ε) are used o onstrutpairs of nodes that are most strongly negative onneted, and then used reursively for thosepairs (and possibly few singletons) to reate generalized quadruplets.The algorithm by Van¥k et al. starts by de�ning strongly-onneted neighborhood similar to (3)with thresholding parameter ε:

Si(ε) =
{
j ∈ N : |aij| ≥ ε

√
aiiajj

}
, (4)and then separates nodes that are not strongly onneted to any other nodes. These nodes areisolated from others and are not aggregated. Rest of the nodes is used for initial overing bytentative aggregates Ci, the remaining nodes that does not belong to tentative aggregates formsset R. The main part of the algorithm an be desribed as follows:step 1: enlarge aggregates Cimove node j from R to aggregate Ci if there is strong onnetion8



step 2: proess unaggregated nodesreate new aggregates: Ci = Sj(ε) ∩R, R = R \ CiGiven this aggregation, tentative prolongation is reated from (2), whih an be further smoothedto get the �nal prolongation and restrition operators. To get the smoothed prolongation oper-ator, simple damped Jaobi smoother was proposed in the form
Ps = (I − ω (diagAh)−1AF )P , (5)where ω is damping parameter and AF is �ltered matrix.The last aggregation of this subsetion is that of Sheihl and Vainikko. The algorithm againstarts by de�ning strongly onneted nodes. Node j is strongly onneted to i if the followingondition is satis�ed: ∣∣∣Âij

∣∣∣ ≥ εmax
k 6=i

∣∣∣Âik

∣∣∣ , (6)where Â = (diagAh)−
1
2 Ah (diagAh)−

1
2 and ε is again thresholding parameter for strong on-netion. To reate set of aggregates {Ci} strongly-onneted graph r-neighborhood Sr,ε(i) isused. Sr,ε(i) is set of node i and all nodes j for whih there exists a path of length r of strongly-onneted nodes to node i. The algorithm reates aggregates by �nding strongly-onneted graphr-neighborhood of hosen seed node. To hoose a good seed node advaning front in the graphindued by nodes and edges of triangulation Th is used. Smoothed aggregation an be againobtained by applying damped Jaobi smoother with �ltered matrix AF (5).2.3 Element-wise aggregationsThe only aggregation of this subsetion is of Fish and Belsky [4℄. It uses the onept of sti� andweak element whih is utilized in onstrution of aggregates. The element ei is onsidered sti� ifthe spetral radius ki of its sti�ness matrix is relatively large ompared to other elements. Thespetral radius is estimated by Gershgorin theorem. This sti� and weak onept is element-wiseounterpart of strong and weak onnetion of node-wise approah. The algorithm tries to plaeweak elements on the interfae between aggregates of sti� elements.start-up:set EA of elements to aggregate (less elements on boundary)set EI of interfae elements, EI = ∅seed element es with minimum number of neighboring elementsstep 1: reate sti� aggregate Ai

Ai = {es} ∪ {ej : el ∈ neighbor(es) ∩ EA; kj ≥ εks}step 2: update sets EI , EA

EI = EI ∪ {ek : (ek ∈ neighbor(ej), ej ∈ Ai) ∩ (ek /∈ Ai)}
EA = EA \ {ek : (ek ∈ neighbor(ej), ej ∈ Ai) ∪Ai}step 3: �nd new seed element es
EF = {ek : (ek ∈ neighbor(ej), ej ∈ Ai) ∩ EA}�nd seed element es : es ∈ EF , ks ≥ ki ∀ei ∈ EFstopping riteria:if EF = ∅ then stopelse i = i+ 1, go to step 2The parameter ε is used as threshold for determining the sti�ness of elements.9



3 Model problem and two-level Shwarz preonditionerThe model problem on whih we will test aggregation tehniques will be Dary �ow desribedby following equations:
v = −k∇u

∇ · v = f

} in Ω (7)The heterogeneity will be indued by the permeability oe�ient k. In our model problem, theoe�ient will be stohastially generated with log-normal distribution.The method hosen to test aggregations will be two-level Shwarz preonditioner for CG. It usesdeomposition of omputational domain Ω into overlapping subdomains Ωδ
i . The subdomainsare then used to de�ne deomposition of �nite element spae Vh:

Vh = V0 + V1 + . . . + Vk

Vi =
{
v ∈ Vh, v ≡ 0 in Ω \ Ωδ

i

}
,∀i ∈ {1 . . . k} ,where the FE spae V0 orresponds to a oarse triangulation TH . Then it is possible to on-strut various Shwarz-type preonditioners, the simplest and most ommonly used is additivepreonditioner (BAS),

BAS =
k∑

i=0

RT
i A

−1
i Ri,where {Ri}k

i=1 are restrition operators mapping nodes from Ω to Ωδ
i and Ai is FE matrixorresponding to problem on subdomain Ωδ

i with homogeneous Dirihlet boundary ondition onboundary. The multipliative and various hybrid preonditioners an be found in [5℄. The matrix
A0 orresponds to auxiliary oarse spae V0 with restrition operator R0. This is the plae whereaggregation omes in the play, the restrition operator R0 is de�ned by (2) and matrix A0 byterm A0 = R0AhR

T
04 ConlusionIn this paper overview of some aggregation tehniques was presented. The aggregations wereused for onstrution of oarse spae for two-level Shwarz preonditioner for CG method. Themotivation for using model problem with strong heterogeneity is development of robust solverswith respet to heterogeneity. These solvers are needed for e.g. investigation of (geo)ompositeswhere strong heterogeneity is present. When using two-level method as a preonditioner, thequality of auxiliary oarse spae dramatially in�uenes the number of iterations needed to solvethe problem. The aggregation tehniques represent one possible approah to get the oarse spaeof desired qualities. Note that an e�ient appliation of a parallel aggregation-based solver formirostruture analysis is in [6℄.Aknowledgement: This work has been supported by the grants GA �R number 103/09/H078and 105/09/1830.Referenes[1℄ Y. Notay. Aggregation-Based Algebrai Multilevel Preonditioning. SIAM J. Matrix Anal.Appl., Vol. 27, 998-1018. 2006. ISSN 1095-716210



[2℄ R. Sheihl, E. Vainikko. Additive Shwarz with Aggregation-Based Coarsening for ElliptiProblems with Highly Variable Coe�ients. Computing, Vol. 80, 319-343. 2007. ISSN 1436-5057[3℄ P. Van¥k, J. Mandel, M. Brezina. Algebrai Multigrid by Smoothed Aggregation for Seondand Fourth Order Ellipti Problems. Computing, Vol. 56, 179-196. 1996. ISSN 1436-5057[4℄ J. Fish, V. Belsky. Generalized Aggregation Multilevel solver. Int. J. for Numerial Methodsin Engineering, Vol. 40, 4341-4361. 1997. ISSN 1097-0207[5℄ A. Toselli, O. Widlund. Domain Deomposition Methods - Algorithms and Theory. Springer,2005, Berlin. ISBN 3-540-20696-5.[6℄ P. Arbenz et al. A salable multi-level preonditioner for matrix-free µ-�nite element analysisof human bone strutures. Int. J. for Numerial Methods in Engineering, Vol. 73, 927-947.2008. ISSN 1097-0207
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Marosopi tra� �ow models: requiem and ressuretionM. Brandner, J. Egermaier, H. KopinováNTIS � New Tehnologies for Information SoietyDepartment of Mathematis University of West Bohemia in Pilsen
1 IntrodutionWe shortly desribe basi ideas of marosopi tra� �ow modeling, disuss the features of thesemodels ritially, and give proposals for their improvements. We also propose three numerialshemes based on the �nite volume approah and ompare them.2 First order marosopi modelsTra� �ow modeling has beome a major problem in many ountries after the Seond World War.We an get di�erent types of mathematial models depending on what sale we hoose: fromthe mirosopi to the marosopi through the kineti one. The �rst marosopi mathematialmodels were developed in the 50's of the 20th entury. The basi �rst order model (i.e., themodel ontaining one equation) was formulated by Lighthill in 1955 and Whitham and Rihardsin 1956 as presented in [6℄ (LWR model). It is based on the analogy between vehiles in tra��ow and partiles in a �uid. The basi equation represents the onservation law for the vehiles

̺t + [f(̺)]x = 0, (1)where ̺ = ̺(x, t) is the density of vehiles, f = f(̺) = v̺ is the �ux, v = v(̺) is the veloity.The funtion f = f(̺) represents a onstitutive relation and it is alled the fundamental diagram.For example, we an put
f(̺) = vmax

(
1 − ̺

̺max

)
, (2)where vmax is a given maximal veloity and ̺max is a given maximal density. This model isidential to the �rst-order �uid dynamis models of water �ow in rivers and gas �ow through pipes(exept for the spei� form of f = f(̺) � see [3℄). Daganzo [3℄ summarizes the shortomingsof this type of models: they are not suitable for light tra�, they are not desribe orretly themotion of a vehile through a shok, they don't predit some instabilities. Newell shows (see [12℄),however, that the marosopi LWR model is in agreement with some mirosopi ar-followingmodels. LeVeque shows in [11℄ that problems an our when the �ux funtion f = f(̺) isneither onave nor onvex (the night time tra� �ow). In this ase the entropy solution of theRiemann problem (see [11℄) does not address the real tra� �ow. In this situation it is neessaryto pay speial attention to the anisotropy of the model, i.e., to the fat that the drivers makedeiions aording to the situation ahead of the vehile, not behind it. Daganzo also arguesthat the onept of relaxation time or visosity e�ets (and we add: numerial visosity e�ets)is not a self-evident property of the tra� �ow.
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3 Seond order marosopi modelsSome researhers have tried to eliminate the shortomings of the above models so that theyimproved them by introduing relations that are analogous to the onservation of momentum in�uids. They obtained the seond order models, i.e., the models ontaining two partial di�erentialequations. For example, the Payne-Whitham model (1971, 1974) an be written as (for brevity,we present the simpli�ed version without the relaxation term)
̺t + (̺v)x = 0,

(̺v)t + [̺v2 + p(̺)]x = 0,
(3)where ̺ = ̺(x, t) is the density, v = v(x, t) is the veloity and p = p(̺) is a given onstitutiverelation. Daganzo [3℄ shows three basi weaknesses of this type of models:1. A �uid partile responds to stimuli from the front and from behind, but a ar is ananisotropi partile that mostly responds to frontal stimuli.2. The width of a tra� shok only enompasses a few vehiles.3. Unlike moleules, vehiles have personalities.Other Daganzo's omments are also signi�ant. The model desribed above is a system of twohyperboli partial di�erential equations (for a suitable hoie of p = p(̺)). But a harateristispeed an be greater than the marosopi �uid veloity (future vehile behavior is determinedby what happened behind it). Furthermore, one must reognize the basi observation that thenumber of moleules in the �uid and the number of ars on road are radially di�erent.Another major ontribution to this researh is the work of Aw, Klar, Materne and Rasle [1, 2℄.They propose the following model (again for brevity, we present a simpli�ed version without therelaxation term):

̺t + [q − ̺p(̺)]x = 0,
qt + [q2/̺− p(̺)q]x = 0,

(4)where ̺ = ̺(x, t) is the density, v = v(x, t) is the veloity and p = p(̺) is a given onstitutiverelation. This model has two very interesting properties:1. The eigenvalues of the Jaobi matrix of the �ux vetor are λ1(̺, v) = v − ̺p′(̺) and
λ2(̺, v) = v. It means that if the funtion p = p(̺) is inreasing then the maximalharateristi speed is v.2. The system (4) an be transformed into Lagrangian mass oordinates. If we use the Go-dunov method (or even the �nite volume method with the Roe or HLL solver) to solvethe transformed problem we obtain disrete relations that orrespond to the mirosopifollow-the-leader model (see [1℄). In other words, we get a diret link between the ontin-uous and disrete model. Notie that the previous model (3) is based on analogy with thedesription of �uid �ow only.4 Numerial shemes and experimentsWe use three numerial methods to solve (4) � the entral sheme (see [9℄), entral-upwind sheme(see [7℄) and the sheme based on the Roe approximate Riemann solver (see [10℄). It should be13



Figure 1: Solution of the Riemann problem 1 ompared with the mirosopi model representedby the Godunov method in Lagrangian oordinates (overall situation and a detailed view).

Figure 2: Solution of the Riemann problem 2 (overall situation and a detailed view).noted that in the ase of the Roe linearization we must determine the appropriate Roe matrixfor the di�erent onstitutive relations p = p(̺) separately. This itself may be a very di�ultproblem. We onsider two Riemann problems with1. left and right states given by ̺L = 0.5, ̺R = 1, vL = 10, vR = 3. The disretization stepsare hosen as ∆x = 10, ∆t = 0.25 and T = 250 (initial number of ars: 7500);2. left and right states given by ̺L = 0.5, ̺R = 0.5, vL = 6, vR = 12. The disretizationsteps are hosen as ∆x = 5, ∆t = 0.1 and T = 100 (initial number of ars: 5000). Thevauum state appears during the time evolution. In the ase of the Roe method we ansee instability aused by linearization.5 ConlusionThe entral and entral-upwind shemes are Riemann-free methods. The entral-upwind shememay be interpreted as a method that uses the HLL solver. The HLL solver is based on thedeomposition of the jump into two waves. Moreover, it does not use linearization, and thus itan be shown that the method that is based on this solver is positive. The sheme based on theRoe solver uses a speial type of linearization - in the ase of the single wave it approximatesthe shok speed exatly (in other ases, it is only an approximation). It seems therefore that inthe ase of the model based on two nonlinear partial di�erential equations the entral-upwindmethod is the best approximation of the disrete follow-the-leader model. In onlusion, we notethat it is very important to distinguish what is the error of model, the error of numerial methods14



and how to interpret the results of numerial simulations orretly. In the near future, we plan toompare our simulations with data obtained in real experiments, to use phase transition modelsand to develop numerial models for road networks.Aknowledgement: This work has been supported by the Researh Plan MSM 4977751301.Referenes[1℄ A. Aw, A. Klar, T. Materne, M. Rasle: Derivation of ontinuum tra� �ow models frommirosopi follow-the-leader models. SIAM Journal on Applied Mathematis 63, 2002, 259�278.[2℄ A. Aw, M. Rasle: Ressuretion of "seond order" models of tra� �ow? SIAM Journal onApplied Mathematis 60, 2000, 916�938.[3℄ C. F. Daganzo: Requiem for seond-order �uid approximations of tra� �ow. TransportResearh 29B, 1995, 277�286.[4℄ S. Darbha, K. R. Rajagopal, V. Tyagi: A review of mathematial models for the �ow oftra� and some reent results. Nonlinear Analysis 69, 2008, 950�970.[5℄ D. Helbing, A. Johansson: On the ontroversy around Daganzo's requiem for and Aw-Rasle's ressuretion of seond-order tra� �ow models. The European Physial Jour-nal B 69, 2009, 549�562.[6℄ S. P. Hoogendoorn, P H. L. Bovy: State-of-the-art of vehiular tra� �ow modelling. Journalof Systems and Control Engineering 215, 2001, 283�303.[7℄ A. Kurganov, S. Noelle, G. Petrova: Semidisrete entral-upwind shemes for hyperboli on-servation laws and Hamilton-Jaobi equations. SIAM Journal of Sienti� Computation 23,2001, 707�740.[8℄ A. Kurganov, A. Polizzi: Non-osillatory entral shemes for tra� �ow models with Arrhe-nius look-ahead dynamis. Networks and Heterogeneous Media 4, 2009, 431�451.[9℄ A. Kurganov, E. Tadmor: New high-resolution entral shemes for nonlinear onservationlaws and onvetion-di�usion equations. Journal of Computational Physis 160, 2000, 241�282.[10℄ R. J. LeVeque: Finite volume methods for hyperboli problems. Cambridge University Press,Cambridge, 2002.[11℄ R. J. LeVeque: Some tra� �ow models illustrating interesting hyperboli behavior. Tehnialreport, SIAM Annual Meeting, July 10, 2001.[12℄ G. F. Newell: Nonlinear e�ets in the dynamis of ar following. Operations Researh 9,1961, 209�229.
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An e�ient solution of elasto-plasti problems in mehanisM. �ermák, T. Kozubek, A. MarkopoulosV�B - Tehnial University of Ostrava1 IntrodutionThe goal of this paper is to present an e�ient algorithm for the numerial solution of elasto-plasti problems in mehanis. These problems with hardening lead to the so-alled quasistatiproblems, where eah nonlinear and nonsmooth time step problem is solved by the semismoothNewton method. In eah Newton iteration we have to solve an auxiliary (possibly of large size)linear system of algebrai equations. In this paper, we propose a new approah how to solve suhsystem e�iently using in a sense optimal algorithm based on our Total-FETI variant of FETI(Finite Element Tearing and Interonneting) domain deomposition method. The e�ieny isillustrated by the results of 3D elasto-plasti model benhmark.2 TFETI domain deompositionTo apply the TFETI domain deomposition, we tear eah body from the part of the boundarywith the Dirihlet boundary ondition, deompose eah body into subdomains, assign eah sub-domain a unique number, and introdue new �gluing� onditions on the arti�ial intersubdomainboundaries and on the boundaries with imposed Dirihlet ondition. For the arti�ial intersub-domain boundaries, we introdue the following notation: Γpq
G denotes the part of Γp that is gluedto Ωq and Γp

G denotes the part of Γp that is glued to the other subdomains. Obviously Γpq
G = Γqp

G .An auxiliary deomposition of the problem with renumbered subdomains and arti�ial intersub-domain boundaries is in Fig. 1. The gluing onditions require ontinuity of the displaementsand of their normal derivatives aross the intersubdomain boundaries.
Ω1

Ω1 Ω2

Ω3 Ω4

H h

λ

Figure 1: TFETI domain deomposition with subdomain renumbering.The �nite element disretization of Ω = Ω
1 ∪ . . .∪Ω

s with a suitable numbering of nodes resultsin the quadrati programming (QP) problem
1

2
u⊤Ku− f⊤u → min subjet to Bu = c, (1)16



where K = diag(K1, . . . ,Ks) denotes a symmetri positive semide�nite blok-diagonal matrix oforder n, B denotes an m× n full rank matrix, f ∈ R
n, and c ∈ R

m.The diagonal bloks Kp that orrespond to the subdomains Ωp are positive semide�nite sparsematries with known kernels, the rigid body modes. The bloks an be e�etively deomposedusing Cholesky fatorization [1℄. The vetor f desribes the nodal fores arising from the volumefores and/or some other imposed tration.The matrix B with the rows bi and the vetor c with the entries ci enfore the presribeddisplaements on the part of the boundary with imposed Dirihlet ondition and the ontinuityof the displaements aross the auxiliary interfaes. The ontinuity requires that biu = ci = 0,where bi are vetors of the order n with zero entries exept 1 and −1 at appropriate positions.Typially m is muh smaller than n.Even though (1) is a standard onvex quadrati programming problem, its formulation is notsuitable for numerial solution. The reasons are that K is typially ill-onditioned, singular,and the feasible set is in general so omplex that projetions into it an hardly be e�etivelyomputed.The ompliations mentioned above may be essentially redued by applying the duality theoryof onvex programming (see, e.g., Dostál [2℄). The Lagrangian assoiated with problem (1) is
L(u,λ) =

1

2
u⊤Ku− f⊤u + λ⊤(Bu − c). (2)It is well known [2℄ that (1) is equivalent to the saddle point problem

L(u,λ) = sup
λ

inf
u
L(u,λ). (3)For more details how to solve e�iently the resulting saddle-point system we reommend [2, 5℄.3 Elasto-plastiityElasto-plasti problems are the so-alled quasi-stati problems, where the history of loadingis taken into aount. We onsider the von Mises elasto-plastiity with the strain isotropihardening and inremental �nite element method with the return mapping onept. More detailsare in [3℄.The elasto-plasti deformation of an body Ω after loading is desribed by the Cauhy stresstensor σ, the small strain tensor ε, the displaement u, and the nonnegative hardening param-eter κ. Symmetri tensor is represented by the vetors and their deviatori part is denoted bythe symbol dev.Let us denote the spae of ontinuous and pieewise linear funtions onstruted over a reg-ular partition of Ω into tetrahedrons with the disretization norm h by Vh ⊂ V , where V ={

v ∈ [H1(Ω)]3 : v = 0 on ΓU

}. Let
0 = t0 < t1 < . . . tk < . . . < tN = t∗ (4)be a partition of the time interval [0, t∗]. Then the solution algorithm after time and spaedisretization has the form: 17



Algorithm 3.1. Initial step: u0
h = 0, σ0

h = 0, κ0
h = 0,2. for k = 0, . . . , N − 1 do (load step)3. From previous step we have: uk
h, σk

h, κk
h and ompute △uh, △σh, △κh

△εh = ε(△uh), △uh ∈ Vh (5)
△σh = Tσ(σk

h, κk
h, △εh), (6)

△κh = Tκ(σk
h, κk

h, △εh), (7)4. Solution △σh(σk
h, κk

h, ε(△uh)) is substituted into equation of equilibrium:
∫

Ω
△σT

h (σk
h, κk

h, ε(△uh))ε(vh)dx = 〈△Fk, vh〉, ∀vh ∈ Vh (8)leads to a nonlinear system of equations with unknown △uh whih is solved using theNewton method [4℄. The linearized problem arising in eah Newton step is solved byTFETI algorithmi sheme proposed above.5. Then we ompute new aproximations: uk+1
h = uk

h + △uh, σk+1
h = σk

h + △σh, κk+1
h =

κk
h + △κh.6. enddoAbove we onsider the following notation. Let C denote the Hook's matrix, E represent linearoperator dev, µ, λ be the Lamé oe�ients, △fk

h be the inrement of the right hand side and
σt

h = σk
h + C△εh. For return mapping onept we de�ne

△σh = TRM
σ (σk

h,κ
k
h,△εh) =

{
C△εh if P (σt

h,κ
k
h) ≤ 0,

C△εh − γRn̂ if P (σt
h,κ

k
h) > 0,

(9)
△κh = TRM

κ (σk
h,κ

k
h,△εh) =

{
0 if P (σt

h,κ
k
h) ≤ 0,

γz = γR‖Cp‖−1z if P (σt
h,κ

k
h) > 0,

(10)where
γR =

3µ

3µ+Hm

√
2

3
P (σt

h,κ
k
h), n̂ =

dev(σt
h)

‖dev(σt
h)‖ , ‖Cp‖ = 2µ

√
3

2
, z = 1 (11)and plastiity funtion

P (σt
h,κ

k
h) =

√
3

2
‖dev(σt

h)‖ − (Y +Hmκk
h), Y,Hm > 0. (12)The funtion γRn̂ is semismooth and potential. The derivative of TRM

σ is
(TRM

σ )
′

(△ε) = C − 2µ 3µ
3µ+Hm

[E+

+
√

2
3

Y0+Hmκk
h

‖dev(σk
h
+C△ε)‖

(
dev(σk

h
+C△ε)(dev(σk

h
+C△ε))T

‖dev(σk
h
+C△ε)‖2 − E

)]
.

(13)If we represent a funtion vh ∈ Vh by the vetor v ∈ R
n and omit index k then (8) an berewritten as the system of nonlinear equations

F (△u) = △f , (14)where
〈F (v),w〉 =

∫
Ω〈TRM

σ (ε(vh)), ε(wh)〉dx, ∀v,w ∈ R
n

〈△f ,w〉 = △fh(vh), ∀w ∈ R
n.

(15)18



4 Numerial experimentsLet us onsider a 3D plate with a hole in the enter (due to symmetry only a quatre of the wholestruture is used) with the geometry depited in Fig. 2. Boundary onditions are spei�ed inFig. 3. Symmetry onditions are presribed on the left and lower sides of Ω. The surfae load
g(t) = 450 sin(2πt) [MPa℄, t ∈ [0, 1

4 ] [se℄, is applied to the upper side of Ω. The elasto-plastimaterial parameters are E = 206900 [MPa℄, ν = 0.29, Y = 450, Hm = 100 and the time interval
[0, 1

4 ] [se℄ is divided into 50 steps. We onsider a mesh with 9471 nodes and 48000 tetrahedrons.In the nth Newton iteration we ompute an approximation △un by solving the linear problemof the form Kn△un = △fn − B⊤λn using the TFETI algorithmi sheme proposed above. Westop the Newton method in every time step if ‖△un+1−△un‖/ (‖△un+1‖+‖△un‖) is less than
10−9.Notie that the maximum number of the Newton iterations is small for all time steps, therefore themethod is suitable for the problem. In remaining �gures, we depit plasti and elasti elements,von Mises stress in the xy plane ross-setion with the z oordinate -0.5 [mm℄ orresponding tothe enter of Ω. In Figs. 4, 5 6, we an see whih elements are plasti (gray olor) and whihare elasti (white olor). Partiularly, in time steps 1-12 we observe only elasti behavior, andin time steps 13-50 plasti behavior of some elements. The von Mises stress on deformed meshsaled 10x for better illustration is showed in Fig. 7.
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Figure 2: 3D plate geometry in [mm℄.
Ω

Figure 3: 2D plate geometry in [mm℄and boundary onditions.

Figure 4: Plasti and elasti ele-ments after 1 time step. Figure 5: Plasti and elasti ele-ments after 35 time steps.19



Figure 6: Plasti and elasti ele-ments after 50 time steps. 0 2 4 6 8 10
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Figure 7: Von Mises stress on thedeformed mesh.5 ConlusionWe have presented an e�ient algorithm for the numerial solution of elasto-plasti problems.These problems lead to the quasi-stati problems, where eah nonlinear and nonsmooth timestep problem is solved by the semismooth Newton method. In eah Newton iteration we haveto solve an auxiliary (possibly of large size) linear system of algebrai equations. We proposeda new approah how to solve suh system e�iently using in a sense optimal algorithm basedon our Total-FETI variant of FETI domain deomposition method. The algorithm has beenadapted also to the solution of ontat problems [1℄.Aknowledgement: This work has been supported by the grant GA �R 103/09/H078.Referenes[1℄ T. Brzobohatý, Z. Dostál, P. Ková°, T. Kozubek, A. Markopoulos: Cholesky deompositionwith �xing nodes to stable omputation of a generalized inverse of the sti�ness matrix of a�oating struture. Aepted for publishing in IJNME.[2℄ Z. Dostál: Optimal quadrati programming algorithms, with appliations to variational in-equalities. 1st edition, SOIA 23, Springer US, New York, 2009.[3℄ R. Blaheta: Numerial methods in elasto-plastiity. Doumenta Geonia 1998, PERES Pub-lishers, Prague, 1999.[4℄ S. Sysala: Appliation of the modi�ed semismoth Newton method to some elasto-plastiproblems. Mathematis and Computer in Simulation, Modelling 2009.[5℄ R. Ku£era, T. Kozubek, A. Markopoulos, J. Mahalová: On the Moore-Penrose inverse insolving saddle-point systems with singular diagonal bloks. NLA submitted.
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On optimally onditioned ubi spline wavelets on the intervalD. �erná, V. Fin¥kDepartment of Mathematis and Didatis of Mathematis, Tehnial University of Libere
1 IntrodutionWavelets are by now a widely aepted tool espeially in signal and image proessing. In the�eld of numerial mathematis, methods based on wavelets are suessfully used for preondi-tioning of large systems arising from disretization of ellipti partial di�erential equations, sparserepresentations of some types of operators and adaptive solving of operator equations. Quanti-tative properties of these methods depends on the hoie of the wavelet basis, in partiular onits ondition number.Constrution of wavelet bases on a bounded domain usually starts with the onstrution ofwavelets on the real line. Then these wavelets are adapted to the interval and by tensor produtto the n-dimensional ube. Finally splitting the domain into subdomains whih are imagesof (0, 1)n under appropriate parametri mappings one obtains wavelet bases on fairly generaldomains. Thus, the properties of the employed wavelet basis on the interval are ruial for theproperties of the resulting bases on general domain.The �rst biorthogonal spline-wavelet bases on the unit interval were onstruted in [5℄. Howeversome of them are badly onditioned. Then several modi�ations were proposed. We will men-tion here only the reent onstrution by M. Primbs [6℄ whih seems to outperform the previousonstrutions with respet to the ondition number along with spetral properties of the or-responding sti�ness matries for linear and quadrati spline-wavelets. In this ontribution, wepresent onstrution of ubi spline wavelets on the unit interval with a nearly optimal onditionnumber (omparable with the ondition number of the spline wavelet bases on the real line).First of all, we summarize the desired properties:

• Riesz basis property. The funtions form a Riesz basis of the spae L2 (〈0, 1〉).
• Loality. The basis funtions are loal. Then the orresponding deomposition and reon-strution algorithms are simple and fast.
• Biorthogonality. The primal and dual wavelet bases form a biorthogonal pair.
• Polymial exatness. The primal bases have polynomial exatness of order N and the dualbases have polynomial exatness of order Ñ . As in [4℄, N + Ñ has to be even and Ñ ≥ N .
• Smoothness. The smoothness of primal and dual wavelet bases is another desired property.It ensures the validity of norm equivalenes.
• Closed form. The primal saling funtions and wavelets are known in the losed form. It isrequested property for the fast omputation of integrals involving primal saling funtionsand wavelets.
• Well-onditioned bases. Our objetive is to onstrut wavelet bases with improved onditionnumber, espeially for larger values of N and Ñ .21



From the viewpoint of numerial stability, ideal wavelet bases are orthogonal wavelet bases.However, they are usually avoided in numerial treatment of partial di�erential and integralequations, beause they are not aessible analytially, the omplementary boundary onditionsan not be satis�ed and it is not possible to inrease the number of vanishing wavelet momentsindependent from the order of auray. Moreover, su�iently smooth orthogonal waveletstypially have a large support.2 Constrution of wavelet bases on the intervalMajority of onstrutions of wavelets start with the onstrution of the primal saling bases. Here,we use the primal saling bases designed in [1℄, beause they are known to be well-onditioned.Let N be the desired order of polynomial exatness of the primal saling basis and let tj =
(tjk)

2j+N−1
k=−N+1 be a sequene of knots de�ned by

tjk = 0 for k = −N + 1, . . . , 0,

tjk =
k

2j
for k = 1, . . . 2j − 1,

tjk = 1 for k = 2j , . . . , 2j +N − 1.The orresponding B-splines of order N are de�ned by
Bj

k,N (x) :=
(
tjk+N − tjk

) [
tjk, . . . , t

j
k+N

]
t
(t− x)N−1

+ , x ∈ [0, 1] , (1)where (x)+ := max {0, x} and [t1, . . . tN ]t f is the N -th divided di�erene of f . The set Φj ofprimal saling funtions is then simply de�ned as
φj,k = 2j/2Bj

k,N , for k = −N + 1, . . . , 2j − 1, j ≥ 0. (2)The inner funtions are translations and dilations of a funtion φ whih orrespond to the pri-mal saling funtions onstruted by Cohen, Daubehies, Feauveau in [4℄. In the following, weonsider φ from [4℄ whih is shifted so that its support is [0,N ].The desired property of the dual saling basis Φ̃ is biorthogonality to Φ and polynomial exatnessof order Ñ . Let φ̃ be dual saling funtion designed in [4℄ whih is shifted so that its support is[
−Ñ + 1, N + Ñ − 1

]. Then inner saling funtions are its translations and dilations of φ̃:
θj,k = 2j/2φ̃

(
2j · −k

)
, k = Ñ − 1, . . . 2j −N − Ñ + 1. (3)Further, there will be two types of basis funtions at eah boundary. Basis funtions of the �rsttype are de�ned to preserve polynomial exatness in the same way as in [5℄:

θj,k = 2j/2
Ñ−2∑

l=−N−Ñ+2

〈
pÑ−1

k+N−1, φ (· − l)
〉
φ̃
(
2j · −l

)
|[0,1], k = 1 −N, . . . , Ñ −N, (4)where pÑ−1

k are Bernstein polynomials de�ned by
pÑ−1

k (x) := b−Ñ+1

(
Ñ − 1

k

)
xk (b− x)Ñ−1−k , k = 0, . . . , Ñ − 1. (5)22



The reason for the hoie of Bernstein polynomials onsists in their well-onditionality on [0, b]relative to the supremum norm. In our numerial experiments, the onstant b = 10 seems to beoptimal.The basis funtions of the seond type are de�ned as
θj,k = 2

j+1
2

N+Ñ−1∑

l=Ñ−1−2k

h̃lφ̃
(
2j+1 · −2k − l

)
|[0,1], k = Ñ −N + 1, . . . , Ñ − 2, (6)where h̃l are saling oe�ients orresponding to φ̃. Then they are as muh as possible similarto the inner funtions.The boundary funtions at the right boundary are de�ned to be symmetrial with the leftboundary funtions:

θj,k = θj,2j−N+1−k (1 − ·) , k = 2j −N − Ñ + 2, . . . , 2j − 1. (7)Sine the set Θj :=
{
θj,k : k = −N + 1, . . . , 2j − 1

} is not biorthogonal to Φj, we derive a newset Φ̃j from Θj by biorthogonalization. Let Aj = (〈φj,k, θj,l〉)2
j−1

j,l=−N+1, then viewing Φ̃j and Θjas olumn vetors we de�ne
Φ̃j := A−T

j Θj, (8)assuming that Aj is invertible, whih was the ase for all tested hoies of N , Ñ .The �nal step is to determine the orresponding wavelets. This problem an be transformedfrom funtional analysis to linear algebra by a general priniple alled stable ompletion whihwas proposed in [2℄. The initial stable ompletion was found by the method from [5℄ with somesmall hanges.For more details on the onstrution, the adaptation to omplementary boundary onditions,properties of onstruted bases, and the omparison of the quantitative behaviour in the adaptivewavelet method for ubi wavelet bases from [3℄ and [6℄, we refer to [3℄.Aknowledgement: This work has been supported by the Ministry of Eduation, Youth andSports of the Czeh Republi through the Researh Center 1M06047.Referenes[1℄ C.K. Chui, E. Quak: Wavelets on a bounded interval. In Numerial Methods of Approxima-tion Theory, D. Braess and L. L. Shumaker (Eds), Birkhäuser, 1992, 53�75.[2℄ J.M. Carnier, W. Dahmen, J.M. Peña: Loal deompositions of re�nable spaes. Appl.Comp. Harm. Anal. 3, 1996, 127�153.[3℄ D. �erná, V. Fin¥k: Constrution of optimally onditioned ubi spline-wavelets on theinterval. Advanes in Computational Mathematis, DOI: 10.1007/s10444-010-9152-5, 2010.[4℄ A. Cohen, I. Daubehies, J.C. Feauveau: Biorthogonal bases of ompatly supported wavelets.Comm. Pure and Appl. Math. 45, 1992, 485�560.[5℄ W. Dahmen, A. Kunoth, K. Urban: Biorthogonal spline wavelets on the interval - stabilityand moment onditions. Appl. Comp. Harm. Anal. 6, 1999, 132�196.[6℄ M. Primbs: New stable biorthogonal spline-wavelets on the interval. Results in Mathematis57 1-2, 2010, 121�162. 23



On averaging in the domain deomposition methodsM. �ertíková, P. Burda, J. Novotný, J. �ístek
1,2,3 Czeh Tehnial University in Prague
4 Institute of Mathematis AS CR, Prague

1 IntrodutionSubstruturing Domain Deompositon (DD) methods [1℄ are widely used as preonditioners forsolving large systems of linear algebrai equations obtained by �nite element disretization ofseond order ellipti problems. There are two main lasses of the substruturing methods: primalmethods (like lassial Neumann-Neumann method, BDD or BDDC) and dual ones (like FETIor FETI-DP methods). Both lasses an be regarded as equivalent in a sense that they an bedesribed in a ommon framework and that a primal method and the orresponding dual one hasthe same onvergene properties (see [2℄). Both lasses also use some sort of weighted averaging(or weighted distribution) of values aross the interfae.Although we onentrate on BDDC in this paper, we believe that our ideas an be used for otherprimal and dual substruturing DD methods as well. It an be found in [2℄ that a primal (BDDC)and the orrespondig dual (FETI-DP) method an be determined by a hoie of two operators:the injetion R and the averaging E, whih also appear in the estimate of the ondition numberof the preonditioned operator. Operator R represents ontinuity onditions aross the interfaeand thus also the hoie of the oarse spae. A lot of work has been devoted to investigation ofin�uene of di�erent hoies of R on onvergene properties. For signi�ant results of this e�ortsee for instane [1℄ or [3℄. In this paper we fous on the averaging operator E, whih seems tobe left out of main diretion of researh so far. We introdue a general framework for derivationof the averaging operator, from whih we reover the standard hoie of the operator E found inliterature and suggest some new proposals.2 Primal and dual substruturing methodsLet us onsider a boundary value problem with a self-adjoint operator de�ned on a domain
Ω ⊂ R

2 or R
3. If we disretize the problem by means of the standard �nite element method(FEM), we arrive at the solution of a system of linear equations in the matrix form

Ku = f , (1)where K is large, sparse, symmetri positive de�nite (SPD) matrix and f represents the loadvetor. Let us deompose the domain Ω into N non-overlapping subdomains Ωi, i = 1, . . . ,N .Unknowns ommon to at least two subdomains form the global interfae denoted as Γ. Remainingunknowns are lassi�ed as belonging to subdomain interiors. The global interfae Γ an beexpressed as union of loal interfaes Γi, i = 1, . . . ,N , ontaining interfae unknowns involvedjust in subdomain Ωi.
24



The �rst step typial for substruturing DD methods is the redution of the problem tothe interfae . Without loss of generality, suppose that unknowns are ordered so that interiorunknowns form the �rst part and the interfae unknowns form the seond part of the solutionvetor, i.e. u =
[

uo û
]T , where uo stands for all interior unknowns and û for unknowns atinterfae. System (1) now an be formally rewritten to blok form

[
Koo Kor

Kro Krr

] [
uo

û

]
=

[
fo

f̂

]
. (2)The hat symbol (̂ ) is used to denote global interfae quantities. If we suppose the interiorunknowns ordered subdomain after subdomain, then the submatrix Koo is blok diagonal witheah diagonal blok orresponding to one subdomain. After eliminating all the interior unknownsfrom (2), we arrive at Shur omplement problem for the interfae unknowns

Ŝ û = ĝ, (3)where Ŝ = Krr − KroK
−1
oo Kor is the Shur omplement of (2) with respet to interfae and

ĝ = f̂ − KroK
−1
oo fo is sometimes alled ondensed right-hand side. Interior unknowns uo aredetermined by interfae unknowns û via the system of equations Koouo = fo − Korû, whihrepresents N independent subdomain problems with Dirihlet boundary ondition presribed onthe interfae and an be solved in parallel. The main objetive represents the solution of problem(3), whih is solved by the preonditioned onjugate gradient method (PCG).The main idea of the primal DD substruturing methods an be expressed as splitting thegiven residual of PCG method to subdomains, solving subdomain problems and projeting theresult bak to the global domain. A primal additive preonditioner of the Neumann-Neumanntype an be written as MP = ES−1ET , where operator ET represents splitting of the residualto subdomains, S−1 stands for solution of subdomain problems, and E represents projetion ofsubdomain solutions bak to the global problem by some averaging. The ondition number κ ofthe preonditioned operator MP Ŝ is bounded by

κ ≤ ||RE||2S = ||I −RE||2S , (4)where operator R splits the global interfae into subdomains and relation ER = I is assumed,whih means that if the problem is split into subdomains and then projeted bak to the wholedomain, the original problem is obtained. The energeti norm on the right-hand side of (4) isde�ned by the salar produt as ||u||2S = 〈Su, u〉. The estimate (4) an be found in [2℄.The main idea of the BDDC ([2℄) is to introdue a global oarse problem by imposing ontinuityonditions aross the interfae in seleted oarse unknowns, in order to ahieve better preondi-tioning and to �x `�oating subdomains' to guarantee invertibility of S. R now represents splittingof the global interfae into subdomains exept the oarse unknowns and ET distributes residualamong neighbouring subdomains only in those interfae unknowns whih are not oarse. Thus inBDDC, only part of the global residual is split into subdomains; residual at the oarse unknownsis left undivided � it is proessed by the global oarse problem.Dual methods an be desribed using the omplementary projetion to projetion RE. It isusually expressed by omposition of other two operators as I−RE = BT
DB. Operator B spei�esjump at interfae values oming from adjaent subdomains and operator BT

D (determined by E)distributes a given jump aross the interfae among adjaent subdomains. Relationship BBT
D = Iis assumed. Instead of solving (3), linear system BS−1BT λ = BS−1ET f̂ is solved for unknown λusing preonditioner MD = BDSBD

T . For the ondition number of the preonditioned operator
MDS

−1, the same upper estimate as for primal method is valid, see [2℄: κ ≤ ||BT
DB||2S =

||I −RE||2S = ||RE||2S . 25



3 Choie of the averaging operator EWe assume that the operator R is given and our goal is to design the averaging operator E sothat it in some sense minimizes the energeti norm on the right hand side of the estimate (4).Let us show the main ideas on the simple example derived from some salar equation solved onthe domain splitted to just two subdomains, without oarse unknowns (more detailed analysisan be found in [4℄). In this ase R and a standard hoie of E have the matrix form
R =

[
I

I

]
, E =

[
A I − A

]
, (5)where A = diag(α1, α2, . . . , αn) is a diagonal matrix of weights αi at interfae nodes of the �rstsubdomain.Our approah is to start with some �xed u = (u1, u2)

T with the interfae jump d = u2−u1 andtry to �nd E so that it minimizes energy norm of the projetion (I−RE)u of the given vetor u.The square of the energy norm an be expressed as ||(I − RE)u||2S = uT (I−RE)TS(I−RE)u =

dT (AT ŜA − ATS1 − S1A + S1 )d , where Si are loal Shur omplements and we use the fatthat S = diag(S1,S2) and Ŝ = S1 + S2 in the ase of two subdomains. The formula above anbe seen as a quadrati funtion of variables αi, whih an be minimised by omputing all partialderivatives and equating them to zero:
∂

∂αi
||(I − RE)u||2S = 2di


∑

j

ŝijαjdj −
∑

j

s1ijdj


 = 0 ∀ i . (6)Here di stands for the i-th omponent of the jump vetor d and elements of the matries Ŝ and

S1 are denoted as ŝij and s1ij , respetively. Values of αi obtained from (6) are tailored to theinterfae jump d of the given u. Let us take d as a test vetor whih an unover hidden featuresof Ŝ and R and, moreover, whih an be hosen so that it simpli�es the system (6). One option isto hoose all the artesian basis vetors ek, one after another, whih leads to the popular hoieof
αi = s1ii/(s

1
ii + s2ii) . (7)For less elementary test vetors d we make an additional simpli�ation: Let us assume that all αiare equal to the same value of α for some set of nodes (so we are going to �nd some averagevalue). Then, after adding all equations (6) together, we get

α = dTS1 d/dT (S1 + S2)d . (8)This formula an be generalized to more than 2 subdomains. Our proposition is to hoose severaltest vetors with nonzero values at some seleted nodes only, typially fae or edge, and omputeorresponding value of α for that fae or edge.3.1 Numerial results and onlusionFor a simple preliminary test a 2D Poisson equation on a retangular domain was hosen. Thedomain was divided into two retangular subdomains of the same size and shape, both of whihtouh the boundary with presribed Dirihlet boundary ondition. The problem was disretizedby FEM with bilinear elements. BDDC was used just as an iteration method, not as a preon-ditioner ombined with PCG. Four di�erent methods for hoie of E were tested:26



iter. Method I Method II Method III Method IV αwithout oarse nodes1. 1.5001 1.4966 0.4235 1.5001 0.5002. 0.3872 0.3854 0.0806 0.0001 0.2763. 0.0999 0.0992 0.0153 2e-06 0.4244. 0.0258 0.0255 0.0029 1e-09 0.4925. 0.0066 0.0066 0.0006 4e-15 0.2762 oarse nodes1. 0.7349 0.7332 0.2402 0.7349 0.5002. 0.0929 0.0925 0.0140 0.0211 0.3763. 0.0117 0.0117 0.0008 0.0012 0.3764. 0.0015 0.0015 5e-05 7e-05 0.3765. 0.0002 0.0002 3e-06 4e-06 0.376Table 1: Comparisson of disussed methods.I : arithmeti average, i.e. α = 0.5 ,II : weighted average (7), i.e. αi = s1ii/ (s1ii + s2ii) ,III : proposition (8) with d = (1, . . . , 1), i.e. α =
∑

i,j s
1
ij/
∑

i,j(s
1
ij + s2ij) ,IV : proposition (8) with d hosen as atual interfae jump.Table 1 ontains norms of errors (di�erenes from exat solution) at �rst 5 iterations. Thereare two di�erent hoies of oarse unknowns: either none (�rst part of the table), or 2 nodesat the opposite ends of the interfae (seond part). For Method II, omputed values of αiwere between 0.4997 and 0.5000 in both ases (i.e. very lose to the arithmeti average). ForMethod III, value of α was 0.276 for the �rst ase and 0.397 for the seond. For Method IV,values of α were reomputed in every step and are presented in the last olumn. Very similarresults were obtained also in the ase of two retangular subdomains di�erent in size.For the simple test problem, it seems that Methods III and IV outperform Methods I and II. Aninteresting observation is that for the �rst three methods, using oarse unknowns leads to betterperformane (as one would expet), while it slightly worsens the onvergene of Method IV.These are just preliminary results and numerial tests will be performed for 2D and 3D problemswith more subdomains.Aknowledgement: This researh has been supported by the grant No. 106/08/0403 of theCzeh Siene Foundation and by projet MSM 6840770010.Referenes[1℄ A. Toselli, O. Widlund: Domain deomposition methods�algorithms and theory. SpringerSeries in Computational Mathematis, vol. 34, Springer-Verlag, Berlin, 2005.[2℄ J. Mandel, B. Sousedík: BDDC and FETI-DP under minimalist assumptions. Computing81, 2007, 269�280.[3℄ J. Mandel, B. Sousedík: Adaptive seletion of fae oarse degrees of dreedom in the BDDCand the FETI-DP iterative substruturing methods Comput. Methods Appl. Meh. Engrg.196 (8), 2007, 1389�1399.[4℄ M. �ertíková, P. Burda, J. Novotný, J. �ístek: Some remarks on averaging in the BDDCmethod. Proeedings of PANM'15, Horní Maxov, 2010. To appear.27



On two variants of inremental ondition estimationJ. Duintjer Tebbens, M. T·maInstitute of Computer Siene AS CR, Prague
1 IntrodutionClassial 2-norm ondition estimators often assume a given triangular fatorization and estimatethe ondition numbers of the triangular fators. For instane, if the matrix A is symmetripositive de�nite and A = LLT is its Cholesky deomposition, then κ(A) = κ(L)2 is used.So-alled inremental ondition estimation for (lower) triangular matries was proposed at thebeginning of the nineties [1℄, [2℄. It omputes a sequene of approximate ondition numbers ofthe leading upper left submatries of growing dimension. The approximation for the urrentsubmatrix is obtained from an approximate singular vetor onstruted without aessing theprevious submatries. This makes the proedure relatively inexpensive and partiularly suitedwhen a triangular matrix is omputed one row at a time. A similar strategy was proposed later [5℄and reommended for sparse matries.In our talk we show that the two tehniques may di�er onsiderably with respet to their abilityto �nd aurate approximations of either the minimal or the maximal singular value, althoughthere is no general superiority of one tehnique for the ondition number. We will also explainhow the di�erenes an be exploited when the inverse of the triangular matrix is omputed alongwith the triangular matrix itself. This an be done at low expenses; see [4℄ for a disussionof well-known implementations and [3℄ for a reent strategy. Using the inverse, we obtain aninremental ondition estimator whih is signi�antly better than the estimators of [1℄ and [5℄.In this extended abstrat we give a brief desription of the original inremental tehnique from [1℄and a new interpretation of the alternative tehnique from [5℄. Then we present experimentsombining both tehniques when the inverse of the triangular matrix is available.2 The original inremental ondition estimation tehniqueThe inremental ondition estimation of [1℄ for lower triangular matries an be desribed asfollows. Assume we have given a vetor x whih omes lose to a maximum norm solution of
Lx = d with ‖d‖ = 1. Then σmin(L) ≈ 1/‖x‖ and σ̃min(L) = 1/‖x‖ is used as an approximation.To �nd an approximation to the minimal singular value of

L′ =

(
L 0
vT γ

)
, (1)one searhes for s ≡ sinφ and c ≡ cosφ suh that

(
L 0
vT γ

)(
sx

c−sα
γ

)
=

(
sd
c

)
, (2)

28



where α = vTx. The parameters s and c are hosen suh that the new approximate singularvetor ( sx
c−sα

γ

) has maximal norm. In other words, s and c solve
max
c,s

s2‖x‖2 +
(c− sα)2

γ2
subjet to c2 + s2 = 1. (3)The solution to this maximization problem an be found in [1℄. With the hosen c and s, theresulting approximate minimal singular value is

σ̃min(L′) =
1√

s2‖x‖2 + (c−sα)2

γ2

≈ σmin(L′).One an estimate the largest singular value similarly. Assume we have given a vetor x whihomes lose to a minimum norm solution of Lx = d with ‖d‖ = 1. Then σmax(L) ≈ 1/‖x‖ and
σ̃max(L) = 1/‖x‖ is used as an approximation. To �nd an approximation of σmax(L′), solve theminimization problem

min
c,s

s2‖x‖2 +
(c− sα)2

γ2
subjet to c2 + s2 = 1, (4)and de�ne, with the resulting c and s, the estimate as

σ̃max(L′) =
1√

s2‖x‖2 +
(

c−sα
γ

)2
≈ σmax(L′).3 An alternative inremental ondition estimation tehniqueNow suppose we want to estimate the ondition number of an upper triangular matrix

R′ =

(
R v
0 γ

)
. (5)Of ourse, one may apply the tehnique mentioned above to (R′)T , exploiting the fat thatsingular values are invariant under transposition. This would amount to approximating theextremal right singular vetors of (R′)T , although in some ases the extremal left singular vetorsof (R′)T may be easier to approah. To �nd left singular vetors (i.e. right singular vetorsof R′), we set up the problem as follows. With an approximate singular vetor x satisfying

Rx = d, ‖d‖ = 1, we will searh for numbers α, β suh that
R′ =

(
R v
0 γ

)(
βx
α

)
=

(
βd+ αv
γα

)
. (6)Then we ask the numbers α, β to satisfyoptc,s β2‖x‖2 + α2 subjet to β2 + α2‖v‖2 + 2αβvT d+ γ2α2 = 1, (7)where opt stays for maximization if we approah σmin(R′) and for minimization if we approah

σmax(R′). 29



Introdue the abbreviations a = ‖v‖2 + γ2 and b = vT d. Aording to elementary geometrythe numbers α, β satisfying the onstraint in (7) lie on an ellipse with the origin as enter andsemi-axes rotated by an angle of
φ = 1/2 arctan

2b

1 − a
;the lengths of the semi-axes a′ and b′ are

a′ = a cos2 φ− 2b cos φ sinφ+ sin2 φ, b′ = a sin2 φ+ 2b cosφ sin φ+ cos2 φ.A parametrization of the ellipse (and of α and β) is
(
α
β

)
=

(
cos φ√

a′
cos(t) + sin φ√

b′
sin(t)

cos φ√
b′

sin(t) + sinφ√
a′

cos(t)

)
, 0 ≤ t ≤ 2π, (8)and (7) an be written asopt0≤t≤2π

(
sin(t) cos(t)

)(m11 m12

m21 m22

)(
sin(t)
cos(t)

)
, where

(
m11 m12

m21 m22

)
=

(
cos2 φ

b′ ‖x‖2 + sin2 φ
b′

cos φ√
b′

sin φ√
a′
‖x‖2 + sinφ√

b′
cos φ√

a′

cos φ√
b′

sinφ√
a′
‖x‖2 + sinφ√

b′
cos φ√

a′

sin2 φ
a′ ‖x‖2 + cos2 φ

a′

)
.In ase the optimization problem is a minimization problem for approximating the largest sin-gular value, one determines the smallest eigenvalue of the matrix M = (mij)1≤i,j≤2 and theorresponding normalized eigenvetor is substituted in (8), yielding a solution of (7). Whenapproximating the smallest singular value one determines the largest eigenvalue of M and theorresponding normalized eigenvetor is substituted in (8), yielding a solution of (7). The eigen-values of M are

λ± =
m11 +m22 ±

√
(m11 −m22)2 + 4m2

12

2and the orresponding normalized eigenvetors are
1√

1 + (λ+ −m11)2

(
1

λ+ −m11

)
,

1√
1 + (λ+ −m22)2

(
1

−λ+ +m22

)
.The tehnique of this setion was proposed in [5℄. Our desription di�ers from [5℄ and representsan alternative derivation of this tehnique.4 Combination of the two tehniquesClearly, the two desribed tehniques do not give idential results in general. It is hard to saywhih one is better. The onlusion in [5℄ is that the newer tehnique is more suitable for sparsematries, but otherwise superiority of a partiular variant is not observed in the experiments.In the speial ase where besides the triangular fatorization the inverses of these fators areavailable, we an derive an improved inremental ondition estimator. Inverse fators are om-puted, for example, as a by-produt of the reently introdued BIF method [3℄. At �rst sightit may seem trivial that ondition estimation works better when the inverse of the matrix isavailable. This is, however, not the ase; in fat, the improvement onsists of a arefully seleted30



0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: The values of κ̃(L)2

κ(A) (lower urve) and κ̂(L,L−1)2

κ(A) (upper urve) for 50 random s.p.d.matries of dimension 100.ombination of the tehniques from [1℄ and [5℄. Details on this ombination are to be publishedin a forthoming paper. Here we only present a numerial experiment.We generated 50 random matries B of dimension 100 with the ommand B = randn(100, 100)in Matlab and we omputed the Cholesky deompositions LLT of the 50 symmetri positivede�nite matries A = BBT with the BIF method, hene the fator L−1 was also omputed.We �rst omputed the ondition number estimations κ̃(L) obtained with the �rst tehnique(with (3)-(4)) from the fator L and then the improved ondition number estimations κ̂(L,L−1)obtained with our ombination of both tehniques [1℄ and [5℄ from the fators L and L−1. InFigure 1 we display the quality of these estimations through the number
κ̃(L)2

κ(A)
, resp. κ̂(L,L−1)2

κ(A)where κ(A) is the true ondition number. Clearly, κ̂(L,L−1) is a muh more aurate approxi-mation.Aknowledgement: This work is part of the Institutional Researh Plan AV0Z10300504 andis supported by the projet IAA100300802 of the Grant Ageny of the Aademy of Sienes ofthe Czeh Republi.
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Worst-ase GMRES: haraterization and examplesV. Faber, P. Tihý, J. Liesen
2 Institute of Computer Siene AS CR, Prague

IntrodutionLet a nonsingular matrix A ∈ R
n×n and a vetor b ∈ R

n be given. Suppose that we apply theGMRES method with the initial guess x0 = 0 to the linear system Ax = b. Then this methodomputes a sequene of iterates xk ∈ Kk(A, b), so that the kth residual rk ≡ b−Axk satis�es
‖rk‖ = min

p∈πk

‖ p(A)b ‖ . (1)Here πk denotes the set of polynomials of degree at most k and with value one at the origin, ‖ · ‖denotes the Eulidean norm, and Kk(A, b) ≡ span{b,Ab, . . . Ak−1b} is the kth Krylov subspaegenerated by A and b. Without loss of generality we will assume that ‖b‖ = 1.A ommon approah for investigating the GMRES onvergene behavior is to bound (1) inde-pendently of b, and thus to study the algorithm's worst-ase behavior. In partiular, for eahiteration step k one may analyze the worst-ase GMRES approximation
ψk(A) ≡ max

‖b‖=1
min
p∈πk

‖ p(A)b ‖ . (2)It is lear that there exists a starting vetor w = w(A, k) and the orresponding GMRES poly-nomial pk,w ∈ πk suh that ψk(A) = ‖pk,w(A)w‖. Suh a vetor and polynomial will be alleda worst-ase GMRES starting vetor and a worst-ase GMRES polynomial for A and step k.Using the submultipliativity of the Eulidean norm (or by hanging the order of maximizationand minimization in (2)), we an easily �nd the following upper bound on (2),
ψk(A) ≤ min

p∈πk

‖p(A)‖ = min
p∈πk

max
‖b‖=1

‖ p(A)b ‖ ≡ ϕk(A) . (3)The quantity ϕk(A), alled the kth ideal GMRES approximation, has been introdued by Green-baum and Trefethen [4℄. The polynomial for whih the minimum is attained in (3) is alled the
kth ideal GMRES polynomial of A.After the 1994 paper [4℄, several studies have been devoted to the problem of haraterizing therelation between ψk(A) and ϕk(A), and in partiular the tightness of the inequality (3). Thebest known result is that (3) is an equality for all k ≥ 0, whenever A is normal [3, 5℄. Somenonnormal matries A are known for whih ψk(A) < ϕk(A), even ψk(A) ≪ ϕk(A), for ertain k,see [1, 8℄. However, it is still an open problem whether for larger lasses of nonnormal matriesthe quantity ϕk(A) indeed represents the essene of the GMRES proess.In this ontribution we onentrate mainly on haraterization of the worst-ase GMRES problem(2), and present results of our reent paper [2℄. We will show that worst-ase starting vetorshave some speial properties. In partiular, they satisfy the so alled ross-equality and theyare always right singular vetors of the matrix equal to the orresponding worst-ase GMRESpolynomial in the variable A. While the ideal GMRES polynomial is always unique, we will showthat a worst-ase GMRES polynomial need not be unique.33



Speial properties of worst-ase starting vetorsThe following theorem shows that if we apply GMRES to A and a worst-ase starting vetor w,and afterwards GMRES to AT and the previous (normalized) residual vetor, we obtain againthe original starting vetor w (up to a saling fator). To emphasize that rk is the kth GMRESresidual for the matrix A and the starting vetor b, we use the notation rk = GMRES(A, b, k).Theorem. Let A ∈ R
n×n be a nonsingular matrix, and k a positive integer, k < d(A) where

d(A) denotes the degree of the minimal polynomial of A. Let b(0) be a unit norm worst-aseGMRES starting vetor for A and step k and onsider the following proess:
rk = GMRES(A, b(0), k)

b(1) =
rk

‖rk‖
sk = GMRES(AT , b(1), k)

b(2) =
sk

‖sk‖
.Then

b(0) = b(2) and ‖sk‖ = ‖rk‖ = ψk(A).This is an example of what we all the ross-equality (this term has been oined by Zavorin inan unpublished tehnial report [9℄). Next, we will present and disuss the following result.Theorem. Let A ∈ R
n×n be a nonsingular matrix, and k a positive integer, k < d(A). If w isa unit norm worst-ase GMRES starting vetor for A and step k and pk,w ∈ πk the orrespondingGMRES polynomial, then ψk(A) is a singular value of pk,w(A) and w is a orresponding rightsingular vetor of pk,w(A).UniquenessWe �rst summarize the known results on uniqueness of the solution of the worst-ase GMRESproblem (2) and the ideal GMRES problem (3).Lemma. Let A ∈ R

n×n be a nonsingular matrix, and k a positive integer, k < d(A). Then1. the kth ideal GMRES polynomial is unique [4, 6℄;2. if ψk(A) = ϕk(A), then the kth worst-ase GMRES polynomial is unique, and it is equalto the kth ideal GMRES polynomial of A [7℄.Based on the results of the previous theorems we will show that the kth worst-ase GMRESpolynomial need not be unique, if ψk(A) < ϕk(A). Note that the ondition ψk(A) < ϕk(A) isa neessary but not a su�ient ondition for the non-uniqueness of the kth worst-ase GMRESpolynomial. This phenomenon will be demonstrated numerially on a 4 × 4 matrix from [8℄.Aknowledgements: The work of Petr Tihý was supported by the projet M100300901 of theinstitutional support of ASCR, by the GAAS grant IAA100300802, and by the Institutional Re-searh Plan AV0Z10300504. The work of Jörg Liesen was supported by the Heisenberg Programof the Deutshe Forshungsgemeinshaft. 34
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Bakward error in linear least squares problems:estimates and their aurayS. Gratton, P. Jiránek, D. Titley-PeloquinINPT-IRIT, University of Toulouse and ENSEEIHTCERFACS, ToulouseMathematial Institute, University of OxfordWe onsider a linear least squares (LS) problem�nd x̂ ∈ R
n suh that ‖b−Ax̂‖2 = min

x∈Rn
‖b−Ax‖2, (1)where A ∈ R

m×n, m and n are positive integers, b ∈ R
m, both A and b are nonzero, and

‖v‖2 =
√
vT v denotes the Eulidean norm. The vetor x̂ is a solution of the LS problem (1) ifand only if x̂ satis�es the system of normal equations ATAx = AT b and provided that A has fullolumn rank the problem (1) is uniquely solvable with x̂ = (ATA)−1AT b ≡ A†b, where A† is thepseudo-inverse of A. For more information, see, e.g., [1, 3, 10℄.Let x ∈ R
n be an approximation to the solution x̂ of the LS problem (1). We are interested inomputing the bakward error assoiated with the approximation x, i.e., we want to �nd the sizeof �smallest� perturbations E and f of the data A and b, respetively, suh that x is the solutionof the perturbed LS problem with the matrix A + E and the right-hand side b + f . In [16℄Waldén, Karlson, and Sun provide an expliit expression for the bakward error µ de�ned by

µ ≡ min
E,f

{‖[E, θf ]‖F ; (A+ E)T [b+ f − (A+ E)x] = 0}, (2)where θ is a given positive weighting parameter and ‖ · ‖F denotes the Frobenius matrix norm.We denote by
ω ≡ min

E,f
{‖[E, θf ]‖F ; (A+ E)x = b+ f} =

θ‖r‖2√
1 + θ2‖x‖2

2

, r ≡ b−Ax, (3)the bakward error of x assoiated with the linear equations Ax = b (see, e.g., [2, Theorem 2.2℄,[7, Problem 7.8℄) and by σmin(M) the minimal singular value of a matrix M . Then
µ = min{ω, σmin(M)}, (4)where
M ≡

[
AT

ω(I − rr†)

]
, (5)see [16, Corollary 2.1℄ or [7, Theorem 20.5℄. If the LS problem (1) is not ompatible, then

µ = σmin(M) < ω.Computing the minimal singular value of the matrix M an be expensive and one an be ratherinterested in its good and heaply omputable estimate. First bounds of µ were given by Stew-art [13, 14℄, whih an be interpreted as Rayleigh quotient approximations to the minimal singularvalue of the matrix M in (5). The bakward error µ an be bounded from above by µ̄1 and µ̄2de�ned bȳ
µ1 ≡ ‖Mr‖2

‖r‖2
=

‖AT r‖2

‖r‖2
, µ̄2 ≡ min

06=s⊥R(A)

‖Ms‖2

‖s‖2
=

‖Mr̂‖2

‖r̂‖2
=

θ‖PAr‖2√
1 + θ2‖x‖2

2

, (6)36



where r̂ ≡ b−Ax̂ is the residual assoiated with the solution of the LS problem (1) and PA ≡ AA†is the pseudo-inverse of A. Neither µ̄1 nor µ̄2 is however guaranteed to be a good estimate of thebakward error µ. We have the bounds
1√

σ2
max(A)/ω2 + 1

µ̄1 ≤ µ ≤ µ̄1,
1√

ω2/σ2
min(A) + 1

µ̄2 ≤ µ ≤ µ̄2.Therefore min{µ̄1, µ̄2} is lose to the bakward error µ if the saled residual norm ω is eitherlarger than σmax(A) or smaller than σmin(A) (or at least of the same order of magnitude).The literature suggests that the quantity
ν ≡ ω

‖r‖2
‖(ATA+ ω2I)−1/2AT r‖2 =

ω

‖r‖2

∥∥∥∥∥

[
A
ωI

] [
A
ωI

]† [
r
0

]∥∥∥∥∥
2proposed by Karlson and Waldén [9℄ an be also used as an estimate of the bakward error µ.In [6℄ Gu studies its auray and obtains (for A having full olumn rank and r 6= 0) the bounds,whih an be expressed in the form

‖r̂‖2

‖r‖2
≤ ν

µ
≤ 1 +

√
5

2
(7)(see also [5, Equation (1.5)℄). In [4℄ Grar shows that ν is asymptotially equal to µ in the sensethat

lim
x→x̂

ν

µ
= 1.Methods of omputing ν were onsidered by Grar, Saunders, and Su [5℄ (see also [15℄) and itse�ient omputation in the LSQR method [12, 11℄ was proposed in [8℄.The bounds (7) show that ν is a good approximation to the bakward error µ provided that xis a good approximation to x̂ in the sense that the norms of their orresponding residuals arelose to eah other. The lower bound in (7) ould suggest that ν might be a poor approximationof µ if ‖r̂‖2 is muh smaller than ‖r‖2. Numerial experiene however shows that ν is a verygood approximation of the LS bakward error µ; see, e.g., [5, 15, 8℄. Indeed, it appears that theestimate ν satis�es

1√
2
≤ 1√

2 −
(
‖r̂‖2

2

‖r‖2
2

)2
≤ ν

µ
≤ 1.Therefore the quantity ν is always an aurate estimate of the bakward error µ.Referenes[1℄ Å. Björk: Numerial methods for least squares problems. SIAM, Philadelphia, 1996.[2℄ X.-W. Chang, C.C. Paige, and D. Titley-Peloquin: Charaterizing matries that are onsis-tent with given solutions. SIAM J. Matrix Anal. Appl. 30 (4), 2008, 1406�1420.[3℄ G.H. Golub and C.F. Van Loan: Matrix omputations. The Johns Hopkins University Press,Baltimore, third edition, 1996.[4℄ J.F. Grar: Optimal sensitivity analysis of linear least squares. Tehnial Report LBNL-52434, Lawrene Berkeley National Laboratory, 2003.37
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Numeriké metody vy²²ího °ádu pro °e²ení transportníh úlohM. Hanu², M. SmitkováKatedra matematiky, Západo£eská univerzita, Plze¬
1 ÚvodNumeriké modelování transportníh proes· £i v obenej²í rovin¥ zákon· zahování se stále te²ívelké pozornosti, a to jak uºivatel· (od biolog· zajímajííh se o proud¥ní krve v éváh aº nap°.po jaderné fyziky simulujíí ²í°ení neutronového zá°ení), tak v¥deko-výzkumnýh praovník·.Ti vytvá°ejí stále efektivn¥j²í a p°esn¥j²í numeriké metody shopné zahytit i sloºité fyzikálníjevy, jimiº jsou úlohy tohoto typu £asto doprovázeny. Velmi oblíbené v této oblasti byly a stálejsou metody kone£nýh objem·, v sou£asnosti zejména moderní shémata s vysokým rozli²ením.Dnes jiº v²ak jejih dominantní postavení není zdaleka tak výrazné a do pop°edí se dostávajíalternativní metody, jimiº se budeme zabývat v tomto p°ísp¥vku.2 Testovaí úlohaPro ú£ely testování a porovnání dále zmín¥nýh metod byla vybrána úloha z £l. [2℄ a bylo pro nimetodou harakteristik sestrojeno p°esné °e²ení.

• Oblast: £tvere Ω = [0, 1] × [0, 1], s hranií ∂Ω = Γ− ∪ Γ+, kde
Γ− = {x ∈ ∂Ω : a(x) · n(x) < 0} (vtoková hrana),
Γ+ = {x ∈ ∂Ω : a(x) · n(x) ≥ 0} (odtoková hrana),

n zna£í vektor vn¥j²í normály k ∂Ω a x = (x, y).
• Rovnie:

∇ ·
(
a(x)u(x)

)
+ c(x)u(x) = 0 v Ω, u(x) = g(x) na Γ−. (1)

• Parametry:
a(x) =

[
10y2 − 12x+ 1

1 + y

]
, c(x) = −∇ · a(x) ≡ 11.

• Okrajové podmínky:
g(x) =





0 pro (x = 0 ∧ 0.5 < y ≤ 1) ∨ (0.5 < x ≤ 1 ∧ y = 0),

1 pro (x = 0 ∧ 0 < y ≤ 0.5) ∨ (0 ≤ x ≤ 0.5 ∧ y = 0),

sin2(πy) pro x = 1 ∧ 0 ≤ y ≤ 1.

• P°esné °e²ení: znázorn¥no na obr. 1.
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Obrázek 1: P°esné °e²ení vyhodnoené ve 100 × 100 bodeh £tvere Ω.3 Metody kone£nýh prvk· (MKP)MKP, populární zejména pro °e²ení difereniálníh úloh druhého a vy²²ího °ádu, nebyly zpo£átkupro transportní výpo£ty p°íli² atraktivní. P°edpokládají totiº hladkost °e²ení, kterou nelzeoben¥ v p°ípad¥ pariálníh difereniálníh rovni hyperbolikého typu o£ekávat. Pr·lom u£inilaº £lánek [3℄, v n¥mº byla p°edstavena metoda nespojitýh kone£nýh prvk· ("DisontinuousGalerkin Method", dále jen DGM). P°estoºe DGM umoº¬uje vyuºít p°íznivé vlastnosti MKP(geometriká �exibilita, snadno pouºitelná aproximae vysokého °ádu atd.) i pro úlohy s nehlad-kým °e²ením, její pouºití je obvykle spojeno s v¥t²ími výpo£etními nároky neº u klasiké MKP.Zárove¬ proto probíhal vývoj tzv. stabilizovanýh metod kone£nýh prvk· (SMKP), v nihº je za-hována globáln¥ spojitá aproximae °e²ení a problémy s jeho nízkou regularitou jsou adresoványúpravami diskrétní formulae.DGM i SMKP vyuºívají standardní rozklad (triangulai) Ω = ∪K∈τh
K oblasti Ω na mnoºinu

τh disjunktníh element· (v této prái £tver·) K a p°ibliºné °e²ení uh vyjad°ují jako lineárníkombinai kone£ného po£tu nad nimi de�novanýh bázovýh funkí. Dosazením tohoto rozvojedo rovnie (1) a aplikaí Galerkinovy metody je p·vodní spojitá úloha v obou p°ípadeh p°eve-dena na °e²ení soustavy lineárníh rovni pro neznámé koe�ienty rozvoje. Praktiké provedenítohoto postupu a tvar výsledné soustavy se v²ak pro oba typy metod li²í.Z prostorovýh d·vod· se zde budeme v¥novat pouze nespojité Galerkinov¥ metod¥. Prostorbázovýh funkí je pro ni de�nován jako
Vh = {v ∈ L2(Ω); v|K ∈ P p(K) ∀K ∈ τh},kde P p p°edstavuje prostor polynomu stupn¥ nejvý²e p de�novanýh na elementu K. KlasikýGalerkin·v postup pro získání diskrétní verze dané úlohy vede v tomto p°ípad¥ (kdy je kv·linedostate£né globální hladkosti funkí z Vh nutné pro pouºití Greenovy v¥ty integrovat po ele-menteh) k jejímu následujíímu zn¥ní: Najdi uh ∈ Vh tak, aby ∀vh ∈ Vh platilo:

∑

K∈τh

∫

K
(−uha · ∇vh + cuhvh) dx +

∑

e 6⊂Γ−

∫

e
{auh}a · [vh] ds = −

∑

e⊂Γ−

∫

e
(a · n)gvh ds,

{auh}a =





auL
h , kdyº a · nL > 0,

auR
h , kdyº a · nL < 0,

a
uL

h
+uR

h

2 , kdyº a · nL = 0,

[vh] =

{
vhn

L + vhn
R pro e 6⊂ ∂Ω,

vhn pro e ⊂ ∂Ω,kde e zna£í postupn¥ hrany v²eh element· τh a L, R sousední elementy na jejih stranáh.40



Na funke vh ∈ Vh se nekladou ºádné poºadavky z hlediska spojitosti mezi elementy a teoreti-ky ani z hlediska maximálního stupn¥ p. To umoº¬uje relativn¥ snadnou implementai adap-tivního zjem¬ování sít¥ (h-adaptivita) a zvy²ování °ádu aproximae (p-adaptivita) bez starostio konformitu element·. P°edb¥ºné výsledky adaptivního výpo£tu jsou na obr. 2. Byla pouºitajednoduhá automatiká adaptivita, °ízená velikostí L2 normy rozdílu °e²ení na dané síti a jehoL2-projeke na globáln¥ zhrubenou sí´. Na obrázíh je patrná dostate£ná shopnost h-adaptivityzahytit nespojitosti v °e²ení. P°i pouºití element· vy²²ího °ádu je lépe aproximováno °e²ení naokolí nespojitosti blízko odtokové hrany, objevují se v n¥m v²ak nerealistiké osilae a ukazujese, ºe upwinding zahrnutý v de�nii {·}a zde sám o sob¥ k zaru£ení stability nesta£í.
(a) p = 0, h-adapt. → 83680 NDOF (b) hp-adaptivita → 85220 NDOFObrázek 2: Adaptivní DGM. NDOF . . . po£et neznámýh po konvergeni adapta£ního proesu.�ísla p°íslu²ná barvám element· odpovídají °ádu na nih def. bázovýh funkí.4 Residual distribution shemes (RDS)Dal²í skupinou metod, jimº je v poslední dob¥ v¥nována zna£ná pozornost, jsou metody typuRDS. Ty vznikly na základ¥ my²lenek inspirovanýh p°ístupy metody kone£nýh objem· i MKPa p°irozen¥ se snaºí zahovat dobré vlastnosti obou. Z prvn¥ jmenované tak nap°. robustnostdanou silným vztahem k fyzikální podstat¥ °e²eného problému, z druhé nap°. kompaktnostdiskretizae i pro aproximai vy²²ího °ádu, jeº umoº¬uje vývoj efektivníh impliitníh °e²i£·a jednoduhou paralelizai (viz [1℄).Pro °e²ení testovaí úlohy nestaionárním shématem typu RDS pouºijeme metodu ustalování.Pro nestaionární °e²ení vy²²ího °ádu p°esnosti v £ase by bylo nutné pouºít konzistentní £asovoudiskretizai, zde sta£í nekonzistentní £asová diskretizae (detaily viz [1℄).Uvaºujme skalární zákon zahování ut + ∇ · (au) = 0 a libovolnou triangulai oblasti Ω. �e²eníje, obdobn¥ jako v MKP 1. °ádu, aproximováno spojitou funkí lineární na kaºdém trojúhelníku,

u(x, y, t) ≈ ∑
i ui(t)Ni(x, y), kde ui(t) je hodnota funke u v uzlu i a Ni jsou standardní P1bázové funke.De�nujeme reziduum na trojúhelníku K jako

φK = −
∫

K
ut dx =

∮

∂K
(au) · dn, kde a =

1

K

∫

K
a dx.Metoda RDS je zaloºena na distribui £ástí tohoto rezidua na sousední uzly. Vyjdeme-li z nekon-zistentní formulae a Eulerovy expliitní integrae v £ase, získáme následujíí shéma

un+1
i = un

i − ∆t

Si

∑

T

βK
i φ

K = un
i − ∆t

Si

∑

T

φK
i ,41



Φi

K4

Φi

K3

Φi

K2
Φi

K1

Φi

K5

i

Si

Obrázek 3: Geometrikéznázorn¥ní základníh prvk·RDS.
kde Si je obsah duální bu¬ky okolo uzlu i, tj. 1/3 obsahu v²ehtrojúhelník· se spole£ným vrholem v uzlu i. Pro daný trojúhel-ník poºadujeme, aby βK

1 + βK
2 + βK

3 = 1 (konzervativita). Dis-tribu£ní koe�ienty β mohou být stanoveny r·znými zp·sobys ohledem na poºadované vlastnosti monotónnosti a p°esnosti°e²ení, kompaktní stenil z·stává zahován. Formáln¥ de�nujemedistribuovaná rezidua jako φK
i = βK

i φ
K .Z metod typu RDS jsme vybrali N (Narrow) shéma s φK,N

i =

− k+
iP

j k+
j

∑
j k

−
j (qn

i − qn
j ) (monotónní lineární 1. °ádu). �ísla ki,de�novaná jako ki = 1
2a ·ni, nám dovolují rozli²it mezi vtokovýmia odtokovými stranami a vrholy trojúhelníka. Vektory ni jsoude�nované jako vnit°ní normály trojúhelníku o velikosti rovnédéle p°íslu²né strany. Pro víe informaí viz [1℄.
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Obrázek 4: Numeriké výsledky pro N shéma.5 Záv¥rP°edb¥ºné výsledky prezentované vý²e slibují pouºitelnost RDS i DGM pro °e²ení netriviálníhtransportníh úloh. Ob¥ metody v²ak mají své neduhy (patrné p°i porovnání obr. 2 a 4 s obr. 1,na jejihº odstran¥ní auto°i textu v sou£asné dob¥ praují. Na seminá°i pak budou RDS, DGMi SMKP d·kladn¥ji porovnány.Referene[1℄ H. Deonink, M. Rihiuto, K. Sermeus: Introdution to residual distribution shemes andomparison with stabilized �nite elements. In: H. Deonink (Ed.), 33rd VKI Leture SeriesCFD. Von Karman Institute, Sint-Genesius-Rode, 2003.[2℄ P. Houston, R. Rannaher, E. Süli: A posteriori error analysis for stabilised �nite elementapproximations of transport problems. In: Comput. Methods Appl. Meh. Engrg. 190, 2000,1483�1508.[3℄ W.H. Reed, T.R. Hill: Triangular mesh methods for the neutron transport equation. Teh.Report LA-UR-73-479, Los Alamos Sienti� Laboratory, 1973.42



Shape optimization in 2D ontat problems with givenfrition and a solution-dependent oe�ient of fritionJ. Haslinger, J. V. Outrata, R. Pathó
1,3 Charles University in Prague

2 Institute of Information Theory and Automation AS CR, Prague
1 IntrodutionThe ontribution deals with shape optimization of elasti bodies in unilateral ontat. We aimat extending existing results (see [1℄ and [2℄) to the ase of ontat problems, where the o-e�ient of frition depends on the solution. To this end, let us onsider the two-dimensionalSignorini problem, oupled with the physially less aurate model of given frition, but assumea solution-dependent oe�ient of frition. For analysis of the shape optimization problem inthe ontinuous, in�nite-dimensional setting, its �nite-dimensional approximation based on the�nite-element method and for onvergene analysis the reader is kindly referred to [4℄. Our pre-sentation starts with the so-alled mixed formulation of the algebrai state problem, involvingLagrange multipliers for the normal ontat displaement. It an be shown that if the oe�ientof frition is Lipshitz ontinuous with a su�iently small modulus, then the algebrai state prob-lem is uniquely solvable and its solution is a Lipshitz ontinuous funtion of the ontrol variable,desribing the shape of the elasti body. In [2℄ its authors proposed the impliit programmingapproah (ImP) ombined with sensitivity analysis based on the generalized di�erential alulusof Mordukhovih (see [5℄) for the numerial solution of ontat shape optimization problemsinvolving the Coulomb law of frition. We shall adapt their approah to our ase and point outthe di�erenes and di�ulties ompared to [2℄.2 The state problemLet an elasti body be represented by a domain Ω ⊂ R

2 with Lipshitz boundary ∂Ω. Let ∂Ωbe split into three non-empty, disjoint parts Γu, ΓP and Γc with di�erent boundary onditions:on Γu the body is �xed, while surfae trations of density P = (P1, P2) at along ΓP . On Γc,representing the ontat part of ∂Ω, the body is unilaterally supported by the rigid foundation
O = {(x1, x2) ∈ R

2 |x2 ≤ 0}. In addition to the non-penetration onditions, we shall onsidere�ets of frition between Ω and O. We use the frition law of Tresa type, i.e. with an a-priorigiven slip bound g : Γc → R+, but with a oe�ient of frition F whih depends on the solution.Thus the frition onditions on Γc read as follows:
u1 = 0 =⇒ |T1(u)| ≤ F(0)g
u1 6= 0 =⇒ T1(u) = −sgn(u1)F(|u1|)g

} on Γc,where T1(u) : ∂Ω → R stands for the �rst omponent of the stress vetor assoiated with u. Theequilibrium state of Ω is haraterized by a displaement vetor u : Ω → R
2 whih satis�es thesystem of linear equilibrium equations in Ω, the lassial boundary onditions on Γu, ΓP and theunilateral and frition onditions on Γc.Let the ontat boundary Γc be pieewise linear, given by a vetor α ∈ Uad , where Uad ⊂ R

p
+ isthe set of admissible ontrol variables (p orresponds to the number of ontat nodes). Following43



the �nite element approximation as desribed in [4℄, we de�ne the disretized Signorini problemwith given frition and a solution-dependent oe�ient of frition as follows:Find (u,λ) ∈ R
n × R

p
+ suh that:

〈A(α)u,v − u〉n +

p∑

i=1

ωi(α)F(|(uτ )i|)
(
|(vτ )i| − |(uτ )i|

)

≥ 〈L(α),v − u〉n + 〈λ,vν − uν〉p ∀v ∈ R
n,

〈µ − λ,uν + α〉p ≥ 0 ∀µ ∈ R
p
+,





(M(α))where vν ∈ R
p stands for the subvetor of v ∈ R

n onsisting of the seond omponents ofthe displaement vetor v at all ontat nodes. Analogously, vτ ∈ R
p onsists of the �rstomponents of v at the ontat nodes. Further, A ∈ C1(Uad ; Rn×n) and L ∈ C1(Uad ; Rn) denotethe matrix and vetor-valued funtions assoiating with any α ∈ Uad the sti�ness matrix A(α)and the load vetor L(α), respetively. Let us note that the funtions ωi depend on the weightsof a quadrature rule and on the values of g at the ontat nodes, as well. We assume that

ωi ∈ C1(Uad; (0,∞)) ∀i = 1, . . . , p.In the rest of this paper we shall be working with the redued form of the state problem only.The redution of (M(α)) onsists in eliminating all omponents of the displaement �eld uorresponding to the non-ontat nodes of the �nite element partition of the domain Ω(α). Oneobtains a variational inequality in terms of the state variable y = (uτ ,uν ,λ)T ∈ (Rp)3, de�nedon the ontat zone, whih may be formulated as the following generalized equation (GE):
0 ∈ F (α,y) +Q(α,y), (1)where

F (α,y) :=




Aττ (α) Aτν(α) 0
Aντ (α) Aνν(α) −I

0 I 0


y −




Lτ (α)
Lν(α)
−α


 , Q(α,y) :=



Q1(α,y1)

0
NR

p

+
(y3)


 .The multifuntion Q1 : Uad × R

p ⇉ R
p is de�ned as:

(
Q1(α,uτ )

)
i
:= ωi(α)F(|(uτ )i|)∂|(uτ )i| ∀i = 1, . . . , p,where �∂� denotes the subdi�erential of onvex funtions, NR

p

+
(·) is the normal one in the senseof onvex analysis and the submatries Aττ , Aτν , Aνν ∈ R

p×p are parts of the Shur omplementto the sti�ness matrix.Note, that the multivalued part Q of our state problem (1) depends on the ontrol variable α aswell. This is a major di�erene ompared to the problem investigated in [2℄, making sensitivityanalysis more involved.Let us onlude this setion with the following result onerning solvability of (1).Theorem 1. Let S : α 7→ {y ∈ (Rp)3 |0 ∈ F (α,y) + Q(α,y)} denote the ontrol-to-statemapping and let F : R+ → R+ be Lipshitz ontinuous with a su�iently small modulus. Then
S is single-valued and Lipshitz ontinuous in Uad .Proof. It follows from Theorem 10 and Theorem 11 in [4℄.
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3 ImP and sensitivity analysisLet J : Uad × (Rp)3 → R be a ontinuously di�erentiable ost funtional. Then the shapeoptimization problem reads as:minimize J(α,y)subj. to 0 ∈ F (α,y) +Q(α,y)
α ∈ Uad.



 (P)In the sequel we shall assume that the assumptions of Theorem 1 are satis�ed. The ImP methodonsists in reformulating (P) as the nonlinear program:minimize J (α) := J(α, S(α))subj. to α ∈ Uad ,

} (P̃)whih may be solved by standard algorithms of nonsmooth optimization. Suh algorithms, how-ever, require knowledge of some subgradient information, usually in the form of one (arbitrary)subgradient from the Clarke subdi�erential ∂J at eah iteration step. Following [2℄, we are notgoing to use Clarke's alulus (f. [3℄) to obtain the desired subgradient, but the substantiallyriher alulus developed by B. Mordukhovih. A straightforward appliation of this theory isthe next result. For the rest of this setion let ᾱ ∈ Uad be arbitrary and put ȳ := S(ᾱ).Lemma 1. ∂J (ᾱ) ⊂ ∇αJ(ᾱ, ȳ) +D∗S(ᾱ)(∇yJ(ᾱ, ȳ)).Therefore, we immediately see that it su�es to determine one element of the (limiting) oderiva-tive D∗S(ᾱ)(∇yJ(ᾱ, ȳ)) = {p∗ ∈ R
p | (p∗,−∇yJ(ᾱ, ȳ)) ∈ NGr S(ᾱ)}, where NGrS stands forthe (limiting) normal one to the graph of S. To failitate the omputation of this quantity, wehave the following result at hand:Theorem 2. For every p∗ ∈ D∗S(ᾱ)(∇yJ(ᾱ, ȳ)) there exists a vetor v∗ ∈ (Rp)3 suh that

(p∗,v∗) is a solution of the (limiting) adjoint GE:
(

p∗

−∇yJ(ᾱ, ȳ)

)
∈ ∇F (ᾱ, ȳ)T v∗ +D∗Q(ᾱ, ȳ,−F (ᾱ, ȳ))(v∗). (AGE)Proof. See Lemma 8 and Theorem 13 in [4℄.The assertion of Theorem 2 is analoguos to that of Theorem 4.1 in [2℄, but for its derivation wehad to verify a almness ondition ([4, Lemma 8℄) instead of strong regularity of theGE ([2, Theorem 3.13℄).In the rest of this setion we show how one may express the oderivative D∗Q in terms of thedata of the problem. First of all, note that the omponents of Q are deoupled (this fat isa onsequene of the assumed model of given frition), hene its oderivative an be omputedomponentwise:

∀q∗ ∈ (Rp)3 : D∗Q(ᾱ, ȳ, q̄)(q∗) =



D∗Q1(ᾱ, ȳ1, q̄1)(q

∗
1)

0
D∗NR

p
+
(ȳ3, q̄3)(q

∗
3)


 ,at any referene point (ᾱ, ȳ, q̄) ∈ GrQ. The third omponent is standard, therefore we shalldeal with the �rst omponent only. Let us write the multifuntion Q1 : R

p × R
p ⇉ R

p asa omposition of an outer multifuntion Z1 and an inner single-valued, smooth mapping Ψ:
Q1(α,u) = (Z1 ◦ Ψ)(α,u), (2)45



where
Ψ = (Ψ1, . . . ,Ψp) : R

p × R
p →

(
(0,∞) × R

)p
, Ψj(α,u) :=

(
ωj(α), uj

)
,and Z1 is a omposite multifuntion itself:

Z1 :
(
(0,∞) × R

)p
⇉ R

p, y 7→
(
Z(y1), . . . , Z(yp)

)
,with

Z : (0,∞) × R ⇉ R, (x1, x2) 7→ x1F(|x2|)∂|x2|.Now the hain rule from [6, Theorem 10.40℄ allows us to ompute the oderivative of the ompositemultifuntion (2) as follows:Theorem 3. Let (ᾱ, ū, q̄) ∈ GrQ1 be suh that the following ondition holds:Ker∇Ψ(ᾱ, ū)T ∩D∗Z1(Ψ(ᾱ, ū), q̄)(0) = {0}. (3)Then:
∀q∗ ∈ R

p : D∗Q1(ᾱ, ū, q̄)(q∗) ⊂ ∇Ψ(ᾱ, ū)TD∗Z1(Ψ(ᾱ, ū), q̄)(q∗) (4)Sine the omponents of Z1 are also deoupled, one may ompute the oderivative on the right-hand side of (4) omponentwise, i.e. in terms of oderivatives of the mapping Z. This is donein detail in Setion 6.2 of [4℄, from whih the validity of the quali�ation ondition (3) follows aswell.Aknowledgement: The work of the �rst two authors was supported by the Grant Agenyof the Czeh Aademy of Sienes, projet no. IAA100750802. The third author would like tothank for support of the grant no. SVV-2010-261316.Referenes[1℄ P. Beremlijski, J. Haslinger, M. Ko£vara, J. V. Outrata: Shape optimization in ontatproblems with Coulomb frition. SIAM J. Opt. 13, 2002, 561�587.[2℄ P. Beremlijski, J. Haslinger, M. Ko£vara, R. Ku£era, J. V. Outrata: Shape optimization inthree-dimensional ontat problems with Coulomb frition. SIAM J. Opt. 20, 2009, 416�444.[3℄ F.F. Clarke: Optimization and nonsmooth analysis. John Wiley & Sons, New York, 1983.[4℄ J. Haslinger, J.V. Outrata, R. Pathó: Shape optimization in 2D ontat problems with givenfrition and a solution-dependent oe�ient of frition. Submitted to Set-Valued and Vari-ational Analysis.[5℄ B.S. Mordukhovih: Variational analysis and generalized di�erentiation, I: Basi Theory,II: Appliations. Grundlehren Series (Fundamental Priniples of Mathematial Sienes),Vols. 330 and 331, Springer-Verlag, Berlin-Heidelberg, 2006.[6℄ R.T. Rokafellar, R. Wets: Variational analysis. Springer-Verlag, Berlin, 1998.
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�e²ení benhmarkové úlohy transportu látkyv diskrétní puklinové sítiM. Hokr, J. Havlí£ekTehniká univerzita v Liberi
1 ÚvodTéma £lánku vyhází z pot°eb studia vlastností horninového prost°edí pro hodnoení bezpe£nostihlubinného úloºi²t¥ vyho°elého jaderného paliva, hlavními výzvami pro matematiké modelovánív této oblasti jsou sdruºené fyzikální proesy a sloºitost geometriké struktury prost°edí.Jedním z hlavníh faktor· na bezpe£nost úloºi²t¥ izola£ní shopnost horniny, která je obvyklehodnoena p°es její (ekvivaletní) hydraulikou vodivost, tj. elkový pr·tok vody p°es ur£itý pr·-°ez. Skute£nou hodnoenou veli£inou je ale ryhlost pr·hodu rozpu²t¥nýh radionuklid·, kteráje sie pro porézní prost°edí úm¥rná pr·toku, ale pro nehomogenity typu puklin závisí na rozlo-ºení toku v objemu - ryhle proudíí �kanály� proti mén¥ vodivým puklinám s pomalým tokem.v této prái jsou na modelové úloze puklinové sít¥ ur£ovány pr·nikové k°ivky a st°ední hodnotaa rozptyl tzv. doby zdrºení � srovnány jsou výpo£ty pomoí sledování £ásti (partile traking)a pomoí rovnie advek£ního transportu.2 Popis úlohy a °e²eníÚloha byla de�nována v projektu Deovalex [4℄, kde je tímto zp·sobem hodnoen vliv napja-tosti na harakter toku a dobu zdrºení £ásti. Výpo£ty navazují na d°íve prezentované výpo£typroud¥ní pro r·zné stavy napjatosti [1, 2, 3℄, mimojiné i srovnáním zp·sobu hodnoení pomoíekvivalentní vodivosti a pomoí ryhlosti pr·hodu látky. V tomto textu se nezabýváme p°ímovlivem napjatosti, jednotlivé varianty jsou hápány jako r·zné parametry puklinové sít¥ provyhodnoení proud¥ní a transportu (v prezentai bude popsáno v plném kontextu).Geometrie úlohy je zadána seznamem 7797 puklin se sou°adniemi konovýh bod· a velikostírozev°ení (²í°ky) ve £tveri v rozsahu −10 < x < 10, −10 < y < 10. Okrajové podmínky proproud¥ní jsou zadány hodnotami tlaku (Dirihlet) po elém obvodu nebo na protilehlé st¥ny tak,aby generoval konstantní gradient 104 Pa/m (dv¥ varianty: vodorovn¥ zprava doleva a svisle shoradol·) � obrázek 1. Úloha transportu látky je zadána okamºitým pulsním vstupem (vtok danéhoelkového mnoºství látky za velmi krátký £as) do v²eh puklin na p°ítokové stran¥ modelového£tvere.Úlohy proud¥ní i transportu byly vypo£teny softwarem FLOW123D vyvíjeným na praovi²tiautor· [6℄. Rovnie proud¥ní je °e²ena smí²enou-hybridní metodou kone£nýh prvk·, jejíº vý-sledkem jsou diskrétní toky jednotlivými puklinami. Segmenty puklin mezi pr·se£íky jsou zárove¬elementy diskretizae (z d·vod· linearity v 1D segmenteh není dal²í d¥lení pot°ebné). Rovnieadvektivního transportu je °e²ena metodou kone£nýh objem·, s upwind váºením a expliitními£asovými kroky. Volba £asovýh krok· je °ízena CFL podmínkou. Doba zdrºení je ur£ena jakováºený pr·m¥r z £asu pro jednotlivé £ásti hmoty (=váhy) na výstupu za kaºdý £asový krokvýpo£tu. 47



Srovnávaí výpo£ty pomoí softwaru NAPSAC vyuºívají standardní metodu kone£nýh prvk·pro proud¥ní (srovnání nap°. z hlediska spln¥ní bilane hmoty je provedeno v [3℄) a výpo£ettransportu byl proveden pomoí metody sledování £ásti (partile traking). Doba zdrºení jep°ímo výsledkem výpo£tu pro kaºdou jednotlivou £ástii. Jednotlivé výsledky byly zpraoványautory výpo£t· ve zpráváh [7, 5℄.3 VýsledkyVýsledné pr·nikové k°ivky jsou ur£ovány jako pr·b¥h v £ase pro podíl hmoty (resp. po£tu £ásti)proteklé odtokovými hranami modelového £tvere a elkové zadané hmoty (resp. po£tu £ásti).Výsledky pro horizontální gradient jsou uvedeny na obrázku 2, kde jsou porovnány jednotlivémetody a softwary. Je vid¥t dobrá vzájemná shoda krom¥ výsledk· IC. Zajímavým výsledkemje, ºe se ve sklonu k°ivky nijak neprojevuje numeriká difuze z upwind metody (Flow123D) proti£ástiovým metodám (NAPSAC), oº lze vysv¥tlit tím, ºe dominantním difuzním jevem je míseníroztoku resp. £ásti mezi r·zn¥ �ryhlými� trajektoriemi v síti puklin.Na obr. 3 je dal²í srovnání � hodnoení horniny p°es elkový pr·tok a p°es dobu zdrºení (£astransportu). Jiný zp·sob vyjád°ení doby zdrºení je moºné dostat p°ímo z pr·toku jako dobaideální vým¥ny elkového objemu vody (elkový objem ku pr·toku). P°estoºe tok se m¥ní mezijednotlivými variantami v mnohem vy²²ím pom¥ru, ob¥ vyjád°ení £asu zdrºení dávají podobnýpr·b¥h (m¥ní se výrazn¥ objem vody mezi variantami). Výsledky potvrzují p°edpoklad vznikuvodivýh kanál· z n¥kolika konkrétníh puklin, které i p°i sníºení toku sniºují dobu zdrºení (tzv.hanneling).
Obrázek 1: Shéma okrajovýh podmínek ur£ujííh tlakový gradient pro úlohu proud¥ní � dv¥varianty s propustnými nebo nepropustnými bo£ními st¥nami.
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Obrázek 2: Porovnání pr·nikovýh k°ivek (závislost hmoty na výstupu na £ase) mezi jednotlivýmimodely a °e²itelskými týmy Deovalex. 48



Obrázek 3: Porovnání doby zdrºení (£asu transportu) ur£ené p°ímo z výpo£tu transportu a ur£enéz elkového pr·toku, proti pr·toku samotnému, pro r·zné varianty parametr· puklin (vlivemnapjatosti).Pod¥kování: Tato práe byla realizována za podpory státníh prost°edk· �eské republikyv rámi projektu VaV �Pokro£ilé sana£ní tehnologie a proesy� £. 1M0554 v programu M�MTVýzkumná entra a v rámi projektu £. FR-TI1/362 v programu MPO TIP. Dále byla �nano-vána SÚRAO, smlouva £. 2010/019/Slo.Práe popsané v tomto £lánku byly provedeny v rámi mezinárodního projektu DECOVALEX(DEmonstration of COupled models and their VALidation against EXperiments). Názory vyjád-°ené v tomto £lánku jsou v²ak názory autor· a nemusí být nutn¥ názory �nanujííh organizaí.Referene[1℄ A. Baghbanan, L. Jing: Hydrauli properties of fratured rok masses with orrelated fraturelength and aperture. Int. J. Rok Meh. Min. Si. 44, 2007, 704�719.[2℄ M. Hokr, J. Kopal, J. Havlí£ek: �e²ení úlohy proud¥ní v rozsáhlé diskrétní síti puklin v kon-textu sdruºenýh úloh proud¥ní-mehanika. In: SNA'09 Modelling and Simulation of Chalen-ging Engineering Problems (Blaheta, Starý, eds.), Ústav geoniky AV �R, Ostrava, 2009.[3℄ M. Hokr, J. Kopal, J. B°ezina, P. Rálek: Sensitivity of results of the water �ow problem ina disrete frature network with large oe�ient di�erenes. In: I. Dimov, S. Dimova, andN. Kolkovska (Eds.): NMA 2010, LNCS 6046, pp. 420�427, 2011. Springer-Verlag BerlinHeidelberg 2011.[4℄ J. Hudson, L. Jing, I. Neretnieks: Tehnial de�nition of the 2-D BMT problem for Task C,DECOVALEX-2011 projet, 5 May 2008.[5℄ PROGEO s.r.o.: Simulae transportu pomoí metody partile traking. Tehniká zpráva 2010.[6℄ O. Severýn, M. Hokr, J. Královová, J. Kopal, M. Tauhman: Flow123D: Numerial simu-lation software for �ow and solute transport problems in ombination of frature network andontinuum. Tehnial Report, TU Libere, 2008.[7℄ J. Hudson, L. Jing (eds.): Task C: Integrated assessment of THMC oupled proesses insingle fratures and fratured roks. DECOVALEX-2011 Projet Progress Report, Stage2(in preparation).
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Parallel implementations of Total-FETI-1 algorithmfor ontat problems using PETSD. Horák, Z. DostálV�B-Tehnial University of Ostrava
1 IntrodutionDomain deomposition method is one of the most suessful methods of solution of elliptipartial di�erential equations desribing many tehnial problems, whih is based on �divide andonquer� strategy. The FETI (Finite Element Tearing and Interonneting) method proposedby Farhat and Roux turned out to be one of the most suessful algorithms for parallel solutionof these problems. The FETI-1 method is based on the deomposition of the spatial domaininto non-overlapping subdomains that are "glued" by Lagrange multipliers. E�ieny of theFETI-1 method was further improved by introduing speial projetors and preonditioners. Byprojeting the Lagrange multipliers in eah iteration onto an auxiliary spae to enfore ontinuityof the primal solutions at the rosspoints, Farhat, Mandel and Tezaur obtained a faster onvergingFETI method for plate and shell problems - FETI-2. Similar e�et was ahieved by a variantalled the Dual-Primal FETI method FETI-DP, introdued by Farhat et al., where the ontinuityof the primal solution at rosspoints is implemented diretly into the formulation of the primalproblem. The FETI-DPC algorithm for nonlinear problems is based on ative set strategies andadditional planning steps. Total-FETI-1 (TFETI-1) by Dostal simpli�es the inversion of sti�nessmatries of subdomains by using Lagrange multipliers not only for gluing the subdomains alongthe auxiliary interfaes, but also for implementation of the Dirihlet boundary onditions. Thismethod may be even more e�ient than the original FETI-1.FETI methods are even more suessful for the solution of variational inequalities. The reasonis that duality redues not only large primal problem to smaller dual, relatively well ondi-tioned stritly onvex iteratively solved QP problem but also transforms the general inequalityonstraints into the nonnegativity onstraints so that e�ient algorithms that exploit heap pro-jetions and other tools may be exploited. Our researh onerns development of the salableFETI-based methods for ontat problems ombining FETI approah with algorithms for boundonstrained quadrati programming problems with a known rate of onvergene given in termsof the spetral ondition number (QPMPGP, SMALBE) and their testing in parallel environ-ment. The most di�ult part - solution of subdomain problems - may be usually arried outin parallel without any oordination, so that high parallel salability is enjoyed. The inreas-ing number of subdomains dereases the subdomain problem size resulting in shorter time forsubdomain sti�nes matrix fatorizations and subsequently forward and bakward substitutionsduring pseudoinverse appliation, but on the other hand the inreasing number of subdomainsassuming �xed disretization parameter inreases the dual dimension and oarse problem sizeresulting in longer time for all dual vetor operations and projetor appliation. Three types ofparallelization strategies and their impat to parallel salability level will be disussed.
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2 FETI-1 and TFETI-1Let us onsider ontat boundary value problem. To apply the FETI-1 based domain deompo-sition let us partition domain Ω into Ns subdomains Ωs and we denote by Ks, f s, us and Bs,respetively the subdomain sti�ness matrix, the subdomain fore and displaement vetors andthe signed matrix with entries -1, 0, 1 desribing the subdomain interonnetivity (gluing ornonpenetration). We shall get the disretized problem
min

1

2
uTKu− uT f s. t. Bu ≤ 0 (1)

K =



K1 . . .

KNs


 , f =




f1...
fNs


 , u =




u1...
uNs


 , B = [B1, . . . , BNs ]. (2)The basi idea of TFETI is to keep all the subdomain sti�ness matries Ks as if there wereno presribed displaements and to enhane the presribed displaements into the matrix ofonstraints B. To enhane the boundary onditions like ui = 0, just append the row b with allthe entries equal to zero exept bi = 1. The presribed displaements will be enfored by theLagrange multipliers whih may be interpreted as fores. An immediate result of this proedureis that all the subdomain sti�ness matries will have known and typially the same defet. Theremaining proedure is exatly the same as desribed for FETI-1, the key point is that thekernels Rs of the loall sti�ness matries Ks are known and an be formed diretly. We aneasily assemble the blok�diagonal basis R of the kernel of K as

R =



R1 . . .

RNs


 . (3)Let's establish following notation

F = BK†BT , G̃ = RTBT , d̃ = BK†f, ẽ = RT f, G = TG̃, e = T ẽwhere K† denotes matrix satisfying KK†K = K suh as generalized inverse or Moore-Penrosepseudoinverse, T denotes a nonsingular matrix, that de�nes the orthonormalization of the rowsof G̃. The ritial point of evaluation ofK†, the determination of the ranks of the subdomain sti�-ness matries Ks is trivial when the TFETI-1 proedure is applied. Our minimization problemreads
min

1

2
λTFλ− λT d̃ s.t. λI ≥ 0 and G̃λ = ẽ. (4)The problem of minimization on the subset of the a�ne spae is transformed to the problem onsubset of vetor spae by means of arbitrary λ̃ whih satis�es Gλ̃ = e while the solution is lookedfor in the form λ+ λ̃. Using old notation and denoting d = d̃−Fλ̃, the problem (4) is equivalentto

min
1

2
λTFλ− λTd s.t. λI ≥ −λ̃I and Gλ = 0. (5)Further improvement is based on the observation, that the augmented Lagrangian for problem (5)an be deomposed by orthogonal projetors

Q = G̃T (G̃G̃T )−1G̃ = GTG and P = I −Q51



on the kernel of G and on the image spae of GT (ImQ = KerG and ImP = ImGT ), so that the�nal problem reads
min

1

2
λTPFPλ− λTPd s.t. λI ≥ −λ̃I and Gλ = 0, (6)and may be solved e�etively by a salable algorithm SMALBE (Semi-Monotoni AugmentedLagrangians with Bound and Equality) using QPMPGP (Quadrati Programming with Modi�edProportioning and Gradient Projetion) in inner loop or just by QPMPGP for onvex quadratiprogramming problems with simple bounds enforing equality onstraint by dual penalty as theproof of the lassial estimate by Farhat, Mandel and Roux

κ(PFP |ImP ) ≤ C
H

h
(7)of the spetral ondition number κ of the restrition of PFP to the range of P by the ratio ofthe deomposition parameter H and the disretization parameter h remains valid for TFETI-1.3 Parallelization strategiesProgrammes were implemented using PETS 3.0.0 (Portable Extensible Toolkit for Sienti�Computation), developed by Argonne National Laboratory. PETS is a suite of data struturesand routines that provide the building bloks for the implementation of large-sale appliationodes on high-performane omputers.The superomputer for numerial experiments was HECToR at EPCC. Its arhiteture: two Craysuperomputing failities: the phase 2a (XT5h) mahine and the phase 2b (XT6) mahine; andan arhiving faility, the main servie (phase 2a) uses a Cray XT4 system as its major omputeengine o�ering a total of 3072 AMD 2.3 GHz quad-ore Opteron proessors - 12,288 ores o�eringa theoretial peak performane of 113 T�ops, 8 GB of main memory available per Opteronproessor, whih is shared between its four ores, HECToR's total memory is 24.6 TB, proessorsare onneted with a high bandwidth interonnet using Cray SeaStar2 ommuniation hips.
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Most of omputations appearing in these programmes are purely loal and therefore parallelizable(subdomains problems), but some operations require data transfers. The level of ommuniationdepends �rst of all on distribution of B and R, G and GGT omputation and GGT fatorizationor G orthonormalization (see Figure 1).Aknowledgement: This researh has been supported by the grants: GA CR 101/09/P601,Ministry of Eduation of the CR No. MSM 6198910027 and EU projet PRACE-1IP.Referenes[1℄ Z. Dostál, D. Horák: Salability and FETI based algorithm for large disretized variationalinequalities. Math. and Comp. in Simulation 61, (3-6), 2003, 347�357.[2℄ Z. Dostál, D. Horák, R. Ku£era: Total FETI � an easier implementable variant of the FETImethod for numerial solution of ellipti PDE. Commun. in Num.Methods in Eng. 22, 2006,1155�1162.
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A remark on the optimal mesh and the optimal polynomialdegree distribution in solving 1D boundary value problemsby the hp-FEMJ. ChlebounFaulty of Civil Engineering, Czeh Tehnial University in Prague1 IntrodutionThis ontribution deals with an optimal distribution of mesh nodes as well as an optimal distri-bution of polynomial degrees in the hp-version of the �nite element method (FEM) applied tosolving onrete 1D boundary value problems.Unlike the h-version of the FEM, where the polynomial degree distribution is �xed and only themesh an be adaptively hanged to improve the auray of the FE solution, the hp-FEM o�ersmore �exibility in the proess of minimizing the di�erene between the exat and the FE solution.Indeed, one an add and/or redistribute mesh nodes as well as hange p, the degree of polynomialsforming the FE basis funtions. Moreover, the degree need not be uniformly distributed overthe mesh. Although this diversity of hanges is advantageous, it also reoils upon the analystwho then faes the problem of establishing a good (or, better, an optimal) strategy of mesh andpolynomial degree modi�ations.An extensive literature on adaptive methods in the hp-FEM shows that many e�orts have beenmade to minimize the error of approximation. Nevertheless, even for 1D boundary value prob-lems, results on optimal meshing and optimal FE basis are rather limited and direted towardsasymptotial optimality, see [1, 2, 3℄, whih is not the topi we will pursue.This work does not deal with general purpose error estimate approahes and h or p adaptivityalgorithms. We will fous on the optimal use of a �xed number of degrees of freedom (DOF) in agiven 1D boundary value problem. The obtained optimal h and p distributions then an serve inde�ning benhmark problems for pratial hp-adaptive algorithms in one and (in speial ases)more spatial dimensions.2 hp-FEM in 1DLet us onsider a boundary value problem de�ned on an interval (α, β), that is,
−u′′(x) + c(x)u(x) = f(x) in (α, β), (1)

u(α) = 0, u(β) = 0, or u′(α) = 0, u′(β) = 0, (2)where the funtion c is suh that the bilinear form
a(u, v) ≡

∫ β

α
(u′(x)v′(x) + c(x)u(x)v(x))dxis ontinuous and V -ellipti for u, v ∈ V . The spae V is a subspae of the Sobolev spaeH1(α, β)and it is determined by the boundary onditions (2) (mixed boundary onditions ould also beintrodued in (2)). 54



Assuming f ∈ L2(α, β), we arrive at the weak formulation of (1)-(2): Find u ∈ V suh that
a(u, v) =

∫ β

α
f(x)v(x)dx ∀v ∈ V ; (3)by virtue of the assumptions, (3) is uniquely solvable.To �nd an approximate solution, we substitute a �nite-dimensional subspae V Pn

n,Xn
⊂ V for Vin (3). The spae V Pn

n,Xn
is onstruted as follows: (i) a mesh determined by nodes x0 = α <

x1 < · · · < xn+1 = β is de�ned; (ii) a set of basis funtions is introdued. For eah interval
Ii ≡ [xi−1, xi], a maximum polynomial degree pi is given, i = 1, . . . , n. Let us de�ne Xn, a vetoromprising xi (inner mesh nodes), and Pn, a vetor omprising pi; in both ases i = 1, . . . , n.The support of eah basis funtion is either [xi, xi+2] (hat funtion) or [xi, xi+1] (Lobatto poly-nomials of degree two up to pi; see [4℄ for the details). The dimension of V Pn

n,Xn
is also known asthe number of DOF (NDOF).3 Mesh and polynomial degree optimizationLet us assume that the NDOF is equal to N . Let us de�ne FN

n,Xn,Pn
, a family of all FE spaes

V Pn

n,Xn
whose NDOF equals N . To avoid formal and omputational di�ulties aused by de-generated mesh intervals, FN

n,Xn,Pn
is onstrained through a positive minimum length the meshintervals must not break through. Eah spae V Pn

n,Xn
is determined by a on�guration of n, Xn,and Pn, that is, by the total number of mesh intervals, by their length and position, and by therespetive maximum polynomial degree on eah interval. A on�guration is alled N -admissibleif the related FE spae has dimension N .The di�erene between the solution of (3) and its FE ounterpart un,Xn,Pn is measured by

Ψ(n,Xn, Pn) = ‖u− un,Xn,Pn‖H1(α,β).The optimization problem is set as follows: For a �xed positive integer N ,minimize Ψ(n,Xn, Pn) over FN
n,Xn,Pn

. (4)The ore of solving problem (4) lies in solving a ontinuous optimization subproblems. Indeed,for a �xed N , n, and Pn, we minimize Ψ(n,Xn, Pn) via searhing for the optimal position of thenodes x1, . . . , xn. These subproblems have to be solved for eah N -admissible on�guration of nand Pn, that is, for eah on�guration that results in N degrees of freedom. Thus problem (4)has ombinatorial features and, as a onsequene, it is omputationally demanding.Numerial experiments were performed for a few low values of N . To this end, a hosen funtionwas substituted for u in (1), the right-hand side f was alulated, and then used as the knownright-hand side in the FE problems determined by (3) and the N-admissible on�gurations. Thealulations were performed in the MATLABR© environment.Aknowledgement: This work has been supported by grant No. P105/10/1682 of the CzehSiene Foundation.
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Bézier form of S�PathesA. KolunInstitute of Geonis AS CR, Ostrava
1 IntrodutionParametri Cartesian surfae, e.g. [1℄, is a wide-spread tool for data interpolation and approx-imation. However, for simple modeling systems there is not strong requirement to ontrol allpossible geometri parameters of resulting surfae. Moreover, due to the fat, that nonplanarretangular pathes are very often tessellated to triangles, it is useful to require the same degreeof all boundary urves of tessellated triangles. In [3℄ the onept of Smart-pathes (S�Pathes)is introdued. Its main bene�ts are:1. the same degree of both diagonal and boundary urves,2. the number of independent ontrol points is smaller than n2.In this paper the main properties for the biquadrati ase of S�Pathes are desribed. Bézierform of pathes is used. It gives us the possibility to �nd the orrelation between triangularand quadrilateral pathes. Condition for smooth onatenation of biquadrati BS�Pathes isformulated. Proves an be �nd in [2℄.2 S�PathLet us onsider biquadrati parametri path

X(u, v) = u R vT = (1 u u2)




R00 R01 R02

R10 R11 R12

R20 R21 R22


 (1 v v2)T (1)It is obvious that all boundary urves are quadrati polynomial ones.Let us onsider S�Path [3℄, i.e. suh path where both main diagonals D1(u), D2(u)

D1(u) = X(u, u) = u R uT

D2(u) = X(u, 1 − u) = u R(1-u)T = u R 1 0 0
1 −1 0
1 −2 1


uTare quadrati polynomial urves too.Theorem 1. Biquadrati path (1) is S�Path i� R12 = R21 = R22 = 0 .Corollary. All parametri lines of biquadrati S�Path L(u) = X(u, a+bu) are urves of degree

d ≤ 2 . 57



Cartesian Bézier path is de�ned as
B(u, v) = (b0,n(u) . . . bn,n(u))




P00 . . . P0n... ...
Pn0 . . . Pnn


 (b0,n(v) . . . bn,n(v))Twhere bi,n(u) =

(
n
i

)
(1−u)n−iui are the Bernstein polynomials and Pij are the ontrol pointsof the path. Let us express the biquadrati S�path in Bézier form. Control points Pij an befound aording to the relations below.P =




P00 P01 P02

P10 P11 P12

P20 P21 P22


 =




1 0 0
−2 2 0

1 −2 1




−1


R00 R01 R02

R10 R11 0
R20 0 0






1 −2 1
0 2 −2
0 0 1




−1 (2)3 BS�PathLet us analyze the relations between main diagonals D1(u),D2(u) of S�Path and proper Bézierdiagonals � i.e. the urves de�ned on the set of diagonal ontrol points P00, P11, P22 and
P20, P11, P02 respetively

D1B(u) = u 1 0 0
−2 2 0

1 −2 1






P00

P11

P22


 , D2B(u) = u 1 0 0

−2 2 0
1 −2 1






P20

P11

P02


 ,where P and R are onneted with relation (2).These relations an be formulated as the theorem below.Theorem 2. D1(u) = D1B(u) if and only if R11 = 0 . Moreover, equality of these diagonalsautomatially implies the equality of D2(u) = D2B(u) .On the base of the Theorem 2 we an introdue biquadrati BS�Path, i.e. path in the form asfollows

X(u, v) = u R00 R01 R02

R10 0 0
R20 0 0


vT .In this ase mutual relations among Bézier ontrol points Pij and S�path ontrol points Rijare valid

(P00P01P02P10P11P12P20P20P21P22) = (R00R01R10R02R20)
1

2




2 2 2 2 2 2 2 2 2
0 1 2 0 1 2 0 1 2
0 0 0 1 1 1 2 2 2
0 0 2 0 0 2 0 0 2
0 0 0 0 0 0 2 2 2



.We an see that in this ase the path is de�ned by 5-element set of ontrol points. Examples ofnon independent and independent 5-element sets of ontrol points of BS�Pathes are presentedin Fig. 1.The rest of ontrol points e.g. for the independent pentad P01, P11, P21, P10, P20 from Fig. 1e)may be represented as follows

P00 = P01 + P10 − P11 P02 = P01 + P12 − P11

P20 = P21 + P10 − P11 P22 = P21 + P12 − P11 (3)58



a) b) ) d) e) f) g) .Figure 1: 5-element sets of ontrol-points. a),b) non independent sets, )�g) independent sets.4 BS�Path and Bézier trianglesAs both diagonal and boundary urves of BS�Pathes are B ezier urves, it is meaningful toanalyze the triangle pathes. There is a very lose onnetion between the Cartesian BS�pathand a pair of triangular Bézier pathes. Let us onsider triangular mesh of nodes
Pijk, 0 ≤ i, j, k ≤ n, i+ j + k = n ,where nodes Pi1j1k1, Pi2j2k2 are neighbour, if | i1 − i2 | + | j1 − j2 | + | k1 − k2 |= 2 .Bézier triangular path is de�ned as
B△(u, v,w) =

∑

(i,j,k)

n!

i!j!k!
uivjwkPijkwhere 0 ≤ u, v,w ≤ 1, u+ v = w = 1, 0 ≤ i, j, k ≤ n, i+ j + k = n .Let us onsider Cartesian and triangular indexing of ontrol points aording to Fig. 2.

Figure 2: Cartesian and triangular indexing of ontrol nodes for n = 2.Theorem 3. BS�Path de�ned on ontrol points Pij , 0 ≤ i, j ≤ 2 is the same surfae as thepair of triangular Bézier pathes, de�ned on the sets of proper ontrol points.This theorem gives us generalization of the trivial fat that bilinear path an be deomposed totwo triangles i� the quaternion of ontrol points is planar.5 Smooth onatenation of BS�PathesLet us onsider 5-element set of independent ontrol points from Fig. 1e). Condition (3) saysthat the set of ontrol points reates four rhomboids, see Fig. 3. Here we an distinguish threetypes of ontrol points: entral rosswise and dependent.The onditions for onatenation of the pathes an be formulated in the following way.De�nition. Let there are two open polylines Λ1 = (P0P1 . . . Pn) and Λ2 = (R0R1 . . . Rm) . Leta) m+ 1 opies of polyline Λ1 are reated, eah of it started in a node of Λ2,b) n+ 1 opies of polyline Λ2 are reated, eah of it started in a node of Λ1 .59



Figure 3: Control points for BS�Path. Di�erent types of them are distinguished: blak � entralone, dark � rosswise ones, light � dependent ones.Resulting set of rhomboids we all 'produt of polylines' Λ1 • Λ2 .Theorem 4. Surfae is set of smooth BS�pathes i� the set of entral ontrol points ofBS�Pathes is a produt of polylines.ConstrutionGiven two polylines given two sets (sets of ratios)
π = (p0, p1, . . . , pn−1), ρ = (r0, r1, . . . , rm−1), 0 < pi, rj < 1 ,we an onstrut smooth onatenation of BS�Pathes aording to the steps below.a) The entral ontrol points of BS�Pathes are the produt of polylines Λ1 • Λ2 .b) Crosswise ontrol points an be found as a ratios of neighbour entral ontrol points.) Dependent ontrol points (orners of BS�pathes) are found aording to the (3).d) Conatenation onsists of full-de�ned BS�pathes.Fig. 4 demonstrates the above desribed onstrution.

Figure 4: Smooth onatenation of BS�pathes aording to the steps a)�d) above.Aknowledgement: This work is supported by grant GACR 105/09/1830 of the Grant AgenyCR and the researh plan AVOZ 30860518 of the Aademy of Sienes of the Czeh Republi.Referenes[1℄ G. Farin: Curves and surfaes for CAGD: A pratial guide. Aademi Press, 1988.[2℄ A. Kolun: Biquadrati S�Path in Bézier form. In: V. Skala (ed.): Proeedings of theConferene WSCG 2011, Plze¬ 2011.[3℄ V. Skala, V. Ondra£ka: S�Path: Modi�ation of the Hermite parametri path. In: Pro-eedings of Conferene ICGG 2010, Kyoto 2010.
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Orthogonalization with a non-standard inner produtand approximate inverse preonditioningJ. Kopal, M. Rozloºník, M. T·ma
1 Institute of Novel Tehnologies and Applied Informatis, Tehnial University of Libere

2,3 Institute of Computer Siene AS CR, Prague
1 IntrodutionOne of the most important and frequently used preonditioning tehniques for solving symmetripositive de�nite systems Ax = b is based on omputing the approximate inverse fatorizationin the form A−1 = ZZT , where Z is upper triangular [1℄. It is also a well-known fat that theolumns of the fator Z an be omputed by means of the A-orthogonalization proess appliedto the unit basis vetors e1, . . . , en. As noted in [3℄ suh A-orthogonalization also produes theCholesky fator of the matrix A = UTU , where U−1 = Z. This fat has been exploited toonstrut e�ient sparse approximate inverse preonditioners [1, 2, 3℄. In a more general setting,given the symmetri positive de�nite matrix A and the nonsingular matrix Z(0), we look forthe fators Z and U so that Z(0) = ZU with ZTAZ = I and the upper triangular matrix U isa Cholesky fator of the matrix (Z(0))TAZ(0) = UTU .2 Ortogonalization tehniquesOne an use a lot of algorithms to alulate matries Z and U . Straightforward and probably themost expensive way is the omputation based on spetral deoposition. Assume spetral deom-position of the matrix A in the form A = V ΛV T . We an get the fator U as the upper triangularfator from QR deomposition (with standard inner produt) of the matrix Λ1/2V TZ(0) = QUand the fator Z an be then obtained simply as the produt Z = V Λ−1/2Q. This approah(alled EIG here) is due to omputation ost useful only for small dimensional matries. Forthe real-world problems it is more suitable and likely the most ommon way to ompute matri-es Z and U using on the generalized Gram-Shmidt orthogonalization (the A-orthogonalization),whih forms the olumns of the matrix Z. The orthogonalization oe�ients form the upper tri-angular fator U . There are several versions of the Gram-Shmidt algorithm, whih lead to thesame result in exat arithmeti. The lassial Gram-Shmidt (CGS) algorithm employs a lot ofparallelism, beause the salar produts an be omputed separately. Rearraging of this shemehas led to the modi�ed Gram-Shmidt algorithm (MGS), whih partly lost parallel properties,but provides better numerial results. Exept CGS and MGS algorithms there is a spei� om-bination of these shemes, whih originates from AINV preonditoner [3℄. This sheme will befurther referred as the AINV orthogonalization. The papers on approximate inverse fatoriza-tion are mainly foused on the onstrution of the algorithms and do not study their numerialproperties. Therefore it is neessary to study inomplete algorithms also from the numerialpoint of view and understand well their numerial behavior. The development of algorithms foronstruting approximate inverse has led from oblique projetions based AINV and CGS orthog-onalizations [3℄ to their stabilized version represented by SAINV algorithm [2℄, whih uses MGSorthogonalization algorithm. 61



3 Theoretial analysisAssume omputed quantitie Z̄ whih approximate Z so that A−1 ≈ Z̄Z̄T . Our analysis hasfoused in partiular on the bound for the loss of orthogonality whih an be ompletely di�erentfor various algorithm as it will be presented later. With the loss of orthogonality we mean the2-norm of the matrix Z̄TAZ̄ − I. The orthogonality between omputed vetors has a ardinalsigni�ane for the quality of the preonditioner omputed by the orthogonalization proess. Itis a well-known fat that the eigenvalues of Z̄TAZ̄ a�et the onvergene rate of preonditionedonjugate gradient method applied to Z̄TAZ̄y = Z̄b, where x = Z̄y. Therefore our primary goalis to solve the orthogonal basis problem in this appliation. There exist omplete rounding erroranalysis [4, 5, 7℄ for all main shemes for the QR deomposition with the standard inner produt,but the situation is ompletely di�erent for the non-standard inner produt (indued by matrix
A).In this ontribution we review the most important shemes used for orthogonalization with re-spet to the non-standard inner produt and give the worst-ase bounds for orresponding quan-tities omputed in �nite preision arithmeti. We formulate our results on the loss of orthogo-nality, on the fatorization error, and on Cholesky fatorization error (measured by ‖Z̄TAZ̄−I‖,
‖Z(0) − Z̄Ū‖, and ‖A − ŪT Ū‖) in terms of quantities proportional to the roundo� unit u, interms of the ondition number κ(A) whih represents an upper bound for the relative error inomputing the A-inner produt as well as the ondition number of the matrix A1/2Z(0) whihplays an important role in the fatorization (Z(0))TAZ(0) ≈ ŪT Ū .4 Numerial experimentsWe onsider a test problem de�ned as a sequene of matries Ai with dimension n = 10 whihare generated as powers of the Pasal matrix A = pasal(10) = V ΛV T (κ(A) ≈ 109) suh that
Ai = V Λi/9V T with κ(Ai) ≈ 10i, i = 0, . . . , 17. The matrix Z(0)

i is equal to Z(0)
i = I.We an see from �gure 1, that the loss of orthogonality for all these algorithms is proportionalto uκ(A). This problem does not reah the worst-ase bound, obtained by CGS, AINV, andMGS in the form ‖Z̄AZ̄ − I‖ ≤ O(u)κ3/2(A). The fatorization error orresponds to theoretialanalysis ‖I−Z̄Ū‖; its bound for the algorithms is proportional to uκ1/2(A) [6℄. On �gure 2 we ansee the Cholesky fatorization error ‖A− ŪT Ū‖, for the EIG implementation it is proportionalto u‖A‖ and for other algorithms it is proportional to uκ1/2(A)‖A‖, that are worst-ase boundsfor Cholesky fatorization error [6℄.

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Lo
ss

 o
f o

rt
ho

go
na

lit
y 

||I
−

Z
T
A

Z
||

condition number (A)

Problem 6 (Pascal matrix)

 

 

 MGS
 CGS
 CGS2
 AINV
 EIG
 u κ(A)

 u κ(A) κ(A1/2Z(0))

 u κ(A) κ(A1/2Z(0)) κ(Z(0))

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

F
ac

to
riz

at
io

n 
er

ro
r 

|| 
Z(0

)  −
 Z

U
 ||

condition number (A)

Problem 6 (Pascal matrix)

 

 
 MGS
 CGS
 CGS2
 AINV
 EIG

 u ||Z(0)||

 u ||Z|| ||A1/2 Z(0)||

 u κ1/2(A) ||Z(0)||

Figure 1: Loss of orthogonality and fatorization error for the test problem.62
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 u κ(A)1/2 ||A||Figure 2: Cholesky fatorization error for the test problem.5 ConlusionAs it was noted, from all given Gram-Shmidt algorithms we an get signi�antly di�erent numer-ial results, but the fatorization error is essentially the same. The bound for the loss of orthogo-nality depends linearly on the ondition number κ(A) for the ase of eigenvalue based implemen-tation (EIG) and lassial Gram-Shmidt with reorthogonalization (CGS2). For the modi�edGram-Shmidt it is also true, although, also besides κ(A) it depends on the ondition number

κ(A1/2Z(0)). The loss of orthogonality is similar for the lassial Gram-Shmidt (CGS) and AINVorthogonalization, no matter that theoretially the bound depends on κ(A)κ(A1/2Z(0))κ(Z(0)).From the numerial point of view and due to the omputation ost, MGS seems to be a goodompromise between all these algorithms. For all these results and details we refer to [6℄. Webelieve that these results may initialize a detailed researh of the shemes whih leads to somesparse approximation of the matries Z and U . For a overview of suh shemes we refer to [1℄.Aknowledgement: This work has been supported by Grant Ageny of the Aademy of Si-enes of the Czeh Republi under the projet IAA100300802, by the international ollaborationsupport M100300902 of AS CR and by the Institutional Researh Plan AV0Z10300504 "Com-puter Siene for the Information Soiety: Models, Algorithms, Appliations" and by the grantNo. 102/08/H081 of the Grant Ageny of the Czeh Republi.Referenes[1℄ M. Benzi: Preonditioning tehniques for large linear systems: a survey. J. Comput. Phys.182 (2), 2002, 418�477.[2℄ M. Benzi, J. K. Cullum, and M. T �uma: Robust approximate inverse preonditioning for theonjugate gradient method, SIAM J. Si. Comput. 22 (4), 2000, 1318�1332.[3℄ M. Benzi, C. D. Meyer, and M. T �uma: A sparse approximate inverse preonditioner for theonjugate gradient method. SIAM J. Si. Comput. 17 (5), 1996, 1135�1149.[4℄ L. Giraud, J. Langou, M. Rozloºník, and J. van den Eshof: Rounding error analysis of thelassial Gram-Shmidt orthogonalization proess. Num. Math. 101, 2005, 87�100.[5℄ L. Giraud, J. Langou, and M. Rozloºník: On the loss of orthogonality in the Gram-Shmidtorthogonalization proess. Comput. Math. Appl. 50 (7), 2005, 1069�1075.63



[6℄ J. Kopal, M. Rozloºník, A. Smoktunowiz, and M. T �uma: Rounding error analysis of or-thogonalization with a non-standard inner produt. Submited to Num. Math., 2010.[7℄ A. Smoktunowiz, J.L. Barlow, and J. Langou: A note on the error analysis of the lassialGram-Shmidt. Num. Math. 105 (2), 2006, 299�313.
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Numerial algorithms on multiore arhiteturesP. KotasV�B - Tehnial University of Ostrava
1 IntrodutionMany tools suh as Matlab (and its open-soure ounterpart, Otave) are often used for algorithmprototyping and development. Matlab & Otave have easy to learn syntax and provide the easiestway of implementing numerial algorithms. However both Matlab & Otave share problems thatlimits their usefulness. The problems inlude :

• Matlab is a proprietary software with an expensive liense. This fat limits the use ofprograms written in Matlab. Otave partially solves this problem, however not all Matlabfuntionality is yet implemented in Otave.
• Both Matlab & Otave are weakly dynamially typed languages, whih means type hekingis performed at runtime as opposed to ompile-time. As suh, it is possible to writetype unsafe programs that ould break during deployment stage. Furthermore, there isperformane penalty assoiated with runtime hek.
• It is possible to all funtion written in other languages (suh as C and Fortran) fromMatlab. However funtions written in Matlab an not be easily alled from other languages.
• Inreasing availability of multi-ore CPUs has opened a possibility to inrease performanevia parallelization. However parallelization is non-trivial within Matlab, whih is in ontrastto the ease of parallelization via OpenMP or Thread building bloks.Due to above issues, most programs (or algorithms) written in Matlab are often onverted toanother programming language (C++, Java, et.), when targeting ommerial deployment orlarge sale parallel environments. This leads to another set of problems, suh as reimplementingMatlab funtions that are neessary requirement for run of implemented algorithm.This work onsiders alternative approah to algorithm prototyping. The main area of my researhare parallel algorithms for omputer vision. Therefore, I foused on libraries for omputer vision,linear algebra pakages and parallel libraries.2 Computer vision librariesThere are two suitable image libraries, OpenCV [1℄ and Img [2℄. CImg library is basially theonly template providing basi routines for handling images. Beause I need a replaement of theMatlab image proessing toolbox I have hosen the OpenCV library. OpenCV is an extensiveset o funtions for image proessing and omputer vision with neat implementation of matrixoperations. OpenCV also possess basi implementation of graphial user interfae.65



3 Linear algebra pakagesArmadillo [3℄ is easy to learn linear algebra pakage. It is build on top of LAPACK and ATLASand it is designed to have syntax similar to Matlab. This features makes Armadillo perfetlibrary for numerial algorithm prototyping.4 Parallel librariesThere are two widely used libraries for parallelization on multi-ore arhitetures. Thread build-ing bloks (TBB) is library developed by Intel. It is suited for developing parallel algorithms inC++. TBB uses objet oriented approah and is based on template algorithms. On the otherhand, OpenMP is set of ompiler pragmas and set of parallel instrution is built-in most todaysompilers. OpenMP is well suited for parallelization of existing sequential algorithms that spentmost of the time iterating over arrays.5 DisussionBoth OpenMP and TBB are reliable libraries and ould do similar job. Beause my work is donein C++ and all algorithms are mainly iterating over large arrays, the hoie of parallel library isnot simple. Also library needs to inorporate with OpenCV. Therefore hoie of parallelizationlibrary will be based on experiene with implementing simple image proessing algorithm. TheArmadillo and OpenCV integration will also be tested.Referenes[1℄ G. Bradski: The OpenCV library. Dr. Dobb's Journal of Software Tools, 2000.[2℄ Img library. http://img.soureforge.net/[3℄ C. Sanderson: Armadillo: An open soure C++ linear algebra library for fast prototypingand omputationally intensive experiments. NICTA Tehnial Report, 2010.[4℄ J. Reinders: Intel threading building bloks: out�tting C++ for multi-ore proessor paral-lelism. Sebastopol: O'Reilly Media, 2007.[5℄ B. Chapman, G. Jost, R. van der Pas: Using OpenMP: portable shared memory parallelprogramming. MIT Press, 2008.
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Solution of non-linear algebrai systemsin oupled thermo-mehanial analysisJ. Kruis, T. KoudelkaFaulty of Civil Engineering, Czeh Tehnial University in Prague
1 IntrodutionThis ontribution onentrates on mehanial analyses based on damage models oupled withheat transfer. The damage models are used for desription of onrete and rok materials.Typial feature of suh models is softening branh after the peak stress value. In order to followthe softening behaviour, the methods of ar-length are used [1℄, [2℄. Three of them are omparedin this paper.2 Solution of non-linear algebrai systems of equationsThe equilibrium ondition of a struture after disretization by the �nite element method hasthe form

f int(d) = f c + λfp (1)where d denotes the vetor of nodal displaements, f int denotes the vetor of internal fores,
f c denotes the vetor of onstant presribed fores, λfp denotes the vetor of proportionallyhanging fores and λ denotes the salar load-level multiplier. The vetor of unbalaned foreshas the form

r(d, λ) = f c + λfp − f int(d) (2)and it is the residual. The dependene of d on λ has to be obtained by an iterative proess. Letthe i-th step be known, i.e. the vetor di and the parameter λi are known and r(di, λi) = 0.Expansion of the residual has the form
r(di+1, λi+1) = r(di, λi) +

∂r(di, λi)

∂d
δdi +

∂r(di, λi)

∂λ
δλi = −Ki,0δdi,1 + fpδλi,1 = 0 (3)where the following notation

∂r(di, λi)

∂d
= −Ki,0 (4)

∂r(di, λi)

∂λ
= fp (5)is used. Let the vetor δdi,1 be in the form

δdi,1 = δλi,1vi,1 (6)67



f

d

f(d)

di

f c + λifp

∆l

δdi,1

∆di,1

δλi,1fp

δdi,2

∆di,2Figure 1: Load�de�etion urve.Substitution of the assumption (6) to (3) leads to the expression
vi,1 = K−1

i,0 fp (7)The length of ar an be written
(δdi,1)

T δdi,1 + ψ2(δλi,1)
2fT

p fp = (δλi,1)
2vT

i,1vi,1 + ψ2(δλi,1)
2fT

p fp = (∆l)2 (8)where the saling parameter ψ was de�ned. The inrement of the salar load multiplier has theform
δλi,1 = ± ∆l√

vT
i,1vi,1 + ψ2fT

p fp

(9)Substitution of (9) and (7) to the assumption (6) leads to the modi�ed vetor of displaements.Generally, the residual is not equal to the zero vetor
r(di + δdi,1, λi + δλi,1) = f c + (λi + δλi,1)fp − f int(di + δdi,1) 6= 0 (10)and new system has to be solved
r(di+1, λi+1) = ri,1 − Ki,1δdi,2 + fpδλi,2 = f c + (λi + δλi,1)fp − (11)

− f int(di + δdi,1) − Ki,1δdi,2 + fpδλi,2 = 0where the notation
ri,1 = r(di + δdi,1, λi + δλi,1) (12)is used.Cumulative quantities are de�ned

∆di,j = ∆di,j−1 + δdi,j (∆di,1 = δdi,1) (13)
∆λi,j = ∆λi,j−1 + δλi,j (∆λi,1 = δλi,1) (14)68



and they are shematially depited in Figure 1. Equation (11) an be rewritten to the form
Ki,1δdi,2 = f c + (λi + ∆λi,1)fp − f int(di + ∆di,1) + fpδλi,2 (15)The system of equations (15) an be split into two systems

Ki,1ui,2 = f c + (λi + ∆λi,1)fp − f int(di + ∆di,1) (16)
Ki,1vi,2 = fp (17)and the deomposition

δdi,2 = ui,2 + δλi,2vi,2 (18)is assumed. The length of ar has now the form
‖∆di,1 + ui,2 + δλi,2vi,2‖2 + ψ2‖∆λi,1fp + δλi,2fp‖2 = (∆l)2 (19)whih is the quadrati equation

a1(δλi,2)
2 + a2(δλi,2) + a3 = 0 (20)with oe�ients

a1 = vT
i,2vi,2 + ψ2fT

p fp (21)
a2 = 2vT

i,2(∆di,1 + ui,2) + 2∆λi,1ψ
2fT

p fp (22)
a3 = (∆di,1 + ui,2)

T (∆di,1 + ui,2) + (∆λi,1)
2ψ2fT

p fp − (∆l)2 (23)The inrement δλi,2 is obtained from the quadrati equation (20) and it is substituted to (18).New values are again substituted to the residual and equality to the zero vetor is heked. Thealgorithm is summarized in Table 1 and it is alled the spherial ar-length method. If the salingparameter ψ is equal to zero, the method is alled the ylindrial ar-length method.Solution of the quadrati equation (20) is straightforward but only one root has to be used fornext omputation. One of the riteria used has the form
cos θ =

∆dT
i,j+1∆di,j

(∆l)2
→ max (24)Substitution of (13) and (18) leads to the form

cos θ =
1

(∆l)2
∆dT

i,j(∆di,j + ui,j+1 + δλi,j+1vi,j+1) (25)New notation
a4 = ∆dT

i,j(∆di,j + ui,j+1) (26)
a5 = ∆dT

i,jvi,j+1results to the onise form
cos θ =

a4 + δλi,j+1a5

(∆l)2
(27)Both roots of the equation (20) are substituted to the expression (27) and the root leading tothe larger value is seleted.Linearized form of the ar-length leads to the expression

δλi,j+1 =
−1

2 li,j − ∆dT
i,jui,j+1

∆dT
i,jvi,j+1 + ψ2∆λi,jf

T
p fp

(28)and no root seletion proedure is needed. 69



λ0 = 0,d0 = 0For i = 0, 1, 2, . . .

∆λi,0 = 0, ∆di,0 = 0, ri,0 = 0For j = 0, 1, 2, . . .

ui,j+1 = K−1
i,j ri,j

vi,j+1 = K−1
i,j fp

a1 = vT
i,j+1vi,j+1 + ψ2fT

p fp

a2 = 2vT
i,j+1(∆di,j + ui,j+1) + 2∆λi,jψ

2fT
p fp

a3 = ‖∆di,j + ui,j+1‖2 + (∆λi,j)
2ψ2fT

p fp − (∆l)2

a1(δλi,j+1)
2 + a2(δλi,j+1) + a3 = 0 ⇒ δλi,j+1

δdi,j+1 = ui,j+1 + δλi,j+1vi,j+1

∆di,j+1 = ∆di,j + δdi,j+1

∆λi,j+1 = ∆λi,j + δλi,j+1

ri,j+1 = f c + (λi + ∆λi,j)fp − f int(di + ∆di,j)if ‖ri,j+1‖ < ε, stop
λi+1 = λi + ∆λi

di+1 = di + ∆diTable 1: Algorithm of the Ar-length Method.3 ConlusionsNumerial experiments based on damage models of rok show that the linearized version of thear-length method onverges faster than the spherial or ylindrial methods but on the otherhand, it sometimes performs spurious loading and unloading yles.Aknowledgement: Finanial support for this work was provided by projet numberP105/10/1682 of Czeh Siene Foundation. The �nanial support is gratefully aknowledged.Referenes[1℄ Z. Bittnar, J. �ejnoha: Numerial Methods in Strutural Mehanis. ASCE Press, New York,USA, 1996.[2℄ M. A. Cris�eld: Non-linear Finite Element Analysis of Solids and Strutures. John Wiley &Sons Ltd, Chihester, UK, 1991.
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Constrution of higher-order basis funtionson meshes with hanging nodes in 3DP. K·sInstitute of Thermomehanis AS CR, Prague
1 IntrodutionFinite element method using higher-order basis funtions and meshes with hangingnodes (hp-FEM) beame very popular thanks to it's ability to ahieve fast (exponential) onver-gene. The reason of it's qualities is its ability to perform both h (division of element in spae)and p (inrease of the polynomial order) re�nements in the adaptivity proess. This approahhas been desribed in several books, see e.g. [1℄, [3℄.In a pratial omputer implementation, however, many serious tehnial and theoretial di�ul-ties arise. In this presentation we want to address one of the ruial parts, whih is onstrutionof onforming higher-order basis funtions on meshes with arbitrary-level hanging nodes.2 Arbitrary-level hanging nodesMain feature of introdution of irregular meshes is that faes, edges or verties of elements anlie inside faes and edges of other elements in the mesh. This situation is not allowed in standardFEM, where adjaent elements either share a single vertex, a single edge, or a single fae. Withthe tehnique of arbitrary-level hanging nodes, very small elements an be neighbors of verylarge ones while keeping an undistorted regular shape � this is impossible in standard FEM.Further, this tehnique makes element re�nements ompletely loal � re�nement of an elementnever auses re�nements in adjaent elements.Some authors try to avoid implementational omplexity of fully irregular meshes by introduing1-irregular mesh. It allows hanging nodes, but of only �rst level. Comparison an be seen in

Figure 1: Meshes resulting from an automati mesh adaptive proedure for problem with singu-larity slightly to the right and up from the square enter. Arbitrary-level hanging nodes (left),level-one hanging nodes (enter), no hanging nodes � regular mesh (right).71



10
0

10
1

10
2

10
3

10
4

10
5

0 1 2 3 4 5 6 7 8 9

free
1-irregular

regular

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0 1 2 3 4 5 6 7 8 9

free
1-irregular

regular

Figure 2: The number of DOFs vs. the number of suessive re�nement steps for the 2D ase ina square (left) and for the 3D ase in a ube (right).Figure 1 for 2D ase, for a 3D ase the onstrution is similar, but �gure would be di�ult todraw. In Figure 2 we an see omparison of number of degrees of freedom in meshes obtained bysuessive re�nement towards singularity as shown in Figure 1 and similar onstrution in 3D.Even though this onstrution is slightly arti�ial, we an see, that mesh with arbitrary-levelhanging nodes has muh less degrees of freedom than two others. It is aused by the fat, thatno unneessary re�nements are performed.Fored re�nements slow down the onvergene, worsen the onditioning of sti�ness matries,and their algorithmi treatment is problemati, beause they an �spread� through the mesh in areursive nature. Most existing adaptivity algorithms in both low- and higher-order FEM su�erfrom these drawbaks.3 Constrution of basis funtionsIn the �nite element method, solution of the problem is sought as a ombination of basis funtions.In the onept of hierarhial basis, eah basis funtion is related to an entity in the mesh, whihin the ase of three dimensional mesh an be vertex, edge, fae or element interior.Let us address spae H1, whih is used for disretization of ellipti problems. Conformity re-quirement of this spae is ontinuity. Therefore, all basis funtions has to be reated in suh way,that they are ontinuous in all verties, edges and faes. In the presentation, a rather tehnialdesription of onstrution is shown. The idea is following. In the regular mesh, basis funtionsare onstruted simply by �gluing� piees together, as shown in Figure 3 for a vertex funtion.The proess is similar for edge and fae funtions, even though here the situation is ompliatedby a neessity of proper orientation handling. But still, when dealing with regular mesh, one hasto onsider only elements adjaent to given vertex, edge or fae. On all other elements the basisfuntion equals zero. Bubble (or interior) funtions are simple, they are loal to one element andzero elsewhere and therefore their ontinuity is lear.For the ase of meshes with hanging nodes, new problems arise. Here muh more elementsmay be involved and great e�ort has to be made to keep basis funtions onforming. A rathersophistiated algorithm has been desribed in [4℄ for two dimensional ase. We used the idea,but in the 3D setting everything is muh more ompliated. In Figure 4, an element after severalre�nements is shown and we an see, that muh more elements are involved in onstrution of72



Figure 3: Two elements with images of loal basis vertex funtion being �glued� together to formpart of a global vertex funtion.
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Figure 4: Example of one element of the oarse mesh with many re�nements. Numbers assignedto verties represent oe�ients of ontributing loal basis funtions, when onstruting vertexbasis funtion (assoiated to a vertex with number 1).a vertex basis funtion. For edges and faes the situation is even more ompliated, beause,for example, values on fae may onstrain values in many other faes, edges and verties inthe mesh. A detailed algorithm whih determines what loal basis funtions and with whihoe�ients should be inluded to form global basis funtion will be presented.73



4 ConlusionWe present algorithm of onstrution of onforming basis funtions of higher order in mesheswith arbitrary-level hanging nodes. It is part of more omplex work related to development of
hp-FEM software for 3D ellipti, eletromagneti and other problems.In the future we want to fous on solving di�ult oupled problems arising in engineering pratie.Suh problems in 3D may lead to neessity of solving huge linear systems. Experiments in twospatial dimensions suggest, that when using hp-adaptive algorithms, suh systems may beomesigni�antly smaller and therefore solvable in reasonable time.Aknowledgement: This work has been supported by the grant GAAV�R IAA100760702.Referenes[1℄ L. Demkowiz, J. Kurtz D. Pardo, M. Paszynski, W. Rahowiz� A. Zdunek: Computingwith hp-adaptive �nite elements, Volume 2. Chapman & Hall/CRC Press 2008.[2℄ P. K·s, P. �olín, I. Doleºel: Solution of 3D singular eletrostatis problems using adaptive

hp-fem. COMPEL, 27(4), 2008, 939�945.[3℄ P. �olín, K. Segeth, I. Doleºel: Higher-order �nite element methods. Chapman & Hall/CRCPress, 2004.[4℄ P. �olín, J. �ervený, I. Doleºel: Arbitrary-Level Hanging Nodes and Automati Adaptivity inthe hp-FEM. Math. Comput. Simulation, 2007.
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Geosyntheti tubes �lled with liquids with di�erent densitiesJ. MalíkInstitute of Geonis AS CR, Ostrava
1 IntrodutionGeosyntheti tubes have found appliations in many branhes of engineering. The reader an�nd a desription of these appliations, for instane, in the monograph [7℄. Geosyntheti tubeshave been studied in many papers, but only the problems related to the tubes �lled with a singleliquid have been analyzed.The models of geosyntheti tubes on a rigid horizontal foundation are presented, for instane,in [3, 4, 6, 9℄. The mathematial models of geosyntheti tubes �lled with both liquid and air areinvestigated in [1℄.Appliation of staked geosyntheti tubes attrats more and more attention. Suh problems aresolved in [8℄, where the behavior of staked tubes is analyzed both on a rigid foundation as well ason a deformable one. Mathematial problems onneted with existene, stability, and uniquenessare analyzed in [1, 5℄. The existing numerial methods are reviewed and ompared in [2℄.2 Formulation of the problemIn this setion we formulate the basi hypotheses and the di�erential equations of equilibriumfor a geosyntheti tube �lled with several liquids sitting on the rigid horizontal foundation.The ross-setion of the tube is depited in Figure 1. Notie that the shape of the ross-setionis symmetri with respet to the y - axis.Our aim is to desribe the shape of the ross-setion and to �nd the orresponding tension t, thepressures p0, p1, . . . , pn with respet to the given perimeter l, the areas v1, . . . , vn and the den-sities ρ1, . . . , ρn. Notie that the given data annot be independent. Conretely, hypothesis (v)formulated above yield the inequalities
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ρ1 > ρ2 > . . . > ρn .Moreover, the maximal area of the ross-setion related to the �x perimeter l orresponds to thearea of the irle. Thus the inequality
n∑

i=1

vi <
l2

4π
, (1)must hold. With respet to the theoretial results in [5℄, we an expet that this inequality alsoensures the solvability of the problem.Sine

pi = pi−1 − gρi(yi − yi−1), i = 1, . . . , n, (2)the pressures ful�ll the inequalities
p0 > p1 > . . . > pn,where p0 is the pressure on the bottom, pn is the pressure on the top. Due to hypothesis (vi), thepressure in the liquids ats in the perpendiular diretion to the syntheti fabri. Moreover dueto hypotheses (ii) and (vii), the frition between the tube and the foundation does not in�uenethe shape of the ross-setion. Thus there is no fore in the tangential diretion, whih resultsin a onstant tension fore in the fabri.First of all, we will formulate the problem with respet to the parameter s. So we onsiderthe ontinuous funtions x(s), y(s), θ(s) to desribe the shape of the ross-setion urve. Theequations of equilibrium for the geosyntheti tube �lled with n liquids read

dx

ds
= cos θ(s) ,

dy

ds
= sin θ(s) ,

t
dθ

ds
= pi − gρi+1(y(s) − yi) , i = 0, 1, . . . , n− 1 ,

(3)where s ∈ (si, si+1). The equations (3) desribe the shape of the part of the ross-setional urvein the layer oupied by the liquid with the density ρi+1. Moreover, the following onditions
xn ≡ x(sn) = 0 , y0 ≡ y(s0) = 0 , θ0 ≡ θ(s0) = 0 , θn ≡ θ(sn) = π (4)are satis�ed, whih is evident from Figure 1. With respet to the presribed values of theperimeter l and the areas v1, . . . , vn, it holds the following equalities:

sn = l/2 (5)and
si∫

si−1

x
dy

ds
ds = vi , i = 1, . . . n . (6)To �nd the solution to our problem, we have to determine the parameters t, si, pi, i = 0, 1, . . . , n,and the ontinuous funtions x(s), y(s), θ(s) on the interval (s0, sn) so that the di�erentialequations (3), the onditions (4) and the relations (2), (5) and (6) are ful�lled.76



3 Numerial model problemsIn this setion we use the numerial algorithms desribed in the previous setion to solve a fewnumerial model problems. We analyze a geosyntheti tube �lled with two, three, and fourliquids with various densities. We use the perimeter 10 m in all the investigated examples. Westart with a tube �lled with two liquids with mass densities 1000 kg/m3 and 1300 kg/m3. Let usonsider that the volumes of the liquids are divided in the proportion 1 : 1. Now we are lookingfor the mutual dependene between the whole area of the ross-setion and suh quantities asthe length of the ontat zone, the height of the tube, the pressure on the bottom and top ofthe tube and the tension in the geosyntheti fabri. All these quantities are ompared with thesame quantities for the geosyntheti tube �lled with the single liquid with the average density
1150 kg/m3.The graph in Figure 2 desribes the dependene of the tube height �lled with two liquids on theross-setional area. Notie that the limit heights are 0 m and 10/π m whih orrespond to theheight of an empty tube and the diameter of the irle ross-setion of the tube, respetively.The di�erene between the tube heights for two liquids and for the single liquid with the averagedensity is depited in Figure 3. The graph in Figure 3 shows that the tube height �lled with twoliquids is greater than the height of the tube �lled with the single liquid for all the values of theross-setional area. The maximal di�erene is approximately ahieved for the same value of theross-setional area as in the ase of the ontat zones.
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Figure 2: The height of the tube �lled with two liquids.
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The shape of the ross-setion of the tube �lled with two liquids (full line) and a modi�ed shapeof the ross-setion of the tube �lled a single liquid (dotted line) is depited in Figure 4. Theshape for the single liquid is modi�ed so that the di�erene between the shapes is enlarged �fteentimes. The ross-setional area is 3.0 m2.
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Figure 4: The shape of the ross-setion of the tube �lled with two liquids (full line) and themodi�ed shape of the ross-setion of the tube �lled with a single liquid (dotted line). Theross-setional area is 3.0 m2.Aknowledgment: The authors would like to thank the anonymous reviewers for their valuableomments. The researh was supported by grant GA CR 103/08/1700.Referenes[1℄ S.S. Antman, M. Shagerl: Slumping instabilities of elasti membranes holding liquids andgases. International Journal of Non�Linear Mehanis 40, 2005, 1112�1138.[2℄ S. Cantré, Geotextile tubes � analytial design aspet. Geotextiles and Geomembranes 20,2002, 305�319.[3℄ K.K. Kazimierowiz: Simple analysis of deformation of sand � sausages. Fifth InternationalConferene on Geotextiles, Geomembranes and Related Produt, Vol. 2, Hydrauli Appli-ations and Related Researh,Singapore, 1994, 775�778.[4℄ D. Leshhinsky, O. Leshhinsky, H.J. Ling, P.A. Gilbert: Geosyntheti tubes for on�ningpressurized slurry: some design aspets. Journal of Geotehnial Engineering 122, 1996,682�90.[5℄ Malík, J.: Some problems onneted with 2D � modelling of geosyntheti tubes. NonlinearAnalysis: Real World Appliations 10, 2009, 810�823.[6℄ V. Namias: Load � supporting �uid��lled ylindrial membranes. Journal of Applied Me-hanis 52, 1985, 913�918.[7℄ K.W. Pilarzyk: Geosyntheti and Geosystems in Hydrauli and Coastal Engineering. Taylor& Franis, 2007.[8℄ R.H. Plaut, C.R. Klusman: Two�dimensional analysis of staked geosyntheti tubes on de-formable foundations. Thin�Walled Strutures 34, 1999, 179�194.[9℄ R.H. Plaut, S.I. Liapis, D.P. Telionis: Wen the levee in�ates. Civil Engineering (ASCE) 68(1), 1998, 62�64. 78



Some mathematial problems aroundthe GOOGLE searh engineI. MarekCzeh Tehnial University in Prague
1 IntrodutionIt is known that the Google searh engine opened unusual interest for its fundamental priniples inmany areas of researh. Our ontribution is onerned with the elebrated Google matrix whoseimportane in omputing the PageRank is undisputable. A worldwide disussion onerningmany aspets of searh engines resulted in many journal publiations as well as a monograph [6℄.The above mentioned problem how to ompute the PageRank e�iently led to an elementary butvery interesting result in Linear Algebra, to the so alled Google lemma. Within short periodmany proofs and generalizations of this lemma have been proposed and with large probabilitysome more will appear. An inreasing interest to some spei� disiplines of Mathematis andComputer Siene as well as many other areas of researh diretions should be welome.2 GeneralitiesAll matrie appearing in the next setions are N × N matries possibly expressed using theirblok struture. As standard, we denote by ρ(C) the spetral radius of square matrix C, i.e.

ρ(C) = max {|λ| : λ ∈ σ(C)} ,where σ(C) denotes the spetrum of C. We all
γ(C) = sup {|λ| : λ ∈ σ(C), λ 6= ρ(C)} .the onvergene fator of C. We de�ne quantity τ(C) by setting
τ(C) = max {|λ| : λ ∈ σ(C), |λ| < ρ(C)}and all it subspetral radius of C.2.1. Remark Let C be any N ×N matrix. Then obviously,

ρ(C) ≥ γ(C) ≥ τ(C).2.2. Remark Let T be a matrix whose elements are nonnegative real numbers. It is well knownthat
1)

lim
k→∞

T k = 0 ⇐⇒ ρ(T ) < 1;

2)
lim

k→∞

(
1

ρ(T )
T

)k

= T∞ 6= 0 =⇒ γ

(
1

ρ(T )
T

)
< 1;79



3 A short proof of the Google lemmaWe are going to examine the following system of problems parameterized by parameter α∈(1
2 , 1):

G(α) = αG(1) + (1 − α)G(2),where G(1) is a (olumn) stohasti matrix and G(2) a suitable (low rank) irreduible stohastimatrix.We establish the following result and present it as3.1. Lemma Suppose G(2) = veT , where v = (v1, ..., vN )T is a vetor whose all omponents arenonnegative reals and eT = (1, ..., 1), eT v = 1, i.e. G(2) represents a rank-one stohasti matrix.Then the onvergene fator an be bounded as follows
γ(G(α)) ≤ α.Proof Let x̂(α) denote the Perron eigenvetor. It is easy to see that vetor x̂(α) has all itsomponents nonnegative and it an be normalized by setting eT x̂(α) = 1. It follows that x̂(α) =

G(α)x̂(α) = αG(1)x̂(α) + (1 − α)v and hene
x̂(α) =

[
1

1 − α
(I − αG(1))

]−1

v.Thus, the Perron projetion ofG(α) readsQ(α) = x̂(α)eT .We hek easily thatQ(α)G(α)Q(α)=
G(α)Q(α) = Q(α) and

(I −Q(α))G(2) (I −Q(α)) =
(
G(2) −Q(α)

)
(I −Q(α)) = G(2) (I −Q(α)) = 0. (1)The validity of the statement of Lemma 3.1 follows from the relation representing the uniquespetral deomposition of matrix G(α) = Q(α) + (I −Q(α))αG(1) (I −Q(α)). The proof isomplete.The above proof opens a way to generalizations. A ruial point in the above proof is a spe-ial kind of relationship between the original transition matrix G(1) and the perturbation G(2)onsisting of relations (1).4 A generalization of the GOOGLE lemmaA speiality of our proof of the GOOGLE lemma demonstrated in the previous setion onsistsof showing that the perturbation vetor is fully absorbed by the Perron projetion of the onvexombination. An appliation of this fat to more general situation would be possible if we �ndanother type of perturbation with the absorbtion property and a method o�ering a onvergentproedure to ompute a orresponding stationary probability vetor. We show that suh a pairappears quite frequently.Let p ≥ 2 be a positive integer and

G(2) =
∑p

k=1 λ
k−1Qk, λ = exp{2πi

p

}
, i2 = −1,

Q
(2)
1 = x̂2e

T , Q
(2)
k Q

(2)
j = Q

(2)
j Q

(2)
k = δjk, j, k = 1, ..., p.

(1)80



Assume that G(2) is an irreduible blokwise yli stohasti matrix of order p and (1) itsspetral deomposition. We immediately see that both the blok index of yliity as well asrank of G(2) equal p.4.1. Theorem Assume G(1) is a stohasti matrix, G(2) is de�ned in (1), both of order N ×N ,and G(α) = αG(1) + (1 − α)G(2), α ∈ (1
2 , 1). If also G(α) is p-yli, then
τ (G(α)) = α. (2)Proof Sine obviously
G(3) = Q

(2)
1 eTis an irreduible rank-one stohasti matrix the GOOGLE lemma 4.1 implies that a uniquePerron projetion of matrix αG(1) + (1 − α)G3) reads as follows

Q(1)(α) =

(
1

1 − α

(
I − αG(1)

))−1

x̂2.

p-Cyliity of matrix G(α) then implies that its peripheral part possesses the following spetraldeomposition (see [1℄)
x̂(α)eT +

p∑

k=2

λj−1Qj(α), Qj(α) = yjf
T ,where x̂(α)T =

(
x̂T

(1), ..., x̂
T
(p)

), and
yT

j =
(
λj−1x̂T

(1), ..., λ
(j−1)px̂T

(p)

)
,

fT
j =

(
λ

j−1
e(n1)

T
(1), ..., λ

(j−1)p
e(np)

T
(p)

)
,

e(nj) = (1, ..., 1)T ∈ Rnj , j = 2, ..., p,
∑p

k=1 nk = N

ξ = x1 − ix2, for ξ = x1 + ix2, x1, x2 ∈ R1.The onlusion of Theorem 4.1 follows from the fat that [9℄
Qj(α) = lim

m→∞
1

m

m∑

k=1

(
1

λj−1
G(α)

)k

, λ = exp{2πi/p}, j = 1, ..., p.5 An appliationIn this setion we present an appliation of the generalized GOOGLE lemma. It onsists ofonvergene of a two-level omputation method for a problem with data of restrited preision.5.1. Theorem Assume B is an irreduible stohasti matrix being yli of index p. Furtherwe assume that the elements of B are known exatly but with some error, say B = B(1) + Cwith some stohasti B(1) and an error matrix ‖C‖ ≤ η with η �xed. To ompute the appropriatestationary probability vetor of B(1) we utilize Algorthm 4.1. SPV(B(α);T ; t, s = 1; y(0); ε), where
B(α) = αB(1) + (1 − α)B(2), I − B(α) = M(I − T ), T = M−1W, (1/2) < α < 1, as formulatedin[10℄. Here B(2) =

∑p
j=1 λ

j−1Q
(2)
j , λ = exp{2πi/p}. Then Algorithm 4.1 returns a sequene ofiterants {y(k)} suh that ∥∥∥y(k) − ŷ

∥∥∥ ≤ κ (τ(T ))k , k = 0, 1, ...where ŷ = B(α)ŷ, ŷeT = 1, e = (1, ..., 1)T and κ is independent of k.81



5.2. RemarkWe see that the data i.e B(1) is perturbed by a term proportional to C =
∑p

j=1Q
(2)
jand we insist relation ‖(1 − α)C‖ ≤ η with 0 < η to hold.Aknowledgement: This work has been supported by grant Nr. 201/09/1544 of the GrantAgeny of the Czeh Republi and by grant MSM 6840770010 of the Ministry of Eduation,Sports and Youth of the Czeh Republi.Referenes[1℄ P.J. Courtois, P. Semal: Blok iterative algorithms for stohasti matries. Linear Algebraand Its Appliations 76, 2006, 59�80.[2℄ L. Eldén: The eigenvalues of the Google matrix. Tehnial Report LiTH-MAR-R-04-01,Department of Mathematis Link®ping University, Link®ping, Sweden, 2004.[3℄ T.H. Haveliwala, S.D. Kamvar: The seond eigenvalue of the Google matrix. Tehnial Re-port, Computer Siene Department, Stanford University, Palo Alto, 2003.[4℄ I. Ipsen, T. Selee: PageRank omputation, with speial attention to dangling nodes. SIAM J.Matrix Anal. Appl. 29, 4, 2007, 1281�1296.[5℄ S.D. Kamvar, T.H. Hawelivala, G.H. Golub: Extrapolation methods for aeleratingPageRank ompoutations. In: Proeedings of the Twelfth Internationl World wide Web Con-ferene (WWW03), Toronto, ACM Press, New York 2003, 261�273.[6℄ A.N. Langville, C.D. Meyer: A reordering for the PageRank problem. SIAM J. Si. Comput.27, 2006, 2112�2120.[7℄ A.N. Langville, C.D. Meyer: Google's PageRank and beyond. The Siene of Searh EngineRankings. Prineton University Press 2006.[8℄ C.P. Lee, G.H. Golub and S.A. Zenios: A two-stage algorithm for omputiong PageRank andmulti-stage generalizations. Internet Math. 4, 4, 2007, 299�328.[9℄ I. Marek: C-onvergene of iterations of bounded linear operators. Comment. Math. Univ.Carol. 2, 4, 1961 22�24.[10℄ I. Marek, P. Mayer: Convergene theory of a lass of aggregation/ disaggregation iterativemethods for omputing stationary probability vetors of stohasti matries. Linear AlgebraAppl. 363, 2002, 177�200.[11℄ I. Pultarová: Loal onvergene analysis of aggregation/disaggregation methods with polyno-mial orretion. Linear Algebra Appl. 421, 2007, 122�137.[12℄ I. Pultarová: Neessary and su�iient loal onvergene ondition of one lass of aggre-gation-disaggregation methods. Numerial Linear Algebra with Appliations 15, 2008, 339�354.[13℄ S. Serra-Capizzano: Jordan anonial form of the Google matrix. SIAM J. Matrix Appl. 27,2005, 305�312.[14℄ W.J. Stewart: Introdution to the numerial solution of Markov hains. Prineton UniversityPress, Prineton, NJ., 1994. 82



Fast solver based on Fourier transformfor linear elastiity problemL. MoekV�B - Tehnial University of Ostrava1 IntrodutionThe main goal of this paper is to brie�y show how to solve ellipti boundary value problems forlinear elastiity using �titious domain method and e�ient solvers based on disrete Fouriertransform and the Shur omplement redution using orthogonal projetors. We start from the�titious domain formulation of a given problem. We brie�y mention the main ideas and we alsomention the new �titious domain approah based on de�nition of new auxiliary boundary, whihis used to get smoother solution on origin domain. Using mixed �nite element disretization weget the disrete algebrai saddle-point system, whih an be solved e�etively by ombinationof the Shur omplement redution and the Fourier transform. For evaluation of the sti�nessmatrix we use spetral deomposition of the sti�ness matrix by the Disrete Fourier transformand for its produt with a vetor whih is used later for �nding the solution, we use Fast Fouriertransform. For this evaluation it is not neessary to store the whole sti�ness matrix whih is bigadvantage, beause the order of sti�ness matrix is usually large. For solving of whole algebraisaddle-point system we use the Shur omplement redution. Beause the sti�ness matrix issingular, the algebrai system is going to be redued to the other one and afterwards we ombinemethod based on the Shur omplement redution with using of orthogonal projetors. Finallythe proposed method is illustrated on numerial examples.2 Fititious domain methodBefore we formulate linear elastiity problem we brie�y explain the basis of �titious domainmethod. Let ω be bounded domain in R2 with the Liphitz boundary ∂ω. On this domain wede�ne an ellipti boundary value problem. The main idea is to embed the real domain of ouroriginal problem with possibly ompliated geometry ω to a new simple shaped domain Ω (forexample retangle) alled �titious domain, see Fig. 1. The original problem is reformulatedto a new one de�ned in the �titious domain Ω. The advantage of this method is that we anuse speial partition on Ω, whih enable us to apply e�etive solvers for evaluation of resultingalgebrai system. We an onsider the original boundary onditions as a onstraint. In elastiapproah, we enfore this onstraint by the Lagrange multipliers de�ned on the boundary γ ofthe original domain ω. Therefore the �titious domain solution has a singularity on γ that anresult in an intrinsi error of the omputed solution.PSfrag replaements
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To remove the above problem we propose a new approah [3℄, in whih we move singularity awayfrom boundary γ. This modi�ation is based on introdution a new ontrol variable instead ofthe Lagrange multiplier de�ned on the other auxiliary boundary Γ loated outside of the domain
ω, see Fig. 2. The boundary Γ satis�es the ondition δ = dist(Γ, γ) > 0. This new ontrolvariable enfores the original boundary ondition on γ. Beause the singularity is moved from
ω, the solution is smoother in ω.3 Formulation of the linear elastiity problemWe onsider elasti body whih is represented by domain ω ⊂ R2 with smooth boundary γ =
γu ∪ γp, divided into two disjoint parts. The zero displaement is imposed on γu while surfaetrations of density p ∈ (L2(γp))

2 on γp. Let us formulate linear elastiity problem:
−div σ(u) = f in ω,

u = 0 on γu,
σ(u)ν = p on γp,



 (1)where σ(u) is the stress tensor in ω, ν = (ν1, ν2) is the unit outward normal vetor to γ,

u = (u1, u2) and we presribe fores of density f |ω ∈ (L2
loc(R

2))2 in ω. The stress tensor isrelated to the linearized strain tensor ε(u) := 1/2(∇u+∇T u) by Hooke's law for linear isotropimaterials:
σ(u) := λ tr(ε(u))I + 2µ ε(u) in ω,where "tr" denotes the trae of matries, I ∈ R2×2 is the identity matrix and λ, µ > 0 are theLamè onstants.We de�ne operator div σ(u) as

div σ(u) =




(λ+ 2µ)
∂2u1

∂x2
1

+ µ
∂2u1

∂x2
2

(λ+ µ)
∂2u2

∂x1∂x2

(λ+ µ)
∂2u1

∂x1∂x2
µ
∂2u2

∂x2
1

+ (λ+ 2µ)
∂2u2

∂x2
2


 , (2)and the spae

V (Ω) = (H1
per(Ω))2, H1

per(Ω) = {v ∈ H1(Ω)|v is periodic on ∂Ω}.The modi�ed �titious domain formulation of (1) is following:
Find (û, λ) ∈ V (Ω) × Λ(Γ) such that

aΩ(û, v) + 〈v, λ〉Γ =

∫

Ω
fv dx ∀v ∈ V (Ω),

〈µu, û〉γu = 0 ∀µu ∈ Λ(γu),
〈µp, σ(û)ν〉γp = 〈µp, p〉γp ∀µp ∈ Λ(γp),





(3)where Λ(Γ) = (H−1/2(Γ))2, Λ(γu) = (H−1/2(γu))2, Λ(γp) = (H−1/2(γp))
2, and 〈 , 〉Γ, 〈 , 〉γu ,and 〈 , 〉γp stand for the duality pairings betweenH1/2(Γ) andH−1/2(Γ), H1/2(γu) andH−1/2(γu),

H1/2(γp) and H−1/2(γp) respetively. Finally aΩ : V (Ω) × V (Ω) → R and 〈v, λ〉Γ : V (Ω) ×
Λ(Γ) → R are two bounded bilinear forms.The diretization of (3) using �nite element method [1℄ leads to the following algebrai saddlepoint system: (

A BT
Γ

Bγ 0

)(
u

λ

)
=

(
f

g

)
, (4)84



where A ∈ R
2n×2n is the sti�ness matrix, the matries BΓ ∈ R

2m×2n and Bγ = (Bγu , Cγp)
T ∈

R
2m×2n are determined by geometries of Γ and γ, respetively, and by the imposed boundaryonditions, they have full row-ranks and also they are highly sparse. The vetors f and g aregiven as f ∈ R

2n, g = (0, p)T ∈ R
2m, respetively. We solve this algebrai system with themethod based on Shur omplement redution.Due to the hoie of the spae with periodi boundary ondition on ∂Ω, the matrix A is singularbut the advantage is that A has a blok irulant struture whih allows to use the highlye�ient solver based on the Fourier transform. For this reason we an use Disrete FourierTransform for spetral deomposition of sti�ness matrix A and after that easily evaluate A†y byFast Fourier Transform without storing A and it is big advantage against other algebrai solvers.We denote A† as generalized inverse of A and y ∈ R2n. This produt appears in multiplyingproedure of Shur omplement redution whih is used to solve this problem.4 Solver for linear elastiity problem based on DFTLet us desribe this multiplying proedure in more details. We solve our problem in �titiousdomain Ω. On the sides of Ω = (0, Lx) × (0, Ly) we onsider equidistant partitions into nxand ny segments with stepsizes hx = Lx/nx and hy = Ly/ny, respetively. Domain Ω is deom-posed into n = nxny partitions. On this retangulation we introdue the �ne element subspae

Vh, whih is formed by pieewise bilinear funtions. Then the sti�ness matrix A reads as follows:
A =

(
(λ+ 2µ)Ax ⊗My + µMx ⊗Ay (λ+ µ)Bx ⊗By

(λ+ µ)Bx ⊗By µAx ⊗My + (λ+ 2µ)Mx ⊗Ay

)
, (5)where symbol ⊗ stands for the Kroneker tensor produt and Ak, Mk, Bk ∈ Rnk×nk , k = x, yare irulants with the �rst olumns

ak = (1/hk)(2,−1, 0, . . . , 0,−1)T ∈ Rnk , k = x, y,

mk = (hk/6)(4, 1, 0, . . . , 0, 1)
T ∈ Rnk , k = x, y,

bk = (1/2)(0,−1, 0, . . . , 0, 1)T ∈ Rnk , k = x, y,respetively. Eigenvalues of any irulant an be obtained by the DFT of its �rst olumn whileeigenvetors are olumns of the inverse to the DFT matrix. Based on this observation we anwrite:
Ak = X−1

k DAk
Xk, Mk = X−1

k DMk
Xk, Bk = X−1

k DBk
Xk, k = x, y,where DAk

, DMk
, DBk

, k = x, y are the respetive diagonal matries of eigenvalues and Xk,
k = x, y are DFT matries. Substituing these expressions into (5) and using properties of theKroneker tensor produt, we obtain

A =

(
X−1 0

0 X−1

)(
D11 D12

D21 D22

)(
X 0

0 X

)
, (6)where X = Xx ⊗Xy, D11 = (λ+ 2µ)DAx ⊗DMy +µDMx ⊗DAy , D22 = µDAx ⊗DMy + (λ+ 2µ)

DMx ⊗DAy , D12 = (λ+ µ)DBx ⊗DBy , D21 = D12. Let us denote D the seond matrix on theright hand-side of (6). Then we an obtain generalized inverse of A† replaing D by D† in (6).We an rewrite D by the following fatorization:
D =

(
I 0

D21D
†
11 I

)(
D11 0

0 D22 −D21D
†
11D12

)(
I D†

11D12

0 I

)
, (7)85



where D†
11 = diag(d†1, · · · , d†n) with d†i = 1/di, if di 6= 0, and d†i = 0 if di = 0 and denote

D22m := D22 −D21D
†
11D12, then we de�ne

D† =

(
I D†

11D12

0 I

)−1
(
D†

11 0

0 D†
22m

)(
I 0

D21D
†
11 I

)−1

, (8)�nally we get
A† =

(
X−1 0

0 X−1

)
D†
(
X 0

0 X

)
. (9)We an obtain from (8) and (9) the produt A†y, y = (y1, y2).5 Shur omplement redutionFrom the reason that the sti�ness matrix A is singular, the �rst omponent u of (4) annot beompletely eliminated. It follows that the Shur omplement redution leads to another algebraisystem with two unknowns. The �rst uknown λ from the previous saddle point system and newunknown α, whih orresponds to the null-spae of A. We an formulate this new algebraisystem with unkowns (λ, α):

(
BγA

†BT
Γ −BγN

−MTBT
Γ 0

)(
λ
α

)
=

(
BγA

†f − g
−MT f

)and the �rst unknown u of the algebrai system (4) is given as u = A†(f −BT
Γλ) +Nα. We ansimplify this algebrai system to the following redued system

(
F GT

1

G2 0

)(
λ
α

)
=

(
d
e

)
, (10)where F := BγA

†BT
Γ , G1 := −NTBT

γ , G2 := −MTBT
Γ ,

d := BγA
†f − g e := −MT f.Now we de�ne two orthogonal projetors P1 and P2 onto the null-spaes of G1 and G2. The �rstprojetor splits the saddle-point algebrai struture of the redued system, the seond projetordeomposes the unknown λ ∈ R2m into two omponents λR and λN as

λ := λR + λN,where λR belongs to the range-spae of G2 (λR ∈ R(GT
2 )) and λN belongs to the null-spae of

G2 (λN ∈ N(G2)). Then λ is the �rst omponent of the solution to the algebrai system (10) if
λR = GT

2 (G2G
T
2 )−1eand λN satis�es the following equation:

P1FλN = P1(d− FλR).The omponent λN is solved by a projeted Krylov subspae method for non-symmetri operators(see [3℄). Finally the seond omponent of algebrai system (10) is given by
α = (G1G

T
1 )−1G1(d− Fλ).86



6 Numerial experimentsLet us show some numerial experiments. Let us de�ne the domain ω as interior of the elipse
ω = {(x, y) ∈ R2|(x− 0.5)2

0.42
+

(y − 0.5)2

0.22
< 1},whih is embeded into the �titious domain Ω = (0, 1) × (0, 1) (see Fig. 3). The righthandsides of (1) are f = −div σ(û) and p = σ(û)ν, where û(x, y) = (0.1xy, 0.1xy), (x, y) ∈ R2. Theauxiliary boundary Γ is onstruted by shifting γ in the diretion of outward normal vetor. InFig. 4 we an see original and deformed geometries of ω and the di�erene between exat andomputed solution is shown in Fig. 5. In Table 1 we an see the number of primal and ontrolvariables, number of iterations, omputational time and relative errors of approximate solution

ûh to exat solution in these norms:
Erel,(L2(ω))2 =

‖ûh − û‖(L2(ω))2

‖û‖(L2(ω))2
, Erel,(H1(ω))2 =

‖ûh − û‖(H1(ω))2

‖û‖(H1(ω))2
.
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Figure 5: |ûh − û| in ω.Step h prim/ontrol Iter Time(s) Erel,(L2(ω))2 Erel,(H1(ω))21/64 8450/44 43 0.312 4.1269e-003 1.8750e+0001/128 33282/68 25 0.468 5.2323e-004 6.8257e-0011/256 132098/112 37 2.215 1.0882e-004 3.1294e-0011/512 526338/180 52 16.36 8.2582e-005 2.7259e-001Table 1: Computational results.Referenes[1℄ F. Brezzi, M. Fortin: Mixed and hybrid �nite element methods. Springer-Verlag, New York,1991.[2℄ G.H. Golub, C.F. Van Loan: Matrix omputation. 3rd ed. The Johns Hopkins UniversityPress, Baltimore 1996.[3℄ J. Haslinger, T. Kozubek, R. Kuera, G. Peihl: Projeted Shur omplement method forsolving non-symmetri systems arising from a smooth �titious domain approah. Lin. Alge-bra Appl. 14, 2007, 713�739.[4℄ J. Haslinger, T. Kozubek, R. Kuera: Fititious domain method for linear elastiity. SNA2009. 87



On numerial behavior of the Arnoldi algorithm in �nitepreision arithmeti for matries with lose eigenvaluesG. Ok²a, M. RozloºníkInstitute of Mathematis SAS, BratislavaInstitute of Computer Siene AS CR, PragueLet A be a symmetri matrix of order n. Our numerial example uses the Strako² matrix oforder n = 30, whih is diagonal, positive de�nite. Its minimal eigenvalue is λ1 = 0.1, maximal
λn = 100, and λi = λ1 + (i− 1)/(n − 1) 0.9n−i(λn − λ1) for 2 ≤ i ≤ n − 1. The eigenvetors xiare olumns of the identity matrix of order n. Let us hoose a small positive onstant ν ≪ 1;our numerial example is for ν = 1.11× 10−12. Now modify λn−1 as to get a very lose pair with
λn: λn−1 = λn − 2ν (so that ν = (λn − λn−1)/2), and let µ ≡ (λn + λn−1)/2.Let v1 =

√
n(1, 1, . . . , 1)T be the initial unit vetor and ompute (in �nite preision arithmeti)two Krylov bases Vk and Wk by two implementations of the Arnoldi algorithm, whereby bothof them ensure the orthogonality of omputed basis vetors up to O(ǫ), where ǫ is the round-o� unit (ǫ ≈ 1.11 × 10−16 in double preision arithmeti). We have used the Householderorthogonalization (HH) and the Iterated Modi�ed Gram-Shmidt orthogonalization (IMGS).The bases were generated by following reurrenes for 1 ≤ k ≤ n− 1:

AVk = Vk+1H
(1)
k+1,k + F

(1)
k , with ‖F (1)

k ‖ ≤ ‖A‖O(k3/2n)ǫ,

AWk = Wk+1H
(2)
k+1,k + F

(2)
k , with ‖F (2)

k ‖ ≤ ‖A‖O(k3/2n)ǫ,where H(i)
k+1,k, i = 1, 2, are omputed upper Hessenberg matries of order (k + 1) × k.When looking at the orrelation oe�ient ci = |wT

i vi|, 1 ≤ i ≤ n, one an observe the lossand reapture of orrelation between iterations 17�24 (see Fig. 1). This surprising observation islosely related to the onvergene behavior of two maximal Ritz values (see Fig. 2). First, themaximal Ritz value θk
k onverges to µ and remains in its viinity for iterations 14�25. Seond,

Figure 1: Loss and reapture of orrelation: |1 − ci|.88
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Figure 2: Convergene of two largest Ritz values.
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Figure 3: Angles between the vetors a, b, and the subspae span(Vk).the next-to-maximal Ritz value θk

k−1 approximates λn−2 up to the iteration k = 21 and onlyafter that it starts to move towards λn−1. When both eigenvalues are well approximated by theirorresponding Ritz values, the orrelation is fully reaptured after the iteration k = 25.Perhaps more insight an be gained by answering the question of how the two-dimensionaleigenspae X2 ≡ span(xn−1, xn) is approximated during the omputation. De�ne two mutuallyorthogonal vetors: a ≡ (xn−1 +xn)/
√

2, b ≡ (xn−1−xn)/
√

2, so that X2 = span(a, b), i.e., (a, b)is another orthonormal basis of X2. Notie that a is the unit orthogonal projetion of the startingvetor v1 into X2, but bT v1 = 0. In other words, at the beginning of omputation the Krylovspae ontains only information w.r.t. one dimension of X2 (along a) and the other dimension(along b) has to be built up starting from zero.Angles between span(Vk) and the vetors a and b are depited in Fig. 3, while the omponents
|aT vk| and |bT vk| are depited in Fig. 4. Starting with |bT v1| = 0, the b-omponent inreasesup to the iteration k = 22. At the same time, |bT vk| di�ers from |bTwk| more and more, so that89
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| a T v k || b T v k |Figure 4: Components |aT vk| and |bT vk|.when |bT vk| >
√
ǫ ≈ 10−8 the orrelation starts to deteriorate signi�antly. Reall that at theiteration k = 22 the seond largest Ritz pair appears with θk

k−1 > λn−2 so that the approximationof the whole X2 �nally begins. Notie that |aT vk| reahes its maximum at k = 2 and then almoststeadily dereases.It turns out that it is the b-omponent of basis vetors, whih is sensitive in both implementationsof the Arnoldi method. To understand this, we analyze two steps of the Arnoldi proess atiteration k + 1 in exat arithmeti regardless to its omputer implementation:
1. yk = Avk,

2. βk+1vk+1 = (I − VkV
T
k )yk.

(1)Working with the orthonormal basis (x1, x2, . . . , xn−2, a, b), where xi, 1 ≤ i ≤ n − 2, are theeigenvetors of A, one an express vk as
vk =

n−2∑

i=1

(xT
i vk)xi + (aT vk)a+ (bT vk)b,so that

Avk =

n−2∑

i=1

λi(x
T
i vk)xi + [µ(aT vk) + ν(bT vk)]a+ [µ(bT vk) + ν(aT vk)]b.We see immediately, that beause the vetors a and b are not the eigenvetors of A, Av1 hasa (small) b-omponent ν(aT v1) even when bT v1 = 0! When ν ≪ 1 and omputations are made in�nite preision arithmeti, the b-omponent of Av1 an be severely a�eted by rounding errors.The seond step from (1) an be written as follows:

βk+1vk+1 =

n−2∑

i=1

λi(x
T
i vk)(I − VkV

T
k )xi

+ [µ(aT vk) + ν(bT vk)](I − VkV
T
k )a

+ [µ(bT vk) + ν(aT vk)](I − VkV
T
k )b.

(2)
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Let us de�ne the subspae Vk = span(Vk) and its orthogonal omplement V⊥
k . Then:

(I − VkV
T
k )xi = sin ∠(xi,Vk)n

(k)
i , where n

(k)
i ∈ V⊥

k , ‖n
(k)
i ‖ = 1,

(I − VkV
T
k )a = sin ∠(a,Vk)n

(k)
a , where n(k)

a ∈ V⊥
k , ‖n(k)

a ‖ = 1,

(I − VkV
T
k )b = sin ∠(b,Vk)n

(k)
b , where n

(k)
b ∈ V⊥

k , ‖n
(k)
b ‖ = 1.

(3)The set of equations in (3) de�nes the normal vetors n(k)
i , n

(k)
a , n

(k)
b that an be again deom-posed in our orthonormal basis. Now we an use this deomposition together with (3) in (2),but we will write the expression only for the b-omponent:

βk+1(b
T vk+1) = [µ sin ∠(b,Vk)(b

Tn
(k)
b ) + ν sin ∠(a,Vk)(b

Tn(k)
a )] (bT vk)

+ [µ sin ∠(a,Vk)(b
Tn(k)

a ) + ν sin ∠(b,Vk)(b
Tn

(k)
b )] (aT vk)

+

n−2∑

i=1

λi sin∠(xi,Vk)(x
T
i vk)(b

Tn
(k)
i ).

(4)To analyze (4) in general seems to be di�ult. However, when b remains perpendiular to Vk,i.e., b ∈ V⊥
k (see Fig. 3 for all iterations ≤ 21), one gets:

bT vk+1 =
µ

βk+1
(bT vk) +

ν

βk+1
(aT vk). (5)When µ/βk+1 > 1, (5) suggests an ampli�ation of previous b-omponent and its subsequentslight modi�ation (sine ν is very small).In �nite preision arithmeti, bT v1 = 0 and bT v2 is very small (regardless to the implementation)so that it is prone to rounding errors (whih depend on implementation). This small di�erenein b-omponent of v2 between two implementations is ampli�ed aording to (5), when the b-omponent inreases. Hene, the loss of orrelation between two bases starts right from thebeginning of omputation and beomes evident when |bT vk| ≈

√
ǫ ≈ 10−8. On the other hand,the reapture of orrelation is possible only when the whole eigenspae X2 is well approximatedby the last two Ritz vetors. This is equivalent to the fast derease of |bT vk| after the iteration

k = 22 and to the tight approximation of both λn−1 and λn by two largest Ritz values.When A has an exatly double maximal eigenvalue, the last Ritz vetor onverges again to a, i.e.,to the orthogonal projetion of v1 into X2. However, sine now any linear ombination of vetors
a and b is an eigenvetor, there arises no `spurious' omponent along b in the matrix-vetormultipliation. Therefore, the whole eigenspae X2 is approximated only in the last iteration
k = n and there is no loss of orrelation between two omputed Arnoldi bases.Aknowledgment: G. Ok²a was supported by the VEGA grant no. 2/0003/11. The workof M. Rozloºník was supported by Grant Ageny of the Aademy of Sienes of the CzehRepubli under the projet IAA100300802 and by the Institutional Researh Plan AV0Z10300504�Computer Siene for the Information Soiety: Models, Algorithms, Appliation�.
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Parameter estimation of reation-di�usion model basedon spatio-temporal FRAP images of thylakoid membranes�. Papá£ek, D. �tys, R. Ka¬a, C. Matonoha
1,2 Institute of Physial Biology, University of South Bohemia, Nové Hrady

3 Institute of Mirobiology AS CR, T°ebo¬
4 Institute of Computer Siene AS CR, Prague

1 IntrodutionThe determination of phyobilins di�usivity in thylakoid lumen from �uoresene reovery afterphotobleahing (FRAP) experiments was usually done by analytial models [5, 3℄. However, theanalytial models need some unrealisti onditions to be supposed. This study desribes thedevelopment and validation of a method based on �nite di�erene simulation of di�usion proessgoverning by the Fikian di�usion equation and on the minimizing of an objetive funtionrepresenting the disparity between the experimental and simulated time-varying onentrationpro�les.2 Model development2.1 TheoryDuring a FRAP experiment, a sample either ontaining a �uoresent solute or having the nat-ural apaity for �uoresent signal emission, is brie�y exposed to intense laser illumination tobleah a target region of a spei�ed geometry (in our ase, the omputational domain is anEulidian 2D retangular domain). For an arbitrary bleah spot and assuming (i) loal homo-geneity (assuring that the onentration pro�le is smooth), (ii) isotropy (di�usion oe�ient isspae-invariant), (iii) an unrestrited supply of unbleahed partiles outside of the target region,and (iv) negligible out-of-domain onentration gradients, the reovery of unbleahed partileonentration C as a funtion of spatial oordinate ~r and time t is modelled with a followingdi�usion-reation equation on two-dimensional domain Ω:
∂C

∂t
−∇ · (D∇C) = R(C) , (1)where D is the �uoresent partile di�usivity in domain Ω (i.e. in some seleted part of thylakoidlumen), and R(C) is a reation term modelling the binding of partiles.The initial ondition, and time varying Dirihlet boundary onditions are:

C0 = C(t0) on Ω, C(t) = g(~r, t) on ∂Ω. (2)The reation term R(C) is often viewed as negligible under assumptions that the �uoresentmoleules do not bind to the medium and that photobleahing of these moleules during reoveryis negligible. Consequently, if R(C) is negleted, (1) beomes the Fikian di�usion equation. In92



ontrast, under ontinual photobleahing during image aquisition, this reation term ould bedesribed as a �rst order reation:
R(C) = −kS C , (3)where kS is a rate onstant desribing bleahing during sanning [2℄.Another soure of error, often negligible, is the time dependene of the �uoresent signal φemitted by �uoresent partiles. Although within (1) and within objetive funtion J , f. (8),we use the onentrations C, in fat we measure the �uoresene level and not diretly C. If thefollowing relation holds: C = kFφ, where kF is a onstant, than we an work with the measuredsignal without neessity of any realulation (e.g. by a normalization of the overall signal). Onthe ontrary, if kF is time dependent, then we should design an experiment and estimate thisdependene, in order to have a orret form of (1).2.2 One dimensional modelFor a linear bleah spot perpendiular to a longer axis (let this axis be denoted as r) andassuming loal homogeneity and isotropy, an unrestrited supply of unbleahed solute outside ofthe target region and negligible out-of-domain onentration gradients, reovery of unbleahedpartile onentration as a funtion of spatial oordinate and time t is modeled with a linear,di�usion-reation equation:

∂C

∂t
−D

∂2C

∂r2
= R(C) , (4)Furthermore, adopting the form of reation term aording to (3), and after introduing thedimensionless spatial oordinate x, the dimensionless di�usion oe�ient p, the dimensionlesstime τ and the dimensionless onentration y by

r := xL , D := p D0 , t := τ
L2

D0
, y :=

C

cm
, (5)where L is the length of our speimen in diretion perpendiular to bleah spot, D0 is a onstantwith some harateristi value (unit: m2s−1), and cm is a harateristi (e.g. maximal) onen-tration of C, we �nally have the following form of dimensionless di�usion-reation equation onone-dimensional domain, i.e. for x ∈ [0, 1]

∂y

∂τ
− p

∂2y

∂x2
= −kSL

2

D0
y . (6)The initial ondition, and time varying Dirihlet boundary onditions are:

y0 = y(x, τ0) for x ∈ [0, 1], y(0, τ) = g0(τ), y(1, τ) = g1(τ). (7)2.3 Experimental dataBased on FRAP experiments, see Fig. 1, we have not a smooth funtion for the initial ondition,but a vetor of values yexp(xi, t0), i = 1, ...N . Similarly, for the boundary onditions we havetwo vetors, eah one omposed from M values, M is the number of time points in the timeaxis, where the measurements were taken: yexp(0, tj), j = 1, ...M , on the left, and
yexp(1, tj), j = 1, ...M , on the right edge of interval [0,1℄. The resting experimental data, in fatharaterizing the di�usion proess, form a 2D matrix of dimension (N,M), whih an be read byolumns as the onentration pro�les (along x axis) in M disrete time points. The forthomingtask is the analysis of measurement noise and its orret �ltering.93



Figure 1: An example of time series of FRAP measurements with photosyntheti proteins.2.4 Determination of di�usivity as a single parameter estimation problemThe problem of phyobilins di�usivity determination based on time series of experimental datawill be further formulated as a single parameter estimation problem. We onstrut an obje-tive funtion J representing the disparity between the experimental and simulated time-varyingonentration pro�les, and then within a suitable method we look for suh a value p minimiz-ing J . The usual form of an objetive funtion is the sum of squared di�erenes between theexperimentally measured and numerially simulated time-varying onentration pro�les:
J =

N∑

i=1

M∑

j=1

[yexp(xi, τj) − ysim(xi, τj)]
2 , (8)where ysim(xi, τj) are the simulated values resulting from the solution of PDE (6) with the initialand boundary onditions (7). The implementation of both diret problem, i.e. the solution ofPDE (6) with the initial and boundary onditions (7) for the known parameter p, and a singleparameter estimation problem is desribe in the following setion.3 ImplementationFirstly we started negleting the reation term (i.e. we put kS = 0). Hene, we are minimizing Jwith respet to p, whih represents a one-dimensional optimization problem. We have useda suitable optimization method from the UFO system whih generates a sequene of iterates

{pk, k > 0} leading to a value whih minimizes J (see [4℄). In order to ompute a funtion valueof Jk in (8) for a given pk in the k-th iteration, we need to know both the values of yexp(xi, τj),
i = 1, ..., N , j = 1, ...,M, and the simulated values ysim(xi, τj), i = 1, ...,N , j = 1, ...,M, fora given pk as well. It means that in eah iteration we need to solve the problem (6)-(7) for theinitial and boundary onditions de�ned by the urrent value of pk and the experimental data:
y0 = yexp(x, τ0) for x ∈ [0, 1], y(0, τ) = yexp(0, τ), y(1, τ) = yexp(1, τ).This 'diret' problem was solved numerially using the �nite di�erene sheme for uniformlydistributed nodes with the spae steplength ∆h and time steplength ∆τ . We have used anexpliit sheme, f. [1℄, whih an be generally written in the form

y(xi, τj + ∆τ) = βy(xi − ∆x, τj) + (1 − 2β)y(xi, τj) + βy(xi + ∆x, τj),94



where (xi, τj) is an inner node of the di�erene sheme and β = pk
∆τ
∆h2 (pk is the value in the

k-th iteration). It is known that in this ase the ondition β ≤ 1/2 has to be satis�ed.Taking into aount the biologial reality residing in possible time dependene of phyobilinsdi�usivity, we further onsider two ases. First, we an take both sums for i and j in (8)together. In this ase, the salar p is a result of minimization problem for J . Seondly, we anonsider eah i-th spae row separately. In this ase, the N solutions p(1), ..., p(N) orrespond toeah minimization problem for �xed i in the sum (8) and we have a 'dynamis' of di�usivity pevolution.Our program is atually under testing, however, for the previously known di�usion oe�ientand the data simulated by the random walk model it omputes orret results. Afterward,we determined the di�usivities for the real data of FRAP measurements (with the red algaePorphyridium ruentum). The range of result 10−14 m2s−1 is in agreement with referene values.4 ConlusionOur method for di�usion parameter estimation from FRAP data improves on other models byaounting for experimentally measured post-bleahing �uoresene pro�les and time-varyingboundary onditions, and an inludes a reation term to aount for the time varying �uores-ene signal (maybe due to the detrimental e�ets of low level photobleahing produed by imageaquisition during reovery). Analysis of simulated FRAP data demonstrate the advantages ofthis method over ommon analytial approahes, inluding a low sensitivity to variations in thespot radius and to the e�ets of photobleahing during sanning.Aknowledgement: This work was supported by the grant M�MT MSM 600 766 58 08 of theMinistry of Eduation, Youth and Sports of the Czeh Republi, by the Grant Ageny of theCzeh Republi through the researh grant No. 102/05/0011, the institutional researh plan No.AV0Z10300504, projet: �Jiho£eské výzkumné entrum akvakultury a biodiverzity hydroenóz�(CENAKVA), OP VaVpI, and by the South Bohemia University grant GAJU 152/2010/Z.Referenes[1℄ I. Babu²ka, M. Práger, E. Vitásek: Numerial proesses in di�erential equations. John Wiley& Sons, London, 1966.[2℄ O.N. Irrehukwu, M.E. Levenston: Improved estimation of solute di�usivity through nu-merial analysis of FRAP experiments. Cellular and Moleular Bioengineering 2(1), 2009,104�117.[3℄ R. Ka¬a , O. Prá²il, C.W. Mullineaux: Immobility of phyobilins in the thylakoid lumen ofa ryptophyte suggests that protein di�usion in the lumen is very restrited. FEBS letters583(4), 2009, 670�674.[4℄ L. Luk²an, M. T �uma, J. Vl£ek, N. Rame²ová, M. �i²ka, J. Hartman and C. Matonoha: UFO2008 - Interative system for universal funtional optimization. Tehnial Report V-1040,Institute of Computer Siene, Aademy of Sienes of the Czeh Republi, Prague 2008.[5℄ C.W. Mullineaux, M.J. Tobin, G.R. Jones: Mobility of photosyntheti omplexes in thylakoidmembranes. Nature 390, 1997, 421-�424. 95



Error estimates and domain deomposition methodsI. PultarováFaulty of Civil Engineering, Czeh Tehnial University in Prague1 IntrodutionDuring a proess of numerial solution of partial di�erential equations using domain deompo-sition methods, a good error indiator ould help us to deide whether the error of a urrentapproximation is su�iently low or not on a partiular subdomain. If we use the domain deom-position method balaned by onstraints (BDDC) [2℄, we an derease or inrease the numberof oarse degrees of freedom (DOF) on suh subdomains. We derive our further onsiderationsfrom the equilibrated residual strategy whih is desribed in [1℄ and developed e.g. in [3℄. Thea posteriori error estimation tehniques an be used though the urrent solution is not the exatsolution of the underlying linear system. In this ontribution we disuss how the estimates anbe applied to BDDC methods without muh additional e�ort.Let us suppose a seond order ellipti partial di�erential equation in a two-dimensional domain Ωwith homogeneous Dirihlet boundary onditions on the boundary ∂Ω. Let the weak formulationbe to �nd uW ∈W suh that
B(uW , v) = (f, v),

v ∈ W , where W is an appropriate funtion spae. Ordinary and energy salar produts (u, v)and B(u, v) are de�ned as usual. Let V be a spae of �nite element (FE) linear or bilinearfuntions on triangular or quadrilateral mesh satisfying the boundary onditions. Let us denoteby uV the solution in V
B(uV , v) = (f, v)for all v ∈ V . This disretized problem an be represented by a system of linear equations

Ku = b.Partition Ω into subdomains Ωm, m = 1, . . . , n, yields n separate problems, some of theminde�nite. Let the subsript o denote DOFs belonging to internal nodes of all subdomains andlet the DOFs of nodes on internal boundaries of all subdomains have subsript r. After reorderingthe nodes and after assembling the bloks by integrating only over individual subdomains, weget a new matrix of the system of algebrai equations
(

Ko Kor

KT
or Kr

)(
uo

ur

)
=

(
fo

fr

)
. (1)Submatrix Ko is blok diagonal and positive de�nite, its dimension equals to the number of allinternal nodes. Matrix Kr is positive semide�nite and its dimension is larger than the numberof nodes on interfaes beause eah of the interfae DOFs belongs to more than one subdomain.After elimination of KT

or we get a Shur omplement formulation for the interfae unknowns ur

Sur = fS, (2)where
S = Kr −KT

orK
−1
o Kor, fS = fr −KT

orK
−1
o fo.In the BDDC methods, a oarse problem is built and solved of a dimension muh lower than thatof S in order to transfer the information among the subdomains and to provide the subproblemswith the Dirihlet boundary ondition. 96



2 Equilibrated residual method for subdomainsThe equilibrated residual method for a posteriori error estimates is desribed in [1℄. Fluxes overelement edges are alulated and smoothed on every path of elements whih share a single vertex.Then the energy norm of the error is omputed from the solution of Neumann problems on allelements. In our approah, we exploit this basi idea, but there are two main di�erenes. First,instead of pathes of elements we use subdomains and moreover, only the interfae unknownsare alulated with. Seond, we an ompute the estimates in every BDDC iteration, it meansthat we do not need the exat solution of the linear systems (1) or (2).For the error of an approximate solution ui in step i, we have e = ui − uW ∈ W . Then theenergy norm of the error |||e||| is
|||e||| = sup

v∈W, |||v|||=1
B(e, v) = sup

v∈W, |||v|||=1
B(ui − uW , v) = sup

v∈W, |||v|||=1
(B(ui, v) − (f, v)).The involved salar produts an be omputed over the individual subdomains. Let us onsidera set of funtions g de�ned on boundaries of subdomains inside Ω suh that

∑

m

∫

∂Ωm

gv ds = 0.Then we have
|||e||| = sup

v∈W, |||v|||=1

∑

m

(
B(uim, v) − (f, v) +

∫

∂Ωm

gv ds) , (3)where uim is ui restrited to Ωm. The right hand side of (3) an be substituted by
|||e||| = sup

v∈W, |||v|||=1

∑

m

B(φm, v),where φm ∈Wm is a solution of
B(φm, v) = B(uim, v) − (f, v) +

∫

∂Ωm

gv ds (4)on Ωm, v ∈ Wm, where Wm is an appropriate funtion spae on Ωm, m = 1, 2, . . . , n. If somedomain Ωm does not oinide with ∂Ω, then the assoiated problem has only Neumann boundaryonditions given by g on ∂Ωm. When g are the outer normal derivatives of the exat solution on
∂Ωm, we obtain the exat error em on Ωm. In any ase we have

|||e||| ≤
∑

m

|||φm|||. (5)After disretization of (4), we have
B(φm, v) = B(uim, v) − (f, v) +

∫

∂Ωm

gv ds, (6)where φm and v are from FE funtion spaes on Ωm, m = 1, 2, . . . , n. Then of ourse insteadof (5) we obtain only an error indiator.Let us stress that there are only two onditions that must be ful�lled: a) the sum of the hosen�uxes g have to be zero, b) the problems on interior subdomains must be solvable.Matrix representation of the introdued onsiderations an be as follows. Let the systems
Kmu = rm (7)97



represent the disretized equations (6) and let
Smu = rSm (8)are the assoiated Shur omplement representations. Adding �uxes g on subdomains meansadding vetors r̃m to right hand sides of (7) or equivalently r̃Sm to (8) to the positions of theinterfae unknowns.Condition a) is ful�lled for example whenever the �uxes have zero sums on every interfae ofa pair of subdomains. Condition b) is ful�lled if for interior subdomains the equations (7) orequivalently (8) are solvable. We an alulate the �uxes for pathes of subdomains, but we analso equilibrate the residuals at the same time for all edges by solving one system of equations.Of ourse, suh set of �uxes g or equivalently of vetors r̃Sm (or r̃m) is not unique. In ourexperiments we hoose vetors r̃Sm like multiples of residuals rSm on eah interfae edge. Wefollow the idea of [1℄ and minimize the distanes of the resulting right hand sides rSm + r̃Smfrom averages of residuals whih belong to opposite sides of an interfae shared by any twosubdomains. We an simplify the equilibrating of residuals in suh manner that only the sumsof �uxes over whole interfaes are balaned and not over the individual elements. Then thedimension of this problem is equal to the number of interfaes between subdomains.Instead of a posteriori error estimates, this method rather yields suggestions of residual parti-tioning for the BDDC method. The estimate is an indiator of |||ui − uV |||, where uV is theexat FE solution of the problem.3 Numerial exampleLet us solve the equation

∂2u

∂x2
+ 10−3 ∂

2u

∂y2
= 1in Ω = (0, 1)× (0, 1) with u = 0 on ∂Ω. Let Ω be partitioned into 3× 3 retangular subdomains.We solve this problem by the onjugate gradient method whih is preonditioned by BDDCmethod and use bilinear FEs on retangular elements.Error estimates in energy norm after the forth step of the onjugate gradient method are displayedin Figure 1 for di�erent hoies of the mesh resolution and ompared with the exat error andwith the error omputed from residuals rSm on subdomains

|||er||| = rT
SmS

#
mrSm,where S#

m is the Moore-Penrose pseudoinverse of Sm. The estimates for the overall errors arepresented on the left, while on the right, the estimates are shown only for the entral subdomainwhih does not oinide with the boundary ∂Ω. The mesh resolutions are from 5 to 15 nodesin every subdomain in eah diretion. In this example, the BDDC method uses all orner nodesand one average on eah interfae edge as oarse DOFs.Aknowledgement: This work has been supported by the projet CEZ MSM 6840770001and by the Grant Ageny of The Czeh Republi under the ontrat No. 201/09/P500 andNo. 201/09/1544. 98
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Figure 1: Error estimates in energy norm for di�erent meshes after the forth step of the onjugategradient method preonditioned by BDDC. True error (simple line), residual estimate (roses)and equilibrated residual based estimate (irles). Error estimates on Ω (left) and on the entralsubdomain (right).Referenes[1℄ M. Ainsworth, J.T. Oden: A posteriori error estimation in �nite element analysis. JohnWiley & Sons, In., 2000.[2℄ J. Mandel, B. Sousedík, C.R. Dohrmann: Multispae and multilevel BDDC. In: Computing83, 2008, 55�85.[3℄ T. Vejhodský: Guaranteed and loally omputable a posteriori error estimate. In: IMAJournal of Numerial Analysis 26, 2006, 525�540
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On a posteriori error estimates for biharmoni problemsK. SegethTehnial University of Libere
1 IntrodutionIn this survey ontribution, we present and ompare, from the viewpoint of adaptive omputation,several reently published error estimation proedures for the numerial solution of biharmoniand some further fourth order problems mostly in 2D, inluding omputational error estimates.In the hp-adaptive �nite element method, there are two possibilities to assess the error of theomputed solution a posteriori: to onstrut a lassial analytial error estimate (see their lassi-�ation in [8℄) or to obtain, by the same proedure as the approximate solution, a omputationalerror estimate. In the latter ase, a referene solution is omputed on a systematially re�nedmesh and, at the same time, with the polynomial degree of all elements inreased by 1.We use ommon notation based primarily on the book [3℄. For the lak of spae, we sometimesonly refer to the notation introdued in the papers quoted. The omplete hypotheses of thetheorems presented should be also looked for there.2 Dirihlet and seond problems for biharmoni equation2.1. Dirihlet problem. Let Ω ⊂ R2 have a polygonal boundary Γ . We onsider the2D biharmoni problem

∆2u = f in Ω, (1)
u =

∂u

∂n
= 0 on Γ (2)with f ∈ L2(Ω) that models, e.g., the vertial displaement of the mid-surfae of a lampedplate subjet to bending.We use the standard formulation of the weak solution u ∈ X = H2

0 (Ω) and approximate solution
uh ∈ Xh written in the form 〈F (u), v〉 = 0 and 〈Fh(uh), vh〉 = 0. Denote by k, k ≥ 1, themaximum degree of polynomials in Xh. Further, put fh =

∑
T∈Th

πl,T f , where T is a triangleof the triangulation Th, Eh is the set of all its edges, Pl, l ≥ 0 �xed, is the spae of polynomialsof degree at most l and πl,S, S ∈ Th ∪ Eh, is the L2 orthogonal projetion of L1(S) onto Pl(S).Put εT = ‖f − fh‖0;T . Let hT be the diameter of the triangle T . De�ning the loal residuala posteriori error estimator ηV,T for all T ∈ Th, we have the following theorem [8℄.Theorem 2.1. Let u ∈ X be the unique weak solution of the problem (1), (2) and let uh ∈ Xhbe an approximate solution of the orresponding disrete problem. Then we have the a posterioriestimates
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1/2for all T ∈ Th. The quantities c1, . . . , c6 depend only on hT /ρT , and the integers k and l. Here
ωT is the set of all neighbors of the triangle T and ρT the diameter of the irle insribed to T .The proof is given in [8℄.The same problem is treated in, e.g., [9℄ with a residual error estimator giving similar results.2.2. Dirihlet problem in mixed formulation. Let Ω ⊂ R2 be a onvex polygon withboundary Γ . Again, we onsider the biharmoni problem (1), (2) with f ∈ H−1(Ω). The problemis onerned in pratie with both linear plate analysis and inompressible �ow simulation.We employ the Ciarlet-Raviart weak formulation of the problem (1) and (2) for the solution
{w = ∆u, u} and the orresponding onforming seond order approximate solution {wh, uh}.Let us put fh = π0,T f on T ∈ Th.The loal residuals PT , RT , PE , and RE are de�ned in [2℄. We introdue the loal residuala posteriori error estimators ηC,T and η̃C,T omputed from the loal residuals. We put eh(u) =
u− uh and eh(w) = w − wh. Then the following theorem holds [2℄.Theorem 2.2. Let {w, u} be the unique mixed weak solution of the problem (1) and (2), and let
{wh, uh} be an approximate solution of the orresponding disrete problem. For T ∈ Th we thenhave the a posteriori estimates
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with some positive onstants C1 and C2 independent of h = maxT∈Th

hT .The proof is given in [2℄.The seond problem for the biharmoni equation is treated in mixed formulation in [5℄ witha gradient reovery error estimator.2.3. Kirhho� plate bending problem. A similar problem desribing the bending of anisotropi linearly elasti plate is studied in [1℄. The nononforming �nite element approximationof the problem is onstruted in the disrete Morley spae and the residual error estimator isused.3 Dirihlet problem for fourth order ellipti equation3.1. Dirihlet problem in 1D. Put Ω = (0, 1) ⊂ R1. Let all the funtions onerned besalar-valued funtions of a salar variable. We onsider the one dimensional boundary valueproblem for the ordinary fourth order equation101



(au′′)′′ = f in Ω (3)with the boundary onditions
u(0) = u′(0) = 0, u(1) = u′(1) = 0. (4)This is a model for the vertial displaement of a beam lamped on both ends and subjetto bending. In the model, a(x) = E(x)I(x) is a positive, bounded, and Lipshitz ontinuousfuntion in Ω, where E is Young's modulus of elastiity and I the moment of inertia. Thedistributed transverse load is denoted by f ∈ L2(Ω).We use the standard formulation of the weak solution u ∈ X = H2

0 (Ω) and uh ∈ Xh, i.e.,
a(u, v) =

∫
Ω fv and a(uh, vh) =

∫
Ω fvh, Xh being the spae of pieewise ubi Hermite polyno-mials. Moreover, we use the orresponding energy norm |||v|||2 = a(v, v).In [6℄, a reovery operator Gvh for the seond derivative of vh ∈ Xh is introdued. Now we ande�ne the loal reovery a posteriori error estimator ηP,T for all triangles T of the triangulation Thand have the following theorem [6℄.Theorem 3.1. Let u ∈ H2

0 (Ω) be the unique weak solution of the problem (3), (4) and let
uh ∈ Xh be an approximate solution of the orresponding disrete problem. Then we have theglobal a posteriori estimate
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≤ Ch3for the di�erene of the global error estimator and the energy norm of the true error. C isa onstant that may depend on u. The global error estimator is asymptotially exat.The proof is given in [6℄.3.2. Dirihlet problem. Let Ω ∈ Rn be a bounded onneted domain and Γ its Lipshitzontinuous boundary. We onsider the 4th order ellipti problem for a salar-valued funtion u,
div Div(γ∇∇u) = f in Ω, (5)with the boundary ondition (2) and f ∈ L2(Ω), γ = [γijkl]

n
i,j,k,l=1 and γijkl = γjikl = γklij ∈

L∞(Ω).We de�ne the energy norm |||Φ||| in L2(Ω,R
n×n) and the global a posteriori error estimator

ηR(β,Φ, ū) like in [7℄, where β is an arbitrary positive real number and Φ an arbitrary smoothmatrix-valued funtion. The estimator depends on the onstant from the Friedrihs inequalityfor ∇∇ on H2
0 (Ω). We then have the following theorem [7℄.Theorem 3.2. Let u ∈ H2

0 (Ω) be the weak solution of the problem (5), (2) and ū ∈ H2
0 (Ω) anarbitrary funtion. Then

|||∇∇(ū− u)|||2 ≤ ηR(β,Φ, ū) (6)for any positive number β and any matrix-valued funtion Φ ∈ H(div Div, Ω).The proof of the theorem is based on a more general statement proven in [7℄. There is aninteresting question of optimizing the inequality (6) with respet to β and Φ.A similar 2D nonlinear Dirihlet problem is solved in [4℄. A global error estimator is introduedand similar results are obtained there. 102



4 ConlusionThe quantitative properties of the estimators annot be easily assessed and ompared analyt-ially. There are, however, global analytial error estimates for some lasses of problems (see,e.g., [4℄, [7℄) that require as few unknown onstants as possible. The a posteriori estimateswith unknown onstants, however, are not optimal for the pratial omputation. They an bee�ient if they are asymptotially exat.The omputation of the referene solution is rather time-onsuming but the refene solutionis obtained by the same software that is used to ompute the approximate solution. We usereferene solutions as robust error estimators with no unknown onstants to ontrol the adaptivestrategies in the most omplex �nite element omputations.Aknowledgement: This work has been arried out under the state subsidy to the researhand development projet Advaned Remediation Tehnologies and Proesses Center 1M0554 ofthe Programme of Researh Centers supported by the Ministry of Eduation, Youth, and Sportsof the Czeh Republi.Referenes[1℄ L. Beirão da Veiga, J. Niiranen, R. Stenberg: A posteriori error estimates for the Morleyplate bending element. Numer. Math. 106, 2007, 165�179.[2℄ A. Charbonneau, K. Dossou, R. Pierre: A residual-based a posteriori error estimator forthe Ciarlet-Raviart formulation of the �rst biharmoni problem. Numer. Methods PartialDi�erential Equations 13, 1997, 93�111.[3℄ P.G. Ciarlet: The �nite element method for ellipti problems. North Holland, Amsterdam,1978.[4℄ J. Karátson, S. Korotov: Sharp upper global a posteriori error estimates for nonlinear elliptivariational problems. Appl. Math. 54 (2009), pp. 297�336.[5℄ K. Liu, X. Qin: A gradient reovery-based a posteriori error estimators for the Ciarlet-Raviartformulation of the seond biharmoni equations. Appl. Math. Si. 1, 2007, 997�1007.[6℄ S.B. Pomeranz: A posteriori �nite element method error estimates for fourth-order problems.Comm. Numer. Methods Engrg. 11, 1995, 213�226.[7℄ S. Repin: A posteriori estimates for partial di�erential equations. Walter de Gruyter, Berlin,2008.[8℄ R. Verfürth: A review of a posteriori error estimation and adaptive mesh re�nement teh-niques. John Wiley & Sons, Chihester, and B.G. Teubner, Stuttgart, 1996.[9℄ M. Wang, W. Zhang: Loal a priori and a posteriori error estimate of TQC9 element forthe biharmoni equation. J. Comput. Math. 26, 2008, 196�208.
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Experimental grid for numerial linear algebraI. �ime£ek, J. Hladík, J. Krupka, M. HovorkaFaulty of Information Tehnologies, Czeh Tehnial University in Prague
1 IntrodutionTime is very often the limiting fator in sienti� odes. These odes an be aelerated byparallel exeuting on speial distributed systems (grids). This is usual but very di�ult solution.In this paper, we desribe a design of the new heterogenous grid for the numerial linear algebrawith maximal ratio between prize and omputational power. Contributions of this paper istwofold: 1) a design of new parallel routines 2) an approah for parallelization of sienti� odesby onverting loal numerial library alls into remote grid alls.1.1 GPU omputingNowadays, there is a new trend in the high-performane omputing to aelerate omputationsby means of Graphis Proessing Units (GPU). This trend reently emerged into a new researharea alled General-Purpose Computing on Graphis Proessing Units (shortly GPGPU). This isa onsequene of the fat that the GPUs of modern graphi ards overome modern CPUs in thememory bandwidth, the number of omputational units, and possibilities of the vetor exeution.The GPGPU programming is simpli�ed by several existing APIs (Appliation ProgrammingInterfaes), the most popular and well-established ones are CUDA [1, 2℄ and OpenCL [3℄. Thanksthese APIs the GPGPU omputations are widespread and used in many sienti� projets.The omputational abilities of single GPU are very impressive, but some problems, espeiallywith large memory requirements, are still hard to solve. Although the amount of memory onGPUs is inreasing rapidly, it is still muh less than we need and this leads to the limitedappliation of GPGPU in many sienti� problems. Possible solution to that problem ould beto onnet graphi ards into a GPGPU luster to distribute omputing and memory demandsaross all available GPU. The bene�t of this approah is that it allows us to interonnet GPUsfrom various vendors but naturally there arise a new problem known as load balaning of GPUsthat we have to fae to retain high omputational performane.1.2 Sparse matrix storage formatsThe sparse matrix storage sheme (format) have great impat on performane and salabilityof the sparse matrix-vetor multipliation operation and other iterative algorithms for sparsematrix omputations. Ideal format ensures minimal memory storage requirements, maximumutilization of �oating point vetor units, maximum utilization of ahe memories, and enablesload balaned parallelization of the algorithms on massively parallel systems.Several sparse matrix formats have been proposed and some are due to their simpliity widelyused, suh as Compressed Sparse Row/Column (CSR/CSC) or Jagged Diagonal Storage (JDS)formats. The feasibility of partiular format is given mainly by the sparsity pattern of a matrix.Sparse matries often ontain dense submatries (bloks). Therefore, some formats use bloking104



tehniques whih exploit knowledge about lustering of matrix non-zero entries. These blokingformats like SPARSITY, CARB, or M-CARB, may give signi�antly better performane of thealgorithms on sparse matries than allows the CSR format, due to eliminating memory readstalls, onsuming less memory, allowing a better use of registers, and improving vetor unitutilization.But these speialized and e�ient formats have also some drawbaks. They su�er from a largetransformation overhead, are designed only for a limited set of matrix operations, or do notsupport fast adding or removing nonzero elements.2 Goals of projetThe shedule of this projet onsist of these steps
• Initial installation of HW and SW,
• Parallel GPU routines using sparse matrix storage formats
• Implementation of remote grid alls.that are disussed in details later.2.1 Initial installation of HW and SWThere are a lot of grids di�er in their sizes, apabilities and purposes. We want to design thegrid with the maximal ratio between prize and omputational power. To ahieve this goal withlimited budget, we must maximize GPU usage for omputation.2.1.1 Grid arhitetureWe assume that system (grid) is divided into luster of omputers (nodes) with graphi ards (notneessarily of the same type) onneted by Internet network. For the ommuniation among thenodes inside one luster we will assume a MPI (Message Passing Interfae) library. Eah lusterhas exatly one server of servie. Server will manage other (slave) parts (CPUs and GPUs) andmonitor their workload.2.1.2 Current HW on�gurationCurrent HW on�guration inludes: �ve Gefore 470, one Tesla C2050, two Tesla C1060, oneGeFore 280. All GPUs are borrowed by Prague CUDA Teahing Centre (PCTC). In our grid"new" and "old" GPUs are mixed, this requires good load-balaning strategy.2.1.3 Current SW on�gurationWe also install third-party routines for shared memory or distributed CPU omputing:SaLAPACK (library of high-performane linear algebra routines for distributed-memorymessage-passing MIMD omputers), PARDISO, SuperLU, and so on.105



2.2 Parallel GPU routines using sparse matrix storage formatsCurrently, several vendor supported libraries in CUDA that e�iently implement Basi LinearAlgebra Subroutines (BLAS) and Fast Fourier Transformation (FFT) are available, these areCUBLAS and CUFFT. Many existing linear algebra libraries fous on e�ient implementationof basi vetor and matrix operations while the support for the sparse matrix omputations is notinluded. We will overome this limitation by implementation of new variant of these routines.The projet's goal is to overome this limitation and design sparse matrix operations with dataformats suitable for GPU arhiteture and for GPU luster. This work will extend the ideas ofSaLAPACK. We will onentrate on these operations (for dense or sparse formats):
• matrix-matrix multipliation,
• Cholesky and LU fatorization,
• eigensolvers.2.3 Implementation of remote grid alls2.3.1 IdeaUsually, only speial variants of odes are exeuted on the grid. This approah has seriousdrawbak that ode must be modi�ed for grid omputing. We want to overome this limitationand extend the utilization of the grid. To do this, we rewrite interfae for some routines fornumerial linear algebra (shortly NLA, like BLAS or LAPACK). So, most of odes without anymodi�ations an used the omputational power of the grid.The di�erene will our when lient (omputer outside the grid) want to proeed any NLAroutine. A heuristi on lient side �rstly estimate if it will be faster to ompute this routineloally or send it to the grid for exeution.If the ondition is true, the lient do a remote all of this NLA routine by sending a demand toany server of grid. The server onsider this demand and hoose one of following ations:
• Compute this demand by itself (one node of luster is used)
• Compute this demand by its luster (all nodes of luster are used)
• Re-send this demand to other server (nodes of di�erent luster are used)
• Refuse this demand (grid is full). Client is fored to do the loal omputation.After the remote grid all is exeuted, results are send bak to the lient.2.3.2 Disussion
• Advantages of remote grid alls1. Time: program an be faster exeuted beause most time-onsuming parts are movedto more powerful omputer than user's one.2. Implementation: some parts of program an be exeuted in parallel without anyadditional modi�ations 106



3. Administration: all mathematial libraries an be installed on the server of servie.4. Eonomial: the proposed grid is not very expensive, but it provides very good per-formane.
• Drawbaks1. The server of servie must have a good onnetivity and fast and reliable onnetionsto other servers of grid are also required.2. Network lateny and bandwidth must be taken in aount.3. The servie is suitable only from some algorithms ( most time-onsuming parts areNLA alls, without GUI, input parameters an be given ommand line.)4. Algorithms must have omputational demands greater than the ommuniation over-head (matrix-matrix multipliation is a good example).3 ConlusionsWe propose the design of a the new distributed system for numerial linear algebra. The usedgrid and new approah (remote grid alls) allow the parallel exeution of many of odes withoutany modi�ations.4 Future works
• Non-bloking remote grid alls.
• Nodes an be dynamially onneted or disonneted from the grid. This is great advantagebeause also lassroom omputer an join the grid.
• Support for another libraries like GMP, PETS and so on.
• Compression of the omuniation.
• Heuristi for a predition of a workload and an exeution time for some operationsAknowledgement: This researh has been supported by M�MT under researh programMSM6840770014, by CESNET Development Fund (projet 390/2010), and by Prague CUDATeahing Centre(PCTC).Referenes[1℄ D.B. Kirk, W. mei W. Hwu: Programming massively parallel proessors: a hands-on approah.Morgan Kaufmann, 2010.[2℄ J. Sanders, E. Kandrot: CUDA by example: an introdution to general-purpose GPU pro-gramming. Addison-Wesley Professional, 2010.[3℄ R. Tsuhiyama, T. Nakamura, T. Iizuka, A. Asahara, S. Miki: The OpenCL programmingbook. Fixstars Corporation, 2010. 107



Parallel implementation of three-level BDDC methodJ. �ístek, P. Burda, M. �ertíková, J. Mandel, B. Sousedík
1 Institute of Mathematis AS CR, Prague
2,3 Czeh Tehnial University in Prague

4,5 University of Colorado, Denver
1 IntrodutionThe Balaning Domain Deomposition based on Constraints (BDDC) method by Dohrmann [2℄is one of the most advaned methods of iterative substruturing for the solution of large systemsof linear algebrai equations arising from disretization of boundary value problems.In the ase of many substrutures, solving the oarse problem exatly beomes a bottlenek.This has been observed also for the FETI-DP method (e.g. in [3℄), whih is losely related toBDDC. For this reason, reent researh in the area is direted towards inexat solutions of theoarse problem. Klawonn and Rheinbah in [3℄ use algebrai multigrid to obtain an approximateoarse orretion within FETI-DP method and ahieve exellent salability with the resultingimplementation.We follow a di�erent approah. As was mentioned already in [2℄, for BDDC method, it isstraightforward to substitute the exat solution of the oarse problem by another step of BDDCmethod with subdomains playing the role of elements. In this way, the algorithm of three-levelBDDC method is obtained (studied e.g. in [6℄). One may try even reursive appliations ofthe method alled Multilevel BDDC [4℄. Unlike for other methods, suh extension is natural forBDDC, sine the oarse problem has the same struture as the original problem.It is our long-term goal to develop an e�ient parallel implementation of the Multilevel BDDCmethod and make it publily available. In this paper, we present results of the reently developedparallel implementation of the three-level BDDC method, and its omparison with standard (two-level) BDDC method. Even these preliminary results suggest whih drawbaks of the two-levelimplementation might be overome by the extension to more levels.2 BDDC algorithm with two and three levelsThe BDDC method provides a preonditioner to the redued interfae problem Ŝ û = ĝ, where Ŝis a Shur omplement with respet to interfae and ĝ is sometimes alled ondensed right handside. This problem is solved by the preonditioned onjugate gradients (PCG) method by meansof iterative substruturing (details may be found e.g. in [5℄).Let us begin with desription of the standard (two-level) BDDC method. Let Ki be the loalsubdomain matrix, obtained by the sub-assembling of element matries of elements ontained in
i-th subdomain. We introdue the oarse spae basis funtions on eah subdomain representedby olumns of matrix Ψi, whih is the solution to the saddle point problem with multiple righthand sides [
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Matrix Ci represents onstraints on funtions Ψi, one row per eah. These onstraints enforeontinuity of approximate solution at orners and of averages over some subsets of interfae(edges or faes) between adjaent subdomains. The loal oarse matrix KCi = ΨT
i KiΨi = −Λiis onstruted for eah subdomain. Let RCi realize the restrition of global oarse degrees offreedom to loal oarse degrees of freedom. Using this matrix, we an onstrut the global oarsematrix by the assembly proedure, formally written as KC =

∑N
i=1 RT

CiKCiRCi.Suppose r̂ = ĝ − Ŝ û is a residual within the PCG method. The residual assigned to i-th sub-domain is omputed as ri = ET
i r̂, where matries ET

i distribute r̂ to subdomains (see [5℄ fordetails). The subdomain orretion is now de�ned as the solution to system
[

Ki CT
i

Ci 0

] [
zi

λi

]
=

[
ri

0

]
. (2)The residual for the oarse problem is onstruted using the oarse basis funtions subdomainby subdomain and assembling the ontribution as rC =

∑N
i=1 RT

CiΨ
T
i ET

i r̂. The oarse or-retion is de�ned as the solution to problem KC zC = rC . Both orretions are then addedtogether and averaged on the interfae by matries Ei to produe the preonditioned residual
ẑ =

∑N
i=1 Ei (ΨiRCizC + zi).In the Three-level BDDC method, the matrix KC is not onstruted on the seond level. Instead,subdomains of the basi (�rst) level are grouped into subdomains of the seond level in the sameway as elements of the original mesh are grouped into subdomains of the �rst level. The wholeproedure desribed in this setion is now repeated for the seond level and thus the �nal oarseproblem represents the third level. The only di�erene between the �rst and the seond levelis the interior pre-orretion and post-orretion applied on the seond level. These orretionswere used also for the two-level method in the original paper [2℄, in whih BDDC was formulatedfor global (i.e. not redued to interfae) problem. Details of the three-level BDDC algorithm (asa speial ase of the Multilevel BDDC algorithm) an be found in [4℄.3 Parallel implementationOur implementation of the two- and three- level BDDC methods is written in Fortran 95 pro-gramming language using MPI library. It relies heavily on the sparse diret solver MUMPS:a sequential instane of MUMPS is used for solving eah subdomain problem, another sequentialinstane is used to solve interior problems (alled disrete Dirihlet problems [5℄) at eah sub-domain, and �nally a parallel instane of MUMPS is used to solve the resulting oarse problemat the highest level. The program passes the matrix of the oarse problem to MUMPS in thedistributed assembled form, i.e. the loal oarse matries KCi reside at the proessor where theyare reated.Sine division into subdomains has a signi�ant impat on the e�ieny of the method, it is usefulto reate divisions independently of number of available proessors. Thus, the solver supportsassignment of several subdomains to eah proessor.The implementation uses ParMETIS pakage to generate division of elements into subdomainson the �rst level and the METIS pakage to generate the division on the seond level.In Figure 1, simpli�ed shemes of the hierarhy in the implementation of the preonditioner aregiven for two and three levels, respetively. 109
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Figure 1: Shemes of parallel implementation of standard (two-level) BDDC (left) and three-levelBDDC (right).4 Numerial resultsThe implementation has been tested on a large 3D problem of linear elastiity. This problemrepresents mehanis of a geoomposite and was analysed in [1℄. The problem is disretized usingunstrutured grid of about 12 million linear tetrahedral elements, resulting in approximately6 million unknowns.The mesh was divided into 1,024 subdomains on the �rst level and 128 subdomains on theseond level in the three-level version. Resulting oarse problems (using orners and averages onall edges and faes) ontain 86,094 unknowns on the �rst level and 11,265 on the seond level.Table 1 ontains strong saling test with implementation using two and three levels. The itera-tions of PCG were stopped when the relative residual ‖r̂‖/‖ĝ‖ dereased bellow 10−6. All theseomputations were performed on the IBM SP6 omputer at CINECA Superomputing entre,Bologna. #pro 64 128 256 512 1,0242 levels (1,024+1), 46 PCG iter, ond. est. 50.3set-up (se) 61.0 37.7 25.7 23.2 39.5iter (se) 22.3 19.9 27.8 44.9 97.5total (with I/O) (se) 723.7 473.1 317.1 220.2 240.53 levels (1,024+128+1), 56 PCG iter, ond. est. 78.6set-up (se) 49.5 29.0 18.4 12.6 11.0iter (se) 28.5 22.6 16.7 14.7 13.2total (with I/O) (se) 779.2 442.3 278.2 182.1 132.7Table 1: Strong saling using two and three levels.It has been on�rmed by our experiment, that the oarse problem solution auses problems withsalability in both two-level and three-level ases. While most parts of the implementation salevery well, the oarse problem presents a bottlenek for salability not only in the set-up phase, butmainly in the part of iterations. In other words, it beomes ostly (with respet to eah iteration)to solve the oarse problem, whih is not extensive in size, on too many proessors and broadastits solution to them. Slightly surprisingly, it appears more feasible for this implementation toleave some proessors idle and solve the problem on a smaller subset of proessors, preisely asit happens in the three-level implementation. One should note, that idle proessors appear inthe three-level ase on the seond and the third level when more than 128 proessors are used.110



5 ConlusionWe have presented a parallel implementation of the three-level BDDC preonditioner and om-pared it to the two-level version. Sine the implementation uses an e�ient parallel sparse diretsolver (MUMPS), the oarse problem does not present a severe bottlenek for fatorization inthe set-up phase for the presented problem. However, its solution slows down the omputationin the phase of iterations.From our �rst experiments, it appears that the three-level preonditioner tends to sale betterin both parts - set-up and PCG. The worse approximation properties of the three-level method,whih are theoretially analysed in [4℄ and demonstrated here by higher number of PCG iterations(Table 1), seem to be ompensated by faster solution of the oarse problem in eah iteration.We expet, that these advantages of the three-level BDDC method would pronoune further forlarger problems, where the bottlenek presented by the oarse problem would be enounteredalso during fatorization. Suh problems as well as the extension to multiple levels will be thesubjet of our further researh.Aknowledgement: We are grateful to Prof. Blaheta and Dr. Starý from the Institute of Geon-is AS CR for providing the large-sale linear elastiity problem. We aknowledge the support ofthis researh by the Grant Ageny of the Aademy of Sienes under grant IAA100760702, by theCzeh Siene Foundation under grant GA CR 106/08/0403, and by Institutional Researh PlanAV0Z 10190503 of the AS CR. This researh was also supported by NSF grant DMS-0713876.Some parts of this work have been performed under the HPC-Europa2 projet with the supportof the European Commission.Referenes[1℄ R. Blaheta, O. Jakl, J. Starý, K. Kre£mer: The Shwarz domain deomposition methodfor analysis of geoomposites. In: Proeedings of the Twelfth International Conferene onCivil, Strutural and Environmental Engineering Computing, Stirlingshire, Sotland, 2009,B. Topping, L. C. Neves, and R. Barros, (Eds.), Civil-Comp Press.[2℄ C.R. Dohrmann: A preonditioner for substruturing based on onstrained energy minimiza-tion. SIAM J. Si. Comput. 25, 1, 2003, 246�258.[3℄ A. Klawonn, O. Rheinbah: Highly salable parallel domain deomposition methods with anappliation to biomehanis. ZAMM Z. Angew. Math. Meh. 90, 1, 2010, 5�32.[4℄ J. Mandel, B. Sousedík, C.R. Dohrmann: Multispae and multilevel BDDC. Computing 83,2-3, 2008, 55�85.[5℄ J. �ístek, J. Novotný, J. Mandel, M. �ertíková, P. Burda: BDDC by a frontal solver and stressomputation in a hip joint replaement. Math. Comput. Simulation 80, 6, 2010, 1310�1323.[6℄ X. Tu: Three-level BDDC in three dimensions. SIAM J. Si. Comput. 29, 4, 2007, 1759�1780.
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The problem of moments and its onnetionsM. T·maFaulty of Eletrial Engineering and Communiation, Brno University of Tehnology
1 IntrodutionThis ontribution is about the problem of moments. During the last 150 years many books andpapers have been published about this problem. Many mathematiians studied it from manydi�erent points of view. It is very interesting how many onnetions between the di�erent partsof mathematis has been found in these works. One an see the lassial referenes [9℄ and [2℄.An interesting historial review about the birth of the problem of moments an be found in [6℄.As the time went on, the problem of moments was used in order to solve various questions inmathematial statistis, theory of probability and mathematial analysis.2 Formulation of the problemGiven the sequene of real numbers {ξk}∞k=0. The problem is to �nd the following positivemeasure µ suh that

ξk =

∫

I
xkdµ(x), k = 0, 1, .... (1)In the ase when I = [0,∞) we talk about the Stieltjes moment problem. The ase when I = R isalled the Hamburger moment problem. The real numbers {ξk}∞k=0 are then alled the moments.The terminology was taken from mehanis. If the measure µ represents the distribution of themass over the real semi-axis, then the integrals

∫ ∞

0
xdµ(x),

∫ ∞

0
x2dµ(x)represent the �rst (statial) moment and the seond moment (moment of inertia).One an ask the following questions:

• Does the measure µ exist for the sequene of the moments {ξk}∞k=0?
• If the measure µ exists, is it determined uniquely?Now lets take a look on the similar problem. Given the same sequene of the moments {ξk}∞k=0.The problem is to �nd the following positive measure µn suh that the �rst 2n moments aremathed, i.e.,

ξk =

∫

I
xkdµn(x), k = 0, 1, ...2n − 1. (2)The formulation above is often alled the trunated problem of moments, one an see e.g. [1℄.Searhing for this measure µn is losely onneted with many di�erent methods in the mathe-matis. The aim of this ontribution is to give an overview of many onnetions one ould �nd.It will be shown how an the knowledge of these onnetions lead to the new results.112



3 ConnetionsIt is known for a long time that the �nding of the µn instead of µ is losely onneted with theGauss-Christo�el quadrature, see e.g. [11℄, [7℄. Under ertain settings the problem of momentsan be seen as the theoretial bakground for the Lanzos method and the CG method. Theonnetion with the CG and with the the Gauss-Christo�el quadrature is known sine the in-trodution of the CG and it was well desribed by M. R. Hestenes and E. Stiefel in their jointpaper [4℄. In [8℄ the results about the sensitivity of the Gauss-Christo�el quadrature with respetto the small perturbations of the measure are given. Obtaining of these results would not bepossible without the deep knowledge of the onnetion with the problem of moments.Russian mathematiian Yu V. Vorobyev presented the general problem of moments in the Hilbertspae in [12℄. Let z0, z1, ..., zn be n + 1 presribed linearly independent elements of the Hilbertspae H. Consider the n-dimensional subspae Hn

Hn = span{z0, z1, ..., zn−1}.The linear operator An de�ned on the subspae Hn is onstruted in the following way
Anz0 = z1,

A2
nz0 = z2,

...

An−1
n z0 = zn−1,

An
nz0 = Enzn,

(3)where Enzn is the projetion of zn on Hn.Vorobyev applied his work about the moments on solving di�erential, integral and �nite di�ereneequations and also on resolving spetrum of bounded operators in the Hilbert spae. In the ase ofthe self-adjoint operators Vorobyev pointed out the onnetion of his work with the CG method.The Vorobyev problem of moments was used by Z. Strako² and P. Tihý in their approah ofapproximating the sattering amplitude, see [10℄.The problem of moments is losely onneted with the Sturm-Liouville problem. In [3℄ theonnetions between the singular Sturm-Liouville problem, Jaobi matries and Hamburger mo-ment problem are desribed in an elegant way. The nature of the solutions of the singularSturm-Liouville problem is onneted with the determinay of the assoiated Hamburger mo-ment problem.There is also the relation between the model redution in the linear dynamial systems
z
′

(t) = Az(t) + bu(t),

y(t) = b∗z(t)
(4)and the problem of moments. In [7, pp. 101-108℄ an elegant desription of the onnetion betweenthe model redution of the above system and the problem of moments is given. Consider theexpansion of the transfer funtion T (λ) whih is onneted to the dynamial system (4)

−T (λ) = λ−1b∗(I − λ−1A)−1b =

= λ−1(b∗b) + λ−2(b∗Ab) + ...+ λ−2n(b∗A2n−1b) + ....
(5)A redued model of order n whih mathes the �rst 2n terms in the above expansion is known asthe minimal partial realization. The onept of the minimal partial realization was introdued113



in the ontrol theory literature by R. E. Kalman in 1979, see [5℄. The idea to �nd the reduedmodel is again nothing else than the problem of moments suh that the �rst 2n moments aremathed, see (2).Referenes[1℄ V.M. Adamyan, I.M. Tkahenko, M. Urrea: Solution of the stieltjes trunated momentproblem. Journal of Applied Analysis 9, 2003, 57�74.[2℄ N.I. Akhiezer: The lassial moment problem and some related questions in analysis. Trans-lated by N. Kemmer. Hafner Publishing Co., New York, 1965.[3℄ A.G. Garía, M.A. Hernández-Medina: Disrete Sturm-Liouville problems, Jaobi matriesand Lagrange interpolation series. J. Math. Anal. Appl. 280 (2), 2003, 221�231.[4℄ M.R. Hestenes, E. Stiefel: Methods of onjugate gradients for solving linear systems. J.Researh Nat. Bur. Standards 49, (1953), 1952, 409�436.[5℄ R.E. Kalman: On partial realizations, transfer funtions, and anonial forms. Ata Poly-teh. Sand. Math. Comput. Si. Ser. 31, 1979, 9�32.[6℄ T.H. Kjeldsen: The early history of the moment problem. Historia Mathematia 20, 1993,19�44.[7℄ J. Liesen, Z. Strako²: Priniples and analysis of Krylov subspae methods. In preparation,2010.[8℄ D.P. O'Leary, Z. Strako², P. Tihý: On sensitivity of Gauss-Christo�el quadrature. Springer-Verlag, 2007.[9℄ J.A. Shohat, J.D. Tamarkin: The problem of moments. Amerian Mathematial SoietyMathematial surveys, vol. II. Amerian Mathematial Soiety, New York, 1943.[10℄ Z. Strako², P. Tihý: On e�ient numerial approximation of the bilinear form c∗a−1b.Submitted for publiation in SIAM Journal on Sienti� Computing, 2010.[11℄ Z. Strako²: Model redution using the Vorobyev moment problem. Numer. Algorithms 51(3), 2009, 363�379.[12℄ Yu V. Vorobyev: Method of moments in applied mathematis. Gordon and Breah SienePublishers, New York, 1965.
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Agresivní zhrubování v metod¥ zhlazenýh agregaíP. Van¥kZápado£eská univerzita v PlzniD·leºitou partií výsledk· o metod¥ zhlazenýh agregaí tvo°í výsledky týkajíí se agresivníhozhrubování. Zde, hrubý prostor je podstatn¥ men²í neº jemný prostor a tato skute£nost je kom-penzována moným hladi£em. Metoda zhlazenýh agregaí je mimo°ádn¥ vhodná pro agresivnízhrubování v kombinai s polynomiálním hladi£em odvozeným od prolongátorového hladi£e.Zde hlazení prolongátoru prauje jako preonditioner. Tato skute£nost bude demonstrována najednoduhé dvojúrov¬ové metod¥. Bude prezentován klí£ový dvojúrov¬ový výsledek ve dvouvariantáh a obený víeúrov¬ový výsledek.
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Disrete Green's funtion � a loser lookT. VejhodskýInstitute of Mathematis AS CR, Prague
1 IntrodutionFor linear ellipti problems the Green's funtion provides a solution operator. Similarly, in theontext of the �nite element method the disrete Green's funtion (DGF) provides the solutionoperator for the disrete problem. Therefore, ertain properties of the �nite element solution anbe dedued form the properties of the DGF.Typial example of suh a property is the disrete maximum priniple. It is satis�ed if and onlyif the orresponding DGF is nonnegative. In the lowest-order �nite element methods the DGFan be equivalently replaed by the inverse of the sti�ness matrix. However, in the higher-ordermethods this replaement annot be done and the DGF plays the ruial role there.We hoose as a model problem the Possion equation with homogeneous Dirihlet boundaryonditions, disretize it by the �nite element method of ertain order and study the nonnegativityof the orresponding DGF. Numerial experiments published reently in [2℄ indiate that forhigher-order approximations the DGF is nonnegative everywhere in the omputational domainin exeptional ases only. In this short ontribution we propose to study the nonnegativity in aninterior region of the omputational domain only. We present additional numerial experimentstrying to identify triangulations yielding this interior nonnegativity.2 Model problem, DGF, and disrete maximum prinipleLet Ω ⊂ R

2 be a polygonal domain. We onsider the Poisson equation in Ω and the homogeneousDirihlet boundary onditions on ∂Ω:
−∆u = f in Ω, u = 0 on ∂Ω. (1)This problem is disretized by the �nite element method of order p. Thus, we onsider a tri-angulation Th of Ω and introdue a spae Vh of pieewise polynomial and globally ontinuousfuntions:

Vh = {vh ∈ C0(Ω) : vh|K ∈ P
p(K) ∀K ∈ Th},where C0(Ω) stands for the spae of ontinuous funtions on Ω whose values on ∂Ω vanish and

P
p(K) denotes the spae of polynomials of degree at most p in the triangle K ∈ Th.The �nite element formulation of problem (1) reads as follows: �nd uh ∈ Vh suh that

a(uh, vh) = (f, vh) ∀vh ∈ Vh. (2)As usual, a(uh, vh) =
∫
Ω ∇uh · ∇vh dx stands the energeti bilinear form and (f, vh) =

∫
Ω fvh dxdenotes the L2(Ω) inner produt. 116



The DGF is de�ned as the approximate solution of the adjoint problem: for any y ∈ Ω we de�ne
Gh,y ∈ Vh as the unique solution of the Galerkin problem

a(vh, Gh,y) = vh(y) ∀vh ∈ Vh. (3)Instead of Gh,y(x) we will use the standard notation Gh(x, y) = Gh,y(x). It an be easily shown(see e.g. [1℄ or Lemma 1 below) that Gh is symmetri in the sense that Gh(x, y) = Gh(y, x) forall (x, y) ∈ Ω2. In addition, from the de�nition of the DGF (3) and from the de�nition of the�nite element solution (2), we immediately infer the well known representation formula
uh(y) =

∫

Ω
Gh(x, y)f(x) dx. (4)Furthermore, the DGF Gh(x, y) an be easily expressed in terms of any basis in Vh (see e.g. [1℄):Lemma 1. Let ϕ1, ϕ2, . . . , ϕn be a basis of Vh. Let A ∈ R

n×n be the orresponding sti�nessmatrix, i.e. Aij = a(ϕj , ϕi), i, j = 1, 2, . . . , n. Then
Gh(x, y) =

n∑

i=1

n∑

j=1

ϕi(y)(A
−1)ijϕj(x), ∀(x, y) ∈ Ω2. (5)In the experiments below, we use expression (5) to study the nonnegativity of the DGF Gh in Ω2.The interest in the nonnegativity of Gh is motivated by the diret onnetion with the disretemaximum priniple. Given a �xed triangulation and the orresponding spae Vh, we say thatproblem (2) satis�es the disrete maximum priniple (DMP) if

f ≥ 0 a.e. in Ω ⇒ uh ≥ 0 in Ω. (6)The representation formula (4) immediately proves the fat that problem (2) satis�es the DMPif and only if the orresponding DGF Gh is nonnegative in Ω2.Numerial experiments presented in [2℄ indiate that for higher-order �nite elements the DGF Ghis nonnegative in an exeptional ase only. Namely, for p = 2 and for all elements in thetriangulation being lose to the equilateral triangle. These experiments also indiate that thenegative values of the DGF are usually lose to the boundary. Therefore, we de�ne ertain layer
B ⊂ Ω of points lose to the boundary ∂Ω. We denote the omplement of B in Ω as I = Ω\B andwe all B and I the boundary and the interior region, respetively. Sine the requirement (6) istoo strong to be satis�ed by the higher-order elements we an naturally ask if one of the followingweaker requirements is satis�ed:

f ≥ 0 a.e. in Ω ⇒ uh ≥ 0 in I, (7)
f ≥ 0 a.e. in I and f = 0 a.e. in B ⇒ uh ≥ 0 in I. (8)From the representation formula (4) we easily see that requirement (8) is satis�ed if and only if

Gh(x, y) ≥ 0 for all (x, y) ∈ I2. Similarly, requirement (7) is satis�ed if and only if Gh(x, y) ≥ 0for all (x, y) ∈ Ω × I. Due to the symmetry, the nonnegativity of Gh in Ω × I is equivalent tothe nonnegativity in Ω2 \ B2.3 Numerial experimentsIn the presented experiments we try to justify the meaningfulness of properties (7) and (8) forhigher-order �nite elements. We onsider Poisson problem (1) disretized on uniform triangula-tions of Ω and we test the nonnegativity of the DGF in Ω2, in Ω2 \ B2, and in I2. We study117



how this nonnegativity depends on the angles in the triangulations. Sine the triangulations areuniform, there are just two independent angles α and β (the third angle is γ = π − α − β).We systematially test many pairs of angles α and β and display the results in a panel, wherea point with oordinates (α, β) is olored aording to the nonnegativity of the DGF in the testedregions. See Figure 2.In Experiment A, the domain Ω is a triangle. The orresponding �nite element mesh onsistsof 64 ongruent triangles � see Figure 1 (left). The elements are enumerated in a spiral ways.Thus, the elements adjaent to the boundary have indies 1, 2, . . . , 39 and they form the boundaryregion B. The interior elements with indies 40, 41, . . . , 64 form the interior region I. Finally,we stress that the shape of the triangle Ω (as well as the shape of any triangle in the mesh) isdetermined by the two angles α and β.The panels in Figure 2 show the results for polynomial degrees p = 2, 3, 4. Eah point in thesepanels orrespond to a pair of angles α and β. We onstrut the triangle Ω with these two angles,we reate the uniform mesh in Ω, and we ompute the orresponding DGF Gh. If Gh(x, y) ≥ 0for all (x, y) ∈ Ω2 then the olor of point (α, β) is blak. Otherwise, if Gh(x, y) ≥ 0 for all
(x, y) ∈ Ω2 \ B2 then the olor is darker gray. Otherwise, if Gh(x, y) ≥ 0 for all (x, y) ∈ I2 thenthe olor is lighter gray. Otherwise, the DGF Gh has ertain negative values in all tested areasand the orresponding olor is almost white. Of ourse, heking nonnegativity of a polynomialis a di�ult task. Therefore, we introdue in eah element 153 sample points � see Figure 1(right) � and test the nonnegativity in these sample points only.We observe that the DGF Gh is nonnegative everywhere in Ω2 for p = 2 and for triangles loseto the equilateral one only. Nevertheless, the darker and the lighter gray regions orrespondingto the properties (7) and (8), respetively, are substantial in all ases. In addition, numerialexperiments for polynomial degrees up to p = 10 indiate that these areas orresponding to thevalidity of properties (7) and (8) inrease with growing p. However, this inrease is not monotone.Examining the DGF Gh in more details we �nd out that many negative values of Gh are ausedby the presene of three edges lying inside Ω and having both their end-points on ∂Ω (e.g. theedge between elements 1 and 22). Therefore, we remove the three orner elements (the one withindies 1, 8, and 15) � see Figure 1 (middle) � and perform the same tests as above. This isExperiment B. Its results are presented in the seond row of panels in Figure 2. In omparisonwith Experiment A, we observe substantial hanges of the dark gray regions orresponding toproperty (7). On the other hand, there is pratially no in�uene on the light gray regionorresponding to property (8).
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Figure 1: Uniform triangulations of the triangle (left) and of the triangle without orners (mid-dle). Right panel shows the distribution of sample points in an element.
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Figure 2: Results of Experiment A (�rst row) and of Experiment B (seond row).4 ConlusionsThe performed experiments indiate that the higher-order DGF is negative mostly in the bound-ary region. It seems that if the triangular elements have angles lose to 60◦ then the higher-orderapproximate solution uh is automatially nonnegative everywhere in the interior elements pro-vided the orresponding right-hand side f is nonnegative. Further, it seems that for triangleswith the minimal angle above roughly 30◦ and the maximal angle below roughly 120◦ the prop-erty (8) is satis�ed, i.e. if f vanishes in elements adjaent to the boundary and if it is nonnegativeelsewhere then the �nite element solution uh is nonnegative everywhere in the interior elements.Aknowledgement: The author gratefully aknowledges the support of grant IAA100760702of the Grant Ageny of the Aademy of Sienes of the Czeh Republi, and of the institutionalresearh plan no. AV0Z10190503 of the Aademy of Sienes of the Czeh Republi.Referenes[1℄ T. Vejhodský, P. �olín: Disrete Green's funtion and maximum priniples. In: J. Chleboun,K. Segeth, T. Vejhodský (Eds.): Programs and Algorithms of Numerial Mathematis 13,Institute of Mathematis, Aademy of Sienes, Czeh Republi, Prague, 2006, 247�252.[2℄ T. Vejhodský: Angle onditions for disrete maximum priniples in higher-order FEM. In:G. Kreiss, P. Lötstedt, A. Målqvist, M. Neytheva (Eds.): Numerial Mathematis andAdvaned Appliations ENUMATH 2009 Springer, Berlin, 2010, 901�909.119



Fast Fourier transform based method for modellingof heterogeneous materialsJ. Vond°ej, J. Zeman, I. MarekFaulty of Civil Engineering, Czeh Tehnial University in Prague
Problem settingWe onsider a omposite material represented by a periodi unit ell Y =

∏d
α=1(−Yα, Yα) ⊂ R

d.In the ontext of linear eletrostatis, the assoiated unit ell problem reads as
∇ × e(x) = 0, ∇ · e(x) = 0, j(x) = L(x) · e(x), x ∈ Y (1)where e is a Y-periodi vetorial eletri �eld, j denotes the orresponding vetor of eletriurrent and L is a seond-order positive-de�nite tensor of eletri ondutivity. In addition, the�eld e is subjet to a onstraint e0 = 1

|Y|
∫
Y e(x)dx, where e0 denotes a presribed marosopieletri �eld and |Y| represents the d-dimensional measure of Y.The original problem is equivalent to the periodi Lippmann-Shwinger integral equation, for-mally written as

e(x) +

∫

Y
Γ0(x − y) ·

(
L(y) − L0

)
· e(y)dy = e0, x ∈ Y, (2)where the Γ0 operator is derived from the Green's funtion of the initial problem with L(x) = L0and e0 = 0 and an be expressed in Fourier spae as

Γ̂
0
(k) =

{
0, k = 0

ξ⊗ξ

ξ·L0·ξ , k = (kα)dα=1, ξ = (ξα)dα=1, ξα = kα

Yα
,k ∈ Z

N (3)Disretization of integral equationNumerial solution of the Lippmann-Shwinger equation is based on a disretization of a unitell Y into a regular periodi grid with N1 × · · · × Nd nodal points and grid spaings h =
(2Y1/N1, . . . , 2Yd/Nd). The searhed �eld e(x),x ∈ Y, in (2) is approximated by a trigonometripolynomial eN in the form (f. [2℄)

e(x) ≈ eN(x) =
∑

k∈Z
N

ê(k)ϕk(x), Z
N

=

{
k ∈ Z

d : −Nα

2
< kα ≤ Nα

2
, α = 1, . . . , d

}where N = (N1, . . . , Nd), ê designates the Fourier oe�ients and ϕk = exp
(
iπ
∑d

i=1 xiξi

) with
ξi = ki

Yi
are basis funtions.The trigonometri olloation method (e.g. [2℄) is based on the projetion of the Lippmann-Shwinger equation (2) to the spae of the trigonometri polynomials {∑

k∈Z
N ckϕk, ck ∈ C

}leading to linear system of equations
Ae = e

0, (4)120



where e =
(
e
k
α

)k∈Z
N

α=1,...,d
∈ R

d×N and e0 =
(
(e0)kα

)k∈Z
N

α=1,...,d
∈ R

d×N store the orrespondingsolution and of the marosopi �eld, respetively. The ation of the linear operator (blokmatrix) A = [Akm
αβ ]k,l∈Z

N

α,β=1,...,d on vetor e produes vetor Ae ∈ Rd×N with omponents
(Ae)k

α =
d∑

β=1

∑

m∈Z
N

A
km
αβ e

m
β (5)Furthermore, the non-symmetri matrix A an be expressed as

A = I + B = I + F
−1

Γ̂F(L − L
0) (6)where I is the unit matrix of size d× d× N ×N , the expliit forms of the individual terms anbe found in [3℄.Solution using onjugate gradientsThe original Fast Fourier Transform-based Homogenization (FFTH) sheme formulated by Mou-line and Suquet in [1℄ is based on the Neumann expansion of the matrix inverse (I + B)−1, soas to yield the m-th iterate in the form

e
(m) =

m∑

j=0

(−B)j e
0. (7)We have proposed in [3℄ to solve the non-symmetri linear system using Conjugate gradients andpresented numerial experiments, whih suggest onvergene of CG algorithm.In this ontribution, we outline basi ideas of the onvergene proof. Without a loss of generality,we onsider the speial form of referene ondutivity L0 = ρI with ρ > 0 and reformulate (4)in the form:

PELeE = e
0 (8)where PE = F

−1
Γ̂

0
F
(
L

0
)−1 is a projetion matrix on a subspae E = {PEx|x ∈ R

d×N} ⊂
R

d×N and the solution eE ∈ E. The linear system (8) an be alternatively reformulated asa minimization problem
e = e

0 + argmineE∈E φ(eE)where φ(eE) is a linear funtional de�ned as
φ(eE) =

1

2

(
LeE, eE

)
+
(
Le

0, eE

)where (·, ·) denotes salar produt on R
d×N , i.e.

(
u, v
)

=

d∑

α=1

∑

k∈Z
N

v
k
αv

k
α.The onvergene of the onjugate gradient method then follows from projetion properties of PE,whih implies symmetry of linear system (4) in subspae E .Aknowledgement: This researh was supported by the Czeh Siene Foundation, throughprojets No. GA�R 103/09/1748, No. GA�R 103/09/P490, and by the Grant Ageny of theCzeh Tehnial University in Prague through projet No. SGS10/124/OHK1/2T/11.121
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Operator splittings for solving nonlinear oupled multiphysisproblems with an appliation for interfae modelingO. AxelssonInstitute of Geonis AS CR, OstravaThe solution of multiphysis problems an be very demanding on omputer time. A possibleremedy for evolutionary problems is to use operator splittings. Some suh methods are desribedand analyzed. To handle sti� problems an impliit and stable time-stepping method of seondorder of auray is used. This allows bigger time-steps for the ontrol of the operator splittingerrors. For nonlinear problems, a Newton solution method is used for eah separate equation, andafter ompletion of some steps of the method the equations are updated, in this way preparingfor the start of additional iterations or of a new time-step.An appliation for a nonlinear interfae modeling problem arising in a moving �uid is desribed.Hereby an inner-outer iteration method is used to solve the arising linearized algebrai equations.There is no need to update the preonditioners used.



Salable FETI based algorithms for ontat problems:theory, implementation, and numerial experimentsZ. Dostál, T. Kozubek, V. Vondrák, T. Brzobohatý, A, MarkopoulosV�B - Tehnial University of OstravaWe report the results of our researh in development of the algorithms with both numerial andparallel salability for the solution of ontat problems of elastiity. Our talk overs 2D and 3Dproblems disretized by the �nite element or boundary element method, possibly with ��oating�bodies, inluding the multibody fritionless problems, both stati and dynami, and the problemswith a given (Tresa) frition. A ommon feature of all the problems onsidered in our talk isa strong nonlinearity due to the interfae onditions. Sine even the algorithms for the solutionof linear problems have the linear omplexity at least, it follows that a salable algorithm forontat problems has to treat the nonlinearity in a sense for free.After introduing the variational inequalities that desribe the equilibrium of a system of elastibodies in mutual ontat under the interfae onditions onsidered in our talk, we brie�y re-view the TFETI (total �nite element tearing and interonneting) based domain deompositionmethodology adapted to the solution of ontat problems of elastiity, inluding optimal esti-mates. Reall that TFETI di�ers from the lassial FETI or FETI2 as introdued by Farhatand Roux by imposing the presribed displaements by the Lagrange multipliers and treating allsubdomains as ��oating�.Then we present our in a sense optimal algorithms for the solution of the resulting quadratiprogramming and QPQC (quadrati programming - quadrati onstraints) problems. A uniquefeature of these algorithms is their apability to solve the lass of suh problems with homoge-neous equality onstraints and separable inequality onstraints in O(1) matrix�vetor multipli-ations provided the spetrum of the Hessian of the ost funtion is in a given positive interval[1℄, [2℄.Finally we put together the above results to develop salable algorithms for the solution of theabove problems [3℄, [4℄,[5℄, [6℄, [7℄. A speial attention is paid to the onstrution of an initialapproximation whih is not far from the solution, so that the above results guarantee that the ostof the solution inreases nearly proportionally with the dimension of the disretized problem andto e�etive implementation of generalized inverse matries of �oating subdomains. We illustratethe results by numerial experiments and by the solution of di�ult real world problems, suh asanalysis the roller bearings in Figure 1 with 73 bodies under nonsymmetri loading. We onludeby a brief disussion of other results [8℄ and urrent researh.Referenes[1℄ Z. Dostál, Optimal Quadrati Programming Algorithms, with Appliations to Variational In-equalities, 1st edition, Springer US, New York 2009, SOIA 23.[2℄ Z. Dostál and T. Kozubek, An optimal algorithm with superrelaxation for minimization of aquadrati funtion subjet to separable spherial onstraints with appliations, submitted.[3℄ Z. Dostál, T. Kozubek, V. Vondrák, T. Brzobohatý, A. Markopoulos, Salable TFETI algo-rithm for the solution of multibody ontat problems of elastiity. International Journal forNumerial Methods in Engineering, 82, No. 11, 1384-1405 (2010).



Figure 1: Roller bearings of wind generator[4℄ J. Bouhala, Z. Dostál, M. Sadowská, Salable Total BETI based algorithm for 3D oeriveontat problems of linear elastostatis, Computing, 85(2009) 189-217. IF 0.881[5℄ M. Sadowská, Z. Dostál, T. Kozubek, J. Bouhala, and A. Markopoulos, Salable Total BETIbased solver for 3D multibody fritionless ontat problems in mehanial engineering. Sub-mitted.[6℄ Z. Dostál, T. Kozubek, A. Markopoulos, T. Brzobohatý, V. Vondrák, P. Horyl, SalableTFETI algorithm for two dimensional multibody ontat problems with frition, aepted inJournal of Computational and Applied Mathematis.[7℄ Z. Dostál, T. Kozubek, A. Markopoulos, T. Brzobohatý, V. Vondrák, P. Horyl, Theoretiallysupported salable TFETI algorithm for the solution of multibody 3D ontat problems withfrition, submitted.[8℄ V. Vondrák, T. Kozubek, Z. Dostál, Parallel solution of ontat shape optimization problemsbased on Total FETI domain deomposition method, Engineering Optimization, aepted.



Ill–Posed Inverse Problems in Image Processing

Introduction, Structured matrices, Spectral filtering,

Regularization, Noise revealing

I. Hnětynková
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Motivation. A gentle start ...
What is it an inverse problem?

Forward problem

Inverse problem

[Kjøller: M.Sc. thesis, DTU Lyngby, 2007].

observation b unknown xA(x) = b

A

A−1
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More realistic examples of ill-posed inverse problems
Computer tomography in medical sciences

Computer tomograph (CT) maps a 3D object of M × N × K

voxels by ℓ X-ray measurements on ℓ pictures with m × n pixels,

A(·) ≡ : R
M×N×K −→

ℓ⊗

j=1

R
m×n.

Simpler 2D tomography problem leads to the Radon transform.

The inverse problem is ill-posed. (3D case is more complicated.)

The mathematical problem is extremely sensitive to errors which

are always present in the (measured) data: discretization error

(finite ℓ, m, n); rounding errors; physical sources of noise

(electronic noise in semiconductor PN-junctions in transistors, ...).
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More realistic examples of ill-posed inverse problems
Transmision computer tomography in crystalographics

Reconstruction of an unknown orientation distribution function

(ODF) of grains in a given sample of a polycrystalline matherial,

A





 ≡ −→


 , . . .




︸ ︷︷ ︸
observation = data +noise

.

The right-hand side is a set of measured difractograms.

[Hansen, Sørensen, Südkösd, Poulsen: SIIMS, 2009].

Further analogous applications also in geology, e.g.:

◮ Seismic tomography (cracks in tectonic plates),

◮ Gravimetry & magnetometry (ore mineralization).
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More realistic examples of ill-posed inverse problems
Image deblurring—Our pilot application

Our pilot application is the image deblurring problem

A




 x = true image 
 −→

 b = blurred, noisy image

= data + noise.

It leads to a linear system Ax = b with square nonsingular matrix.

Let us motivate our tutorial by a “naive solution” of this system

A−1




 b = blurred, noisy image 
 =

 x = inverse solution

.

[Nagy: Emory University].
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More realistic examples of ill-posed inverse problems
General framework

In general we deal with a linear problem

Ax = b

which typically arose as a discretization of a

Fredholm integral equation of the 1st kind

y(s) =

∫
K (s, t)x(t)dt.

The observation vector (right-hand side) is contaminated by noise

b = bexact
+ bnoise, where ‖bexact‖ ≫ ‖bnoise‖.
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More realistic examples of ill-posed inverse problems
General framework

We want to compute (approximate)

xexact ≡ A−1bexact.

Unfortunatelly, because the problem is inverse and ill-posed

‖A−1bexact‖ ≪ ‖A−1bnoise‖,

the data we look for are in the naive solution covered by the

inverted noise. The naive solution

x = A−1b = A−1bexact
+ A−1bnoise

typically has nothing to do with the wanted xexact
.
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Outline of the tutorial

◮ Lecture I—Problem formulation:

Mathematical model of blurring, System of linear algebraic

equations, Properties of the problem, Impact of noise.

◮ Lecture II—Regularization:

Basic regularization techniques (TSVD, Tikhonov), Criteria

for choosing regularization parameters, Iterative

regularization, Hybrid methods.

◮ Lecture III—Noise revealing:

Golub-Kahan iteratie bidiagonalization and its properties,

Propagation of noise, Determination of the noise level, Noise

vector approximation, Open problems.

8 / 57

References
Textbooks + software

Textbooks:

◮ Hansen, Nagy, O’Leary: Deblurring Images, Spectra, Matrices,

and Filtering, SIAM, FA03, 2006.

◮ Hansen: Discrete Inverse Problems, Insight and Algorithms,

SIAM, FA07, 2010.

Sofwtare (MatLab toolboxes):

◮ HNO package,

◮ Regularization tools,

◮ AIRtools,

◮ ...

(software available on the homepage of P. C. Hansen).
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Outline of Lecture I

◮ 1. Mathematical model of blurring:

Blurring as an operator on the vector space of matrices,

Linear and spatial invariant operator, Point-spread-function,

2D convolution, Boundary conditions.

◮ 2. System of linear algebraic equations:

Gaußian blur, Exploiting the separability, 1D Gaußian blurring

operator, Boundary conditions, 2D Gaußian blurring operator,

Structured matrices.

◮ 3. Properties of the problem:

Smoothing properties, Singular vectors of A, Singular values

of A, The right-hand side, Discrete Pickard condition (DPC),

SVD and Image deblurring problem, Singular images.

◮ 4. Impact of noise:

Violation of DPC, Naive solution, Regularization and filtering.
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1. Mathematical model of blurring
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1. Mathematical model of blurring
Blurring as an operator of the vector space of images

The grayscale image can be considered as a matrix, consider for

convenience black ≡ 0 and white ≡ 1.

Consider a, so called, single-pixel-image (SPI) and a blurring

operator as follows

A(X ) = A





 = = B ,

where X = [x1, . . . , xk ], B = [b1, . . . , bk ] ∈ R
k×k

.

The image (matrix) B is called point-spread-function (PSF).

(In Parts 1, 2, 3 we talk about the operator, the right-hand side is noise-free.)
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1. Mathematical model of blurring
Linear and spatial invariant operator

Consider A to be:

1. linear (additive & homogenous),

2. spatial invariant.

Linearity of A allows to rewrite A(X ) = B as a system of linear

algebraic equations

Ax = b, A ∈ R
N×N , x , b ∈ R

N .

(We do not know how, yet.)
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1. Mathematical model of blurring
Linear and spatial invariant operator

The matrix X containing the SPI has only one nonzero entry

(moreover equal to one).

Therefore the unfolded X

x = vec(X ) = [xT
1 , . . . , xT

k ]
T

= ej

represents an Euclidean vector.

The unfolding of the corredponding B (containing the PSF) then

represents jth column of A

A ej = b = vec(B) = [bT
1 , . . . , bT

k ]
T .

The matrix A is composed columnwise by unfolded PSFs

corresponding to SPIs with different positions of the nonzero pixel.
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1. Mathematical model of blurring
Linear and spatial invariant operator

Spatial invariance of A ≡ The PSF is the same for all positi-

ons of the nonzero pixel in SPI. (What about pixels close to the

border?)

Linearity + spatial invariance:

↓ ↓ ↓ ↓ ↓ ↓

+ + + + =

+ + + + =

First row: Original (SPI) images (matrices X ).

Second row: Blurred (PSF) images (matrices B = A(X )).
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1. Mathematical model of blurring
Point—spread—function (PSF)

Linear and spatially invariant blurring operator A is fully described

by its action on one SPI, i.e. by one PSF. (Which one?)

Recall: Up to now the width and height of both the SPI and PSF

images have been equal to some k, called the window size.

For correctness the window size must be properly chosen, namely:

◮ the window size must be sufficiently large

(increase of k leads to extension of PSF image by black),

◮ the window is typically square (for simplicity),

◮ we use window of odd size (for simplicity), i.e.

k = 2ℓ + 1.
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1. Mathematical model of blurring
Point—spread—function (PSF)

The square window with sufficiently large odd size k = 2ℓ + 1

allows to consider SPI image given by the matrix

SPI = eℓ+1e
T
ℓ+1 ∈ R

k×k

(the only nonzero pixel is in the middle of SPI).

The corresponding PSF image given by the matrix

PSFA =




p1,1 · · · p1,k
.
.
.

. . .
.
.
.

pk,1 · · · pk,k


 =




p̄−ℓ,−ℓ · · · p̄−ℓ,+ℓ
.
.
.

. . .
.
.
.

p̄+ℓ,−ℓ · · · p̄+ℓ,+ℓ


 ∈ R

k×k

will be further used for the description of the operator A.
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1. Mathematical model of blurring
Point—spread—function (PSF)

Examples of PSFA:

horizontal vertical out-of-focus Gaußian
motion blur motion blur blur blur
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1. Mathematical model of blurring
2D convolution

We have the linear, spatial invariant A given by PSFA ∈ R
k×k

.

Consider a general grayscale image given by a matrix X ∈ R
m×n

.

How to realize the action of A on X , i.e. B = A(X ), using PSFA?

Entrywise application of PSF:

1. X =
∑m

i=1

∑n
j=1 Xi ,j , where Xi ,j ≡ xi ,j(ei e

T
j ) ∈ R

m×n
;

2. realize the action of A on the single-pixel-image Xi ,j

Xi ,j =




0 0 0

0 xi ,jSPI 0

0 0 0


 −→ Bi ,j ≡




0 0 0

0 xi ,jPSFA 0

0 0 0


 ;

3. B =
∑m

i=1

∑n
j=1 Bi ,j due to the linearity of A.
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1. Mathematical model of blurring
2D convolution

Example: B =
∑m

i=1

∑n
j=1 Bi ,j = . . .

+x2,2




0 0 0 0 0

0 0 0 0 0

p3,1 p3,2 p3,3 0 0

p2,1 p2,2 p2,3 0 0

p1,1 p1,2 p1,3 0 0

 + x2,3




0 0 0 0 0

0 0 0 0 0

0 p3,1 p3,2 p3,3 0

0 p2,1 p2,2 p2,3 0

0 p1,1 p1,2 p1,3 0

 + x2,4




0 0 0 0 0

0 0 0 0 0

0 0 p3,1 p3,2 p3,3

0 0 p2,1 p2,2 p2,3

0 0 p1,1 p1,2 p1,3



+x3,2




0 0 0 0 0

p3,1 p3,2 p3,3 0 0

p2,1 p2,2 p2,3 0 0

p1,1 p1,2 p1,3 0 0

0 0 0 0 0

 + x3,3




0 0 0 0 0

0 p3,1 p3,2 p3,3 0

0 p2,1 p2,2 p3,3 0

0 p1,1 p1,2 p1,3 0

0 0 0 0 0

 + x3,4




0 0 0 0 0

0 0 p3,1 p3,2 p3,3

0 0 p2,1 p2,2 p2,3

0 0 p1,1 p1,2 p1,3

0 0 0 0 0



+x4,2




p3,1 p3,2 p3,3 0 0

p2,1 p2,2 p2,3 0 0

p1,1 p1,2 p1,3 0 0

0 0 0 0 0

0 0 0 0 0

 + x4,3




0 p3,1 p3,2 p3,3 0

0 p2,1 p2,2 p2,3 0

0 p1,1 p1,2 p1,3 0

0 0 0 0 0

0 0 0 0 0

 + x4,4




0 0 p3,1 p3,2 p3,3

0 0 p2,1 p2,2 p2,3

0 0 p1,1 p1,2 p1,3

0 0 0 0 0

0 0 0 0 0



+ . . . , where

PSFA =




p1,1 p1,2 p1,3

p2,1 p2,2 p2,3

p3,1 p3,2 p3,3


,

b3,3 = x2,2 p3,3 + x2,3 p3,2 + x2,4 p3,1

+ x3,2 p2,3 + x3,3 p2,2 + x3,4 p2,1

+ x4,2 p1,3 + x4,3 p1,2 + x4,4 p1,1

.
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1. Mathematical model of blurring
2D convolution

The entry bi ,j of B is influenced by the entry xi ,j and a few entries

in its surroundings, depending on the support of PSFA.

In general:

bi ,j =

∑ℓ

h=−ℓ

∑ℓ

w=−ℓ
xi−h,j−w p̄h,w .

The blured image represented by matrix B is therefore the

2D convolution

of X with PSFA.

Boundary: Pixels xµ,ν for µ ∈ Z \ [1, . . . ,m] or ν ∈ Z \ [1, . . . , n]

(“outside” the original image X ) are not given.
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1. Mathematical model of blurring
Boundary conditions (BC)

Real-world blurred image B is involved by the information which

is outside the scene X , i.e. by the boundary pixels xµ,ν .

For the reconstruction of the real-world scene (deblurring) we do

have to consider some boundary condition:

◮ Outside the scene is nothing, xµ,ν = 0 (black), e.g., in

astrononomical observations.

◮ The scene contains periodic patterns, e.g., in

micro/nanoscale imaging of matherials.

◮ The scene can be prolongated by reflecting.

Zero boundary Periodic boundary Reflexive boundary
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1. Mathematical model of blurring
Summary

Now we know “everything” about the simplest mathematical

model of blurring:

◮ We consider linear, spatial invariant operator A, which is

represented by its point-spread-function PSFA.

◮ The 2D convolution of true scene with the

point-spread-function represents the blurring.

◮ Convolution uses some information from the outside of the

scene, therefore we need to consider some boundary

conditions.
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2. System of linear algebraic equations
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2. System of linear algebraic equations
Basic concept

The problem A(X ) = B can be rewritten (emploing the 2D

convolution formula) as a system of linear algebraic equations

Ax = b, A ∈ R
mn×mn, x = vec(X ), b = vec(B) ∈ R

mn,

where the entries of A are the entries of the PSF, and

bi ,j =

∑ℓ

h=−ℓ

∑ℓ

w=−ℓ
xi−h,j−w p̄h,w .

In general:

◮ PSF has small localized support,

◮ each pixel is influenced only by a few pixels in its close

surroundings,

◮ therefore A is sparse.
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2. System of linear algebraic equations
Gaußian PSF / Gaußian blur

In the rest we consider Gaußian blur:

−4

−2

0

2

4

−4

−2

0

2

4

0

0.5

1

1.5

−3 −2 −1 0 1 2 3

0

0.5

1

1.5

Gaußian PSF G2D(h, w) G1D(ξ)

where (in a continuous domain)

G2D(h,w) = e−(h2+w2)
= e−h2

e−w2
, G1D(ξ) = e−ξ2

.

Gaußian blur is the simplest and in many cases sufficient model.

A big advantage is its separability G2D(h,w) = G1D(h)G1D(w).
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2. System of linear algebraic equations
Exploiting the separability

Consider the 2D convolution with Gaußian PSF in a continuous

domain. Exploiting the separability, we get

B(i , j) =

∫∫

R2

X (i − h, j − w) e−(h2+w2) dh dw

=

∫
∞

−∞

(∫
∞

−∞

X (i − h, j − w) e−h2
dh

)
e−w2

dw

=

∫
∞

−∞

Y (i , j − w)e−w2
dw ,

where Y (i , j) =

∫
∞

−∞

X (i − h, j) e−h2
dh.

The blurring in the direction h (height) is independent on the

blurring in the direction w (width).

In the discrete setting: The blurring of columns of X is

independent on the blurring of rows of X .
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2. System of linear algebraic equations
Exploiting the separability

As a direct consequence of the separability, the PSF matrix is a

rank one matrix of the form

PSFA = crT , c , r ∈ R
k .

The blurring of columns (rows) of X is realized by 1D (discrete)

convolution with c (r), the discretized G1D(ξ) = e−ξ2
.

Let AC , AR be matrices representing discete 1D Gaußian blurring

operators, where

◮ AC realizes blurring of columns of X ,

◮ AT
R realizes blurring of rows of X .

Then the problem A(X ) = B can be rewritten as a matrix

equation

AC X AT
R = B , AC ∈ R

m×m, AR ∈ R
n×n.
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2. System of linear algebraic equations
1D convolution

Consider the following example of an AC related 1D convolution:




β1

β2

β3

β4

β5

β6




=




c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1







ξ−1

ξ0

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

ξ8




,

where b = [β1, . . . , β6]
T

, x = [ξ1, . . . , ξ6]
T

,

and c = [c1, . . . , c5]
T

is the 1D (Gaußian) point-spread-function.
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2. System of linear algebraic equations
Boundary conditions

The vector [x−1, x0|x1, . . . , ξ6|ξ7, ξ8]
T

represents the true scene. In

the reconstruction we consider:

[0, 0|ξ1, . . . , ξ6|0, 0]T ∼ zero boundary condition,

[ξ5, ξ6|ξ1, . . . , ξ6|ξ1, ξ2]
T ∼ periodic boundary condition, or

[ξ2, ξ1|ξ1, . . . , ξ6|ξ6, ξ5]
T ∼ reflexive boundary condition.

In general AC = M + BC , where

M =




c3 c2 c1

c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2

c5 c4 c3




,

and BC is a correction due to the boundary conditions.
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2. System of linear algebraic equations
Boundary conditions

Zero boundary condition:

ACx=




c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1







0

0

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

0

0




=




c3 c2 c1

c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2

c5 c4 c3







ξ1

ξ2

ξ3

ξ4

ξ5

ξ6



,

i.e. here BC = 0 and AC = M is a Toeplitz matrix.
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2. System of linear algebraic equations
Boundary conditions

Periodic boundary condition:

ACx=




c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1







ξ5

ξ6

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ1

ξ2




=




c3 c2 c1 c5 c4

c4 c3 c2 c1 c5

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c1 c5 c4 c3 c2

c2 c1 c5 c4 c3







ξ1

ξ2

ξ3

ξ4

ξ5

ξ6



,

i.e. here BC =




c5 c4

c5

c1

c2 c1




and AC = M + BC is a circulant matrix.
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2. System of linear algebraic equations
Boundary conditions

Reflexive boundary condition:

ACx=




c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1







ξ2

ξ1

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ6

ξ5




=




c3+c4 c2+c5 c1

c4+c5 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2+c1

c5 c4+c1 c3+c2







ξ1

ξ2

ξ3

ξ4

ξ5

ξ6



,

i.e. here BC =




c4 c5

c5

c1

c1 c2




and AC = M + BC is a Toeplitz-plus-Hankel matrix.
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2. System of linear algebraic equations
Boundary conditions—Summary

Three types of boundary conditions:

◮ zero boundary condition,

◮ periodic boundary condition,

◮ reflexive boundary condition,

correspond to the three types of matrices AC and AR :

◮ Toeplitz matrix,

◮ circulant matrix,

◮ Toeplitz-plus-Hankel matrix,

in the linear system of the form

AC X AT
R = B .
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2. System of linear algebraic equations
2D Gaußian blurring operator—Kroneckerized product structure

Now we show how to rewrite the matrix equation AC X AT
R = B as

a system of linear algebraic equations in a usual form.

Consider AR = In. The matrix equation

AC X = B

can be rewritten as

(In ⊗ AC ) vec(X ) =




AC

. . .

AC







x1
.
.
.

xn


 =




b1
.
.
.

bn


 = vec(B),

where X = [x1, . . . , xn], B = [b1, . . . , bn],

and ⊗ denotes the Kronecker product.
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2. System of linear algebraic equations
2D Gaußian blurring operator—Kroneckerized product structure

Consider AC = Im. The matrix equation X AT
R = B can be

rewritten as

(AR ⊗ Im) vec(X ) =




aR
1,1Im · · · aR

1,nIm
.
.
.

. . .
.
.
.

aR
n,1Im · · · aR

n,nIm







x1
.
.
.

xn


 =




b1
.
.
.

bn


 = vec(B).

Consequently AC X AT
R = (AC X )AT

R gives

(AR ⊗ Im)vec(AC X ) = (AR ⊗ Im)(In ⊗ AC )vec(X ).

Using properties of Kronecker product, this system is equivalent to

Ax = (AR ⊗ AC ) vec(X ) = vec(B) = b,

where

A =




aR
1,1AC · · · aR

1,nAC

.

.

.
. . .

.

.

.

aR
n,1AC · · · aR

n,nAC


 ∈ R

mn×mn.
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2. System of linear algebraic equations
Structured matrices

We have

A = AR ⊗ AC =




aR
1,1AC · · · aR

1,nAC

.

.

.
. . .

.

.

.

aR
n,1AC · · · aR

n,nAC


 ∈ R

mn×mn,

where AC , AR are Toeplitz, circulant, or Toeplitz-plus-Hankel.

If AC is Toeplitz, then A is a matrix with Toeplitz blocks.

If AR is Toeplitz, then A is a block-Toeplitz matrix.

If AC and AR are Toeplitz (zero BC), then A is

block—Toeplitz with Toeplitz blocks (BTTB).

Analogously, for periodic BC we get BCCB matrix, for reflexie BC

we get a sum of four matrices BTTB+BTHB+BHTB+BHHB.
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3. Properties of the problem
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3. Properties of the problem
Smoothing properties

We have an inverse ill-posed problem Ax = b, a discretization of a

Fredholm integral equation of the 1st kind

y(s) =

∫
K (s, t)x(t)dt.

The matrix A is a restriction of the integral kernel K (s, t)
(the convolution kernel in image deblurring)

◮ the kernel K (s, t) has smoothing property,

◮ therefore the vector y(s) is smooth,

and these properties are inherited by the discretized problem.

Further analysis is based on the singular value decomposition

A = UΣV T , U ∈ R
N×N , Σ ∈ R

N×N , V ∈ R
N×N ,

(and N = mn in image deblurring).
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3. Properties of the problem
Singular vectors of A

Singular vectors of A represent bases with increasing frequencies:
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[Regularization Toolbox].
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3. Properties of the problem
Singular values of A

Singular values decay without a noticeable gap (SHAW(400)):
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3. Properties of the problem
The right-hand side

First recall that b is the discretized smooth y(s), therefore

b is smooth, i.e. dominated by low frequencies.

Thus b has large components in directions of several first vectors

uj , and |uT
j b| on average decay with j .

42 / 57



3. Properties of the problem
The Discrete Pickard condition

Using the dyadic form of SVD

A =

∑N

j=1
ujσjv

T
j , N is the dimension of the discretized K (s, t),

the solution of Ax = b can be rewritten as a linear combination of

right-singular vectors,

x = A−1b =

∑N

j=1

uT
j b

σj
vj .

Since x is a discretization of some real-world object x(t)

(e.g., an “true image”) the sequence of these sums converges to

x(t) with N −→ ∞.

This is possible only if |uT
j b| are on average decay faster than σj .

This property is called the (discrete) Pickard condition (DPC).
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3. Properties of the problem
The Discrete Pickard condition

The discrete Pickard condition (SHAW(400)):
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3. Properties of the problem
SVD and Image deblurring problem

Back to the image deblurring problem: We have

AC X AT
R = B ⇐⇒ (AR ⊗ AC ) vec(X ) = vec(B).

Consider SVDs of both AC and AR

AC = UC diag(sC )V T
C , AR = UR diag(sR)V T

R ,

sC = [σC
1 , . . . , σC

m]
T ∈ R

m, sR = [σR
1 , . . . , σR

n ]
T ∈ R

n.

Using the basic properties of the Kronecker product

A = AR ⊗ AC = (UR diag(sR)V T
R ) ⊗ (UC diag(sC )V T

C )

= (UR ⊗ UC )diag(sR ⊗ sC )(VR ⊗ VC )
T

= UΣV T ,

we get SVD of A (up to the ordering of singular values).
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3. Properties of the problem
SVD and Image deblurring problem

The solution of AC X AT
R = B can be written directly as

X = VC (

projections uT
j

b

︷ ︸︸ ︷
(UT

C B UR)⊘ (sC sT
R ) )︸ ︷︷ ︸

fractions (uT
j

b)/σj

V T
R ,

where K ⊘ M denotes the Hadamard product of K with the

componentwise inverse of M (using MatLab notation K./M).

Or using the dyadic expansion as

x =

∑N

j=1

uT
j vec(B)

σj
vj , X = mtx(x), N = mn,

where mtx(·) denotes an inverse mapping to vec(·).
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3. Properties of the problem
Singular images

The solution

x =

∑N

j=1

uT
j vec(B)

σj︸ ︷︷ ︸
scalar

vj , X = mtx(x), N = mn,

is a linear combination of right singular vectors vj .

It can be further rewritten as

X =

∑N

j=1

uT
j vec(B)

σj
Vj , Vj = mtx(vj) ∈ R

m×n

using singular images Vj (the reshaped right singular vectors).
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3. Properties of the problem
Singular images

Singular images Vj (Gaußian blur, zero BC, artificial colors)
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3. Properties of the problem
Note on computation of SVD

Recall that the matrices AC , AR are

◮ Toeplitz,

◮ circulant, or

◮ Toeplitz-plus-Hankel,

and often symmetric (depending on the symmetry of PSF).

Toeplitz matrix is fully determined by its first column and row,

circulant matrix by its first column (or row), and

Hankel matrix by the first column and the last row.

Eigenvalue decomposition (SVD) of such matrices can be

efficiently computed using discrete Fourier transform (DFT/FFT

algorithm), or discrete cosine transform (DCT algorithm).
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4. Impact of noise
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4. Impact of noise
Noise, Sources of noise

Consider a problem of the form

Ax = b, b = bexact
+ bnoise, ‖bexact‖ ≫ ‖bnoise‖,

where bnoise
is unknown and represents, e.g.,

◮ rounding errors,

◮ discretization error,

◮ noise with physical sources (electronic noise on PN-junctions).

We want to approximate

xexact ≡ A−1bexact,

unfortunately

‖A−1bexact‖ ≪ ‖A−1bnoise‖.
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4. Impact of noise
Violation of the discrete Pickard condition

The vector bnoise
typically resebles white noise, i.e. it has flat

frequency characteristics.

Recall that the singular vectors of A represent frequencies.

Thus the white noise components in left singular subspaces are

about the same order of magnitude.

White noise

violates the discrete Pickard condition.

Summarizing:

◮ bexact
has some real pre-image xexact

, it satifies DPC

◮ bnoise
does not have any real pre-image, it violates DPC.
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4. Impact of noise
Violation of the discrete Pickard condition

Violation of the discrete Pickard condition by noise (SHAW(400)):
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4. Impact of noise
Violation of the discrete Pickard condition

Violation the dicrete Pickard condition by noise (Image deb. pb.):
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4. Impact of noise
Violation of the discrete Pickard condition

Using b = bexact
+ bnoise

we can write the expansion

xnaive ≡ A−1b =

∑N

j=1

uT
j b

σj
vj

=

∑N

j=1

uT
j bexact

σj
vj

︸ ︷︷ ︸
xexact

+

∑N

j=1

uT
j bnoise

σj
vj

︸ ︷︷ ︸
amplified noise

.

Because σj decay and |uT
j bnoise| are all about the same size,

|uT
j bnoise|/σj grow for large j . However, |uT

j bexact|/σj decay with j

due to DPC. Thus the high-frequency noise covers all sensefull

information in xnaive
.

Therefore xnaive
is called the naive solution.

〈MatLab demo〉
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4. Impact of noise
Regularization and filtering

To avoid the catastrophical impact of noise we employ

regularization techniques.

In general the regularization can be understood as a filtering

xfiltered ≡
∑N

j=1
φj

uT
j b

σj
vj ,

where the filter factors φj are given by some

filter function φj = φ(j ,A, b, . . .).

〈Lecture II〉
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Summary

◮ We have an discrete inverse problem which is ill-posed. Our

observation is often corrupted by (white) noise and we want

to reconstruct the true pre-image of this observation.

◮ The whole concept was illustrated on the image deblurring

problem, which was closely introduced and described.

◮ It was shown how the problem can be reformulated as a

system of linear algebraic equations.

◮ We showed the typical properties of the corresponding matrix

and the right-hand side, in particular the discrete Pickard

condition.

◮ Finally, we illustrated the catastrophical impact of the noise

on the reconstruction on an example.
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Recapitulation of Lecture I
Linear system

Consider the problem

Ax = b, b = bexact
+ bnoise, A ∈ R

N×N , x , b ∈ R
N ,

where

◮ A is a discretization of a smoothing operator,

◮ singular values of A decay,

◮ singular vectors of A represent increasing frequencies,

◮ bexact
is smooth and satisfies the discrete Pickard condition,

◮ bnoise
is unknown white noise,

‖bexact‖ ≫ ‖bnoise‖, but ‖A−1bexact‖ ≪ ‖A−1bnoise‖.

We want to approximate

xexact
= A−1bexact.
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Recapitulation of Lecture I
Right-hand side

Smooth right-hand side (including noise):

right−hand side B
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Recapitulation of Lecture I
Violation of the discrete Pickard condition

Violation of the dicrete Pickard condition in the noisy b:
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Recapitulation of Lecture I
Solution

Using SVD A = UΣV T
the filtered solution is

xfiltered
=

∑N

j=1
φj

uT
j b

σj
vj , xfiltered

= V ΦΣ
−1UTb,

where Φ = diag(φ1, . . . , φN). Particularly in the image deblurring

problem

X filtered
=

∑N

j=1
φj

uT
j vec(B)

σj
Vj , where Vj are singular images.

The filter factors φj are given by some filter function

φj = φ(j ,A, b, . . .),

for φj = 1, j = 1, . . . ,N, we get the naive solution.
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Recapitulation of Lecture I
Singular images

Singular images Vj (Gaußian blur, zero BC, artificial colors):
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Recapitulation of Lecture I
Naive solution

The naive solution is dominated by high-frequency noise:

naive solution
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Outline of the tutorial

◮ Lecture I—Problem formulation:

Mathematical model of blurring, System of linear algebraic

equations, Properties of the problem, Impact of noise.

◮ Lecture II—Regularization:

Basic regularization techniques (TSVD, Tikhonov), Criteria

for choosing regularization parameters, Iterative

regularization, Hybrid methods.

◮ Lecture III—Noise revealing:

Golub-Kahan iteratie bidiagonalization and its properties,

Propagation of noise, Determination of the noise level, Noise

vector approximation, Open problems.
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Outline of Lecture II

◮ 5. Basic regularization techniques:

Truncated SVD, Selective SVD, Tikhonov regularization.

◮ 6. Choosing regularization parameters:

Discrepancy principle, Generalized cross validation, L-curve,

Normalized cumulative periodogram.

◮ 7. Iterative regularziation:

Landweber iteration, Cimmino iteration, Kaczmarz’s method,

Projection methods, Regularizing Krylov subspace iterations.

◮ 8. Hybrid methods:

Introduction, Projection methods with inner Tikhonov

regularization.
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5. Basic regularization techniques
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5. Basic regularization techniques
Truncated SVD

The simplest regularization technique is the truncated SVD

(TSVD). Noise affects xnaive
through the components

corresponding to the smalest singular values,

xnaive
=

∑k

j=1

uT
j b

σj
vj

︸ ︷︷ ︸
data dominated

+

∑N

j=k+1

uT
j b

σj
vj

︸ ︷︷ ︸
noise dominated

.

Idea: Omit the noise dominated part. Define

xTSVD(k) ≡
∑k

j=1

uT
j b

σj

vj =

∑N

j=1
φj

uT
j b

σj

vj ,

where

φj =

{
1 for j ≤ k

0 for j > k
.
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5. Basic regularization techniques
Truncated SVD

The TSVD filter function, k = 2983:
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5. Basic regularization techniques
Truncated SVD

The TSVD solution, k = 2983:

TSVD solution, k = 2983
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5. Basic regularization techniques
Truncated SVD

Advantages:

◮ Simple idea, simple implementation, simple analysis,

A is replaced by UΦ
†
ΣV T , Φ = diag(Ik , 0N−k),

i.e. the rank-k approximation of A.

Disadvantages:

◮ We have to compute the SVD of A (or the first k singular

triplets).

◮ Choice of the regularization parameter k is usualy based on

a knowledge of the norm of bnoise
which is

either revealed from the SVD analysis,

or given explictly as an additional information.

◮ The noise dominated part still contains some information

useful for reconstruction which is lost (step filter function).
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5. Basic regularization techniques
Selective SVD

Similar approach to TSVD is the selective SVD (SSVD).

Consider ‖bnoise‖ is known. Then

‖bnoise‖ =

(∑N

j=1
(uT

j bnoise
)
2

)1/2

≡ ∆
noise, |uT

j bnoise| ≈ ε ≡
∆

noise

N1/2
,

because uj represent frequencies and bnoise
represents white noise.

We define

xSSVD(ε) ≡
∑

|uT
j

b|>ε

uT
j b

σj
vj =

∑N

j=1
φj

uT
j b

σj
vj ,

where

φj =

{
1 for |uT

j b| > ε

0 for |uT
j b| ≤ ε

.
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5. Basic regularization techniques
Tikhonov approach

Classical Tikhonov approach is based on penalizing the norm of

the solution

xTikhonov(λ) ≡ arg min
x
{‖b − Ax‖ + λ‖Lx‖},

where

◮ ‖b − Ax‖ represents the residual norm,

◮ ‖Lx‖ represents (LT L)–(semi)norm of the solution,

often L = IN (we restrict to this case),

or it is a discretized 1st or 2nd order derivative operator,

◮ λ is the (positive) penalty parameter; clearly

lim
λ−→0

xTikhonov(λ)
= xnaive.
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5. Basic regularization techniques
Tikhonov approach

The Tikhonov minimization problem can be rewritten as

xTikhonov(λ)
= arg min

x
{‖b − Ax‖ + λ‖Lx‖}

= arg min
x
{‖b − Ax‖2

+ λ2‖Lx‖2}

= arg min
x

{∥∥∥∥
[

b

0

]
−

[
A

−λL

]
x

∥∥∥∥
2
}

,

i.e. to get the Tikhonov solution we solve a least squares (LS)

problem [
A

−λL

]
x =

[
b

0

]
.

In particular, we do not have to compute the SVD of A.
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5. Basic regularization techniques
Tikhonov approach

A solution of the Tikhonov LS problem

[
A

−λL

]
x =

[
b

0

]

can be analyzed through the system of normal equations

[
A

−λL

]T [
A

−λL

]
x =

[
A

−λL

]T [
b

0

]
,

(ATA + λ2LTL)x= ATb.

With the SVD of A, A = UΣV T
, and L = IN = VV T

we get

(Σ
2
+ λ2IN)y= ΣUTb,

where y = V T x and x = Vy .
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5. Basic regularization techniques
Tikhonov approach

Thus

xTikhonov(λ)
= V (Σ

2
+ λ2IN)

−1
ΣUTb,

which gives

xTikhonov(λ)
=

∑N

j=1

σj

σ2
j + λ2

(uT
j b)vj

=

∑N

j=1

σ2
j

σ2
j + λ2

uT
j b

σj

vj =

∑N

j=1
φj

uT
j b

σj

vj ,

where

φj =
σ2

j

σ2
j + λ2

≈

{
1 for σj ≫ λ
σ2

j /λ
2

for σj ≪ λ
, 0 < φj < 1.
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5. Basic regularization techniques
Tikhonov approach

The behavior of the Tikhonov filter function:
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5. Basic regularization techniques
Tikhonov approach

The Tikhonov filter function, λ = 8 × 10
−4

:
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5. Basic regularization techniques
Tikhonov approach

The Tikhonov solution, λ = 8 × 10
−4

:

Tikhonov solution, λ = 8*10−4
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5. Basic regularization techniques
Tikhonov approach

Advantages:

◮ Simple idea, with L = IN simple analysis,

A is replaced by UΦ
−1

ΣV T , Φ = (Σ
2
+ λ2IN)

−1
Σ

2.

◮ We do not have to compute SVD of A (compare with TSVD).

◮ The solution is given by some LS problem.

◮ The filter function is smooth (compare with TSVD).

Disadvantages:

◮ With L 	= IN the analysis is more complicated.

◮ We have to chose the penalty parameter λ

(at this moment it is not clear how to do it).
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5. Basic regularization techniques
Summary

We have two basic approaches:

◮ Truncated SVD (requires a part of the SVD of A)

xTSVD(k)
= V ΦΣ

−1UTb, Φ = diag(Ik , 0N−k),

where k is a truncation (regularization) parameter.

◮ Tikhonov regularization (leads to a LS problem)

xTikhonov(λ)
= V ΦΣ

−1UTb, Φ = (Σ
2
+ λ2In)

−1
Σ

2,

where λ is a penalty (regularization) parameter.

The question is:

How to choose the regularization parameters?
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5. Basic regularization techniques
Note on monotonicity (TSVD)

The norms of the TSVD solution and the residual

‖xTSVD(k)‖, ‖b − AxTSVD(k)‖

are nondecreasing and nonincreasing, respectively, with k.

Simply, using SVD,

‖xTSVD(k)‖2
=

∑k

j=1

(uT
j b)

2

σ2
j

is nondecreasing with k;

‖b − AxTSVD(k)‖2
= ‖(I − Φ)UTb‖2

=

∑N

j=k+1

(uT
j b)

2

σ2
j

is nonincreasing with k (here Φ = diag(Ik , 0N−k)).
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5. Basic regularization techniques
Note on monotonicity (Tikhonov)

Similarly the norms of the Tikhonov solution and the residual

ξ(λ) ≡ ‖xTikhonov(λ)‖2
=

∑N

j=1
φ2

j

(uT
j b)

2

σ2
j

,

ρ(λ) ≡ ‖b − AxTikhonov(λ)‖2
=

∑N

j=1
(1 − φj )

2
(uT

j b)
2

are increasing and decreasing, respectively, with λ.

Recall that 0 < φj < 1,

φj =
σ2

j

σ2
j + λ2

, thus (1 − φj ) =
λ2

σ2
j + λ2

.

Look at

ξ′(λ) =
dξ(λ)

dλ
, ρ′(λ) =

dρ(λ)

dλ
.
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5. Basic regularization techniques
Note on monotonicity (Tikhonov)

First

d

dλ
φ2

j = −
4

λ
(1 − φj)φ

2
j ,

d

dλ
(1 − φj)

2
=

4

λ
(1 − φj )

2φj .

Then

ξ′(λ) = −
4

λ

N∑

j=1

(1 − φj)φ
2
j

(uT
j b)

2

σ2
j

,

ξ′(λ) < 0 for λ > 0, i.e. ξ(λ) is decreasing with λ.

Analogously

ρ′(λ) =
4

λ

N∑

j=1

(1 − φj)
2φj(u

T
j b)

2,

ρ′(λ) > 0 for λ > 0, i.e. ρ(λ) is increasing with λ.
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6. Choosing regularization parameters
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6. Choosing regularization parameters
Spectral filtering, Error analysis

In general

xfiltered
= V ΦΣ

−1UTb

= V ΦΣ
−1UTbexact

+ V ΦΣ
−1UTbnoise

= V ΦΣ
−1UTAxexact

+ V ΦΣ
−1UTbnoise

= (V ΦV T
)xexact

+ V ΦΣ
−1UTbnoise,

where V ΦV T
is called the resolution matrix.

The absolute error is

xexact − xfiltered
= (IN − V ΦV T

)xexact

︸ ︷︷ ︸
regularization error

−V ΦΣ
−1UTbnoise

︸ ︷︷ ︸
perturbation error

,

regularization error is caused by using filtered inverse,

perturbation error consists of the inverted and filtered noise.
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6. Choosing regularization parameters
Spectral filtering, Over- and undersmoothing

There is no universal approach for chosing the regularization

parameter (k or λ), the choice is always problem dependent!

In general:

◮ If Φ ≈ IN (V ΦV T ≈ IN), the regularization error is small, but

the perturbation error (caused by noise) is large.

The solution is undersmoothed.

◮ If Φ ≈ 0N (V ΦV T
is far from the identity), inverted noise is

heavily damped, but we lose a lot of original data.

The solution is oversmoothed.

A proper choice of the regularization parameter balances

these two types of errors.
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6. Choosing regularization parameters
Spectral filtering, A proper choice of the parameter

Regularization and perturbation error for TSVD method:
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6. Choosing regularization parameters
Discrepancy principle

The discrepancy principle: Let

‖bnoise‖ = ∆
noise

be known either from the nature of the problem, or we have some

approximation of it, see 〈Lecture III〉.

We look for a regularization parameter such that

‖b − Axfiltered‖ = τ∆
noise,

for some fixed τ .

Recall that for TSVD and Tikhonov regularization the norms of

the residuals are monotonic in k and λ, respectively.

[Morozov: ’66], [Morozov: ’84].
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6. Choosing regularization parameters
Generalized cross validation (GCV)

Using xfiltered
= V ΦΣ

−1UTb the residual satisfies

b − Axfiltered
=

(
IN − AV ΦΣ

−1UT
)

b =

(
IN − UΦUT

)
b.

Defining the generalized cross validation (GCV) functional

Gfiltered
(·) ≡

‖b − Axfiltered‖2

trace(IN − AV ΦΣ−1UT )2
=

‖(IN − Φ)UTb‖2

(N −
∑N

j=1 φj)
2

,

we look for its minimum.

(Note: The GCV functional depends on ordering of equations.)

[Chung, Nagy, O’Leary: ’04], [Golub, Von Matt: ’97], [Nguyen, Milanfar,

Golub: ’01].
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6. Choosing regularization parameters
Generalized cross validation (GCV)

In particular for the TSVD and Tikhonov method we have

GTSVD
(k) =

∑N
j=k+1(u

T
j b)

2

(N − k)2
,

GTikhonov
(λ) =

∑N
j=1

(
uT

j b

σ2
j
+λ2

)2

(∑N
j=1

1
σ2

j
+λ2

)2
.
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6. Choosing regularization parameters
Generalized cross validation (GCV)

The GCV functional for TSVD (left) and Tikhonov (right)

methods:

Note: The GCV functional is often flat close to the minimum.
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6. Choosing regularization parameters
L-curve

Both norms

‖xfiltered‖, ‖b − Axfiltered‖

are monotonic with respect to the regularization parameter k, λ in

TSVD and Tikhonov regularization, respectively.

We plot the norm of the regularized solution agains the norm of

the residual. For emphasizing the point where both norms are

ballanced, we use the log-log scale.

Criterion based on this approach is called the L-curve. The

L-curve-optimal parameter then corresponds to the point with

maximal curvature.

Note that for TSDV we have only discrete set of points (parameter

k is discrete). The curvature is defined using an interpolation.

[Calvetti, Golub, Reichel: ’99], [Calvetti, Morigi, Reichel, Sgallari: ’00],

[Calvetti, Reichel: ’04].
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6. Choosing regularization parameters
L-curve

Ideal L-curve for Tikhonov method (often the corner is not sharp).

Here λ grows from the upper left to the bottom right corner along

the curve:
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6. Choosing regularization parameters
Normalized cumulative periodogram (NCP)

The last criterion is based on the assumption that the residual

corresponding to the true solution

bnoise
= b − Axexact

represents white noise. We try to choose a regularization

parameter such that the residual

rfiltered
= b − Axfiltered

resembles white noise. See also 〈Lecture III〉.

The normalized cumulative periodogram (NCP) uses the

statistical properties of Fourier spectrum of white noise.

[Rust: ’98], [Rust: ’00], [Rust, O’Leary: ’08] (FFT-based),

[Hansen, Kilmer, Kjeldsen: ’06] (DCT-based).
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6. Choosing regularization parameters
Normalized cumulative periodogram (NCP)

The NCP transforms the residual rfiltered ∈ R
N

using the discrete

Fourier transform (DFT/FFT algorithm) to get its spectrum

pfiltered
= F(rfiltered

) = (p1, p2, . . . , pν+1)
T , ν = ⌊N/2⌋.

The periodogram is a vector Cfiltered
with coefficients

cj =
|p2| + . . . |pj+1|

|p2| + . . . |pν+1|
, j = 1, . . . , ν.

If the residual consists only of white noise, then by the definiton of

white noise the mean values satisfy

E [|p2|] = E [|p3|] = . . . = E [|pν |],

and by linearity of E [ · ], points (j ,E [cj ]) would be on a straight

line from (0, 0) to (ν, 1).
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6. Choosing regularization parameters
Normalized cumulative periodogram (NCP)

Thus we look for the regularization parameter (k or λ) such that

the coefficients of the periodogram cfiltered
lie (moreorless) on a

straight line,

mink or λ ‖C
filtered − Cwhite noise‖2, Cwhite noise

=
1

ν
(1, 2, . . . , ν)

T .

Note that the periodogram is normalized, i.e. cν = 1.

40 / 59

6. Choosing regularization parameters
Normalized cumulative periodogram (NCP)

NCP for Tikhonov regularization:

[Hansen: SIAM, FA07, 2010].
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6. Choosing regularization parameters
Further notes

Discrepancy principle: Converges as noise tends to zero, requires

an explicite information about the norm of noise component of b,

the solution tends to be oversmooth.

Generalized cross validation (GCV): No convergence when noise

tends to zero, functional is flat close to the minimum, various

adaptations for structured matrices (BCCB, etc.).

L-curve: No convergence when noise tends to zero, various

adaptations (L-ribbon, etc.), well numericaly tracktable (it is

sufficient to compute only a few points of the L-curve), troubles

when using with TSVD because k is a discrete parameter.

Usually we need to solve one system with several values of

the regularization parameter to choose the optimal one.

See also [Björk: ’88], [Björk, Grimme, Van Dooren: ’94].

For comparison see [Hansen: 98], [Kilmer, O’Leary: ’01].
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7. Iterative regularization
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7. Iterative regularization
Introduction

Up to now we have considered direct regularization methods

suitable for small problems (SVD-based methods, Tikhonov

regularization leading to a LS problem which can be solved directly

only in small dimensions).

For solving large ill-posed problems, it is advatagous to use

iterative regularization methods. We briefly introduce several of

them:

◮ stationary iterative methods (Landweber iteration, Cimmino

iteration, Kaczmarz’s method (ART)),

◮ projection methods (regularizing Krylov subspace iterations).

In all iterative methods the number of iterations plays the role of

the regularization parameter.
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7. Iterative regularization
Stationary iterative methods, Landweber iteration

Simultaneous iterative reconstruction techniques (SIRT)

is a class of stationary iterative methods with a general scheme

x [ℓ]
:= x [ℓ−1]

+ ωATM(b − Ax [ℓ−1]
), ℓ = 1, 2, . . . , k,

where M is a symmetric positive definite (SPD) matrix and ω is a

relaxation parameter.

For example often used methods are:

◮ the Landweber iteration with M = IN , and

◮ the Cimminio iteration with M = D = diag(d1, . . . , dN),

dj =
1

N

1

‖aj‖
2

,

where aj is the (transposed) jth row of A (column vector).
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7. Iterative regularization
Stationary iterative methods, Landweber iteration

The Landweber method

x [ℓ]
:= x [ℓ−1]

+ ωAT
(b − Ax [ℓ−1]

), ℓ = 1, 2, . . . , k,

with 0 < ω < 2σ−2
1 (A) = 2‖AT A‖−1

gives the approximation

x [k]
= V Φ

[k]
Σ
−1UTb, Φ

[k]
= IN − (IN − ωΣ

2
)
k ,

i.e. φ
[k]
j = 1 − (1 − ωσ2

j )
k
.

Using the Taylor expansion for small σj ’s we get φ
[k]
j ≈ kωσ2

j .

Thus the Landweber filters decay with the same rate as the

Tikhonov filters (φj ≈ σ2
j λ

−2
).
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7. Iterative regularization
Stationary iterative methods, Kaczmarz’s method (ART)

Kaczmarz’s method or algebraic reconstruction technique

(ART) is an iterative algorithm given by the following scheme

x [ℓ−1,0]
:= x [ℓ−1],

for j = 1, . . . ,N

x [ℓ−1,j ]
:= x [ℓ−1,j−1]

+ ω aj

1

‖aj‖
2

(bj − aT
j x [ℓ−1,j−1]

),

end

x [ℓ]
:= x [ℓ−1,N], ℓ = 1, 2, . . . , k.

The ART method converges quite quickly in the first few

iterations, after this the convergence may become very slow.
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7. Iterative regularization
Stationary iterative methods, Kaczmarz’s method (ART)

Comparison of relative error decay for Landweber and Kaczmarz’s

(ART) method:

[Hansen: SIAM, FA07, 2010].

48 / 59



7. Iterative regularization
Projection methods

In direct techniques we have looked for an approximation of xexact

which lies in a low dimensional subspace of R
N

spanned by the

first k right singular vectors of A (TSVD); or which is dominated

by several first right singular vectors of A (Tikhonov).

Thus the approximation is always dominated by the low

frequencies and the high frequecies are dumped.

We try to look for an approximation in an a-priori given low

dimensional subspace Wk dominated by low frequencies.
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7. Iterative regularization
Projection methods

Consider a subspace

Wk = span(w1, . . . ,wk) ⊂ R
N , Wk = [w1, . . . ,wk ] ∈ R

N×k ,

such that W T
k Wk = Ik and wj are dominated by low frequecies.

Then we solve

minx∈Wk
‖b − Ax‖.

This can be reformulated as a projected problem

miny∈Rk ‖b − (AWk)y‖,

or, equivalently,

W T
k (AT A)Wky = W T

k ATb.

The question is, how to choose the basis wj?
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7. Iterative regularization
Projection methods, DCT basis

An example of a suitable basis is the DCT basis

w1 =

√
1
N

(1, 1, . . . , 1)T ,

wj =

√
2
N

(
cos

(
(j−1)π

2N

)
, cos

(
3(j−1)π

2N

)
, . . . cos

(
(2N−1)(j−1)π

2N

))T

,

for j > 1.
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7. Iterative regularization
Projection methods, DCT basis

Solutions computed using the DCT basis w1, . . . ,wk , k = 1, . . . , 10
(k = 9 seems to be the optimal one):

Note: If there are a-priori known certain properties of the true

solution (symmetry, periodicity, etc.), use this knowledge to choose

basis vectors satisfying these properties.
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7. Iterative regularization
Projection methods, Further notes

Note that choosing wj = vj (the right singular vectors of A), we get

exactly the TSVD mehtod. Thus TSVD is an projection method.

Advantage: With fixed set of basis vectors, computations can be

performed quickly. Using e.g. DCT basis we do not have to

compute and store the basis vectors (we compute only the DCT

and the inverse DCT (IDCT) of a vector).

Disadvantage: The basis vectors are not adapted to the particular

problem.

To avoid this disadvatage we introduce the regularizing Krylov

subspace iteration.
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7. Iterative regularization
Regularizing Krylov subspace iteration

Specific projection methods are the Krylov subspace methods.

Here the orthonormal basis of a Krylov subspace

Kk(v ,M) = span(v ,Mv , . . . ,Mk−1v),

is used for wj , j = 1, . . . , k, vectors. For example the choice

v = ATb, M = ATA,

leads to very popular iterative (regularization) methods CGLS,

LSQR or CGNE, which are mathematically equivalent to applying

CG method on the normal equations ATAx = ATb.

The regularizing properties of the Krylov subspace methods will be

dicussed in 〈Lecture III〉 in more details, in particular in the context

of hybrid methods.

54 / 59



7. Iterative regularization
Further remarks

In the iterative regularization (using stationary or projection

methods), the number of computed iterations k plays the role of

the regularization parameter.

As a stopping criterion for the iterative process any of the

previously mentioned approaches can be used, e.g.:

◮ the discrepancy principle,

◮ the generalized cross validation (GCV),

◮ the L-curve criterion,

◮ the normalized cumulative periodograms (NCP).
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8. Hybrid methods

The best of both worlds
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8. Hybrid methods
Introduction

Hybrid methods combine both previous approaches. Here the

regularization is realized in two steps.

First, the original problem is projeted onto a lower dimensional

subspace using an iterative (projection) method, which by itself

represents a form of regularization by projection, i.e. outer

regularization.

The small projected problem, however, may inherit a part of the

ill-posedness of the original problem and therefore some form of

inner regularization is applied.

Stopping criteria for the whole process are then based on the

regularization of the projected (small) problems.

[O’Leary, Simmons: ’81], [Hansen: ’98] or [Fiero, Golub, Hansen,

O’Leary: ’97], [Kilmer, O’Leary: ’01], [Kilmer, Español: ’06], [O’Leary,

Simmnos: ’81].

57 / 59

8. Hybrid methods
Projection methods with inner Tikhonov regularization

As an example we introduce the Projection method with inner

Tikhonov regularization. Consider the ill-posed problem Ax = b

and a subspace Wk = span(w1, . . . ,wk). Denote

Mk = W T
k (ATA)Wk ∈ R

k×k , where Wk = [w1, . . . ,wk ].

The system of normal equations ATAx = ATb is projected on Wk ,

Mky = W T
k b, x = Wky .

The inner Tikhonov regularization can be applied on this small

problem

yTikhonov(λ)
= arg min

y
{‖W T

k b − Mky‖ + λ‖y‖}.

This leads to a small LS problem that can be easily solved directly

for many values of λ.
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Summary

We have described the following regularization methods:

◮ the direct regularization techniques (TSVD, Tikhonov

regularization) suitable for solving small ill-posed problems;

◮ stationary regularization methods (Landweber and Cimmino

iterations, Kaczmarz’s (ART) method);

◮ projection regularization methods including regularizing

Krylov subspace iterations;

◮ hybrid methods combining the previous techniques.

All regularization techniques require to choose a good

regularization parameter, that can be find using, e.g., the

discrepancy principle, the generalized cross validation, the L-curve

criterion, or the normalized cumulative periodograms.
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Recapitulation of Lecture I and II
Linear system

Consider an ill-posed (square nonsingular) problem

Ax = b, b = bexact + bnoise, A ∈ R
N×N , x , b ∈ R

N ,

where

◮ A is a discretization of a smoothing operator,

◮ singular values of A decay,

◮ singular vectors of A represent increasing frequencies,

◮ bexact is smooth and satisfies the discrete Pickard condition,

◮ bnoise is unknown white noise,

‖bexact‖ ≫ ‖bnoise‖, but ‖A−1bexact‖ ≪ ‖A−1bnoise‖.
We want to approximate

xexact = A−1bexact.
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Recapitulation of Lecture I and II
Linear system

Discrete Picard condition (DPC):

On average, the components |(bexact, uj )| of the true right-hand
side bexact in the left singular subspaces of A decay faster
than the singular values σj of A, j = 1, . . . ,N .

White noise:

The components |(bnoise, uj )|, j = 1, . . . ,N do not exhibit any
trend.

Denote

δnoise ≡ ‖ bnoise ‖
‖ bexact ‖

the (usually unknown) noise level in the data.
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Recapitulation of Lecture I and II
Linear system

Singular values and DPC (SHAW(400)):
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Recapitulation of Lecture I and II
Linear system

Violation of DPC for different noise levels (SHAW(400)):
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Recapitulation of Lecture I and II
Naive solution

The components of the naive solution

xnaive ≡ A−1b =
∑N

j=1

uT
j bexact

σj
vj

︸ ︷︷ ︸
xexact

+
∑N

j=1

uT
j bnoise

σj
vj

︸ ︷︷ ︸
amplified noise

corresponding to small σj ’s are dominated by amplified noise.

Regularization is used to suppress the effect of errors and extract
the essential information about the solution.
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Recapitulation of Lecture I and II
Regularization methods

Direct regularization (TSVD, Tikhonov regularization): Suitable
for solving small ill-posed problems.

Projection regularization: Suitable for solving large ill-posed
problems. Regularization is often based on regularizing Krylov
subspace iterations.

Hybrid methods: Here the outer iterative regularization is
combined with an inner direct regularization of the projected
small problem (i.e. of the reduced model).

The algorithm is stopped when the regularized solution of the
reduced model matches some selected stopping criteria based,
e.g., on the discrepancy principle, the generalized cross validation,
the L-curve criterion, or the normalized cumulative periodograms.
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Outline of the tutorial

◮ Lecture I—Problem formulation:

Mathematical model of blurring, System of linear algebraic
equations, Properties of the problem, Impact of noise.

◮ Lecture II—Regularization:

Basic regularization techniques (TSVD, Tikhonov), Criteria
for choosing regularization parameters, Iterative
regularization, Hybrid methods.

◮ Lecture III—Noise revealing:

Golub-Kahan iterative bidiagonalization and its properties,
Propagation of noise, Determination of the noise level, Noise
vector approximation, Open problems.
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Outline of Lecture III

◮ 9. Golub-Kahan iterative bidiagonalization and its
properties:

Basic algorithm, LSQR method, Connection with the Lanczos
tridiagonalization, Approximation of the Riemann-Stieltjes
distribution function.

◮ 10. Propagation of noise:

Motivation, Spectral properties of bidiagonalization vectors,
Noise amplification.

◮ 11. Determination of the noise level:

Estimate based on distribution functions, Identification of the
noise revealing iteration.

◮ 12. Noise vector approximation:

Basic formula, Noise subtraction, Numerical illustration
(SHAW and ELEPHANT image deblurring problem).

◮ 13. Open problems.

9 / 51

9. Golub-Kahan iterative bidiagonalization and its
properties
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9. Golub-Kahan iterative bidiagonalization and its

properties
Basic algorithm

Golub-Kahan iterative bidiagonalization (GK) of A :

given w0 = 0 , s1 = b / β1 , where β1 = ‖b‖ , for
j = 1, 2, . . .

αj wj = AT sj − βj wj−1 , ‖wj‖ = 1 ,

βj+1 sj+1 = A wj − αj sj , ‖sj+1‖ = 1 .

Then w1, . . . ,wk is an orthonormal basis of Kk(ATA,ATb), and
s1, . . . , sk is an orthonormal basis of Kk(AAT , b).

[Golub, Kahan: ’65].
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9. Golub-Kahan iterative bidiagonalization and its

properties
Basic algorithm

Let Sk = [s1, . . . , sk ], Wk = [w1, . . . ,wk ] be the associated
matrices with orthonormal columns. Denote

Lk =




α1

β2 α2

. . .
. . .

βk αk


 , Lk+ =

[
Lk

eT
k βk+1

]

the bidiagonal matrices containing the normalization coefficients.

Then GK can be written in the matrix form as

AT Sk = Wk LT
k ,

A Wk = [ Sk , sk+1 ] Lk+ = Sk+1 Lk+ .
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9. Golub-Kahan iterative bidiagonalization and its

properties
LSQR method

Regularization based on GK belong among popular approaches for
solving large ill-posed problems. First the problem is projected
onto a Krylov subspace using k steps of bidiagonalization
(regularization by projection),

A x ≈ b −→ Lk+ y ≈ β1 e1 .

Then, e.g., the LSQR method minimizes the residual,

min
x∈Kk(AT A,ATb)

‖Ax − b‖ = min
y∈Rk

‖Lk+y − β1e1‖ ,

i.e. the approximation has the form xk = Wkyk , where yk is a least
squares solution of the projected problem, [Paige, Saunders: ’82].
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9. Golub-Kahan iterative bidiagonalization and its

properties
LSQR method

In hybrid methods, some form of inner regularization (TSVD,
Tikhonov regularization) is applied to the (small) projected
problem. The method then, however, requires:

◮ stopping criteria for GK,

◮ parameter choice method for the inner regularization.

This usually requires solving the problem for many values of the
regularization parameter and many iterations.
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9. Golub-Kahan iterative bidiagonalization and its

properties
Connection with the Lanczos tridiagonalization

GK is closely related to the Lanczos tridiagonalization
[Lanczos: ’50] of the symmetric matrix A AT with the starting
vector s1 = b / β1,

A AT Sk = Sk Tk + αk βk+1 sk+1 eT
k ,

where

Tk = Lk LT
k =




α2
1 α1 β1

α1 β1 α2
2 + β2

2
. . .

. . .
. . . αk−1 βk

αk−1 βk α2
k + β2

k




.
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9. Golub-Kahan iterative bidiagonalization and its

properties
Connection with the Lanczos tridiagonalization

Consequently, the matrix Lk from GK represents a Cholesky
factor of the symmetric tridiagonal matrix Tk from the Lanczos
process, [Hnětynková, Strakoš: ’07] and the references given there.
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9. Golub-Kahan iterative bidiagonalization and its

properties
Approximation of the Riemann-Stieltjes distribution function

Consider the Riemann-Stieltjes distribution function ω(λ)
with the N points of increase associated with the given (SPD)
matrix B ∈ R

N×N and the normalized initial vector s.

The Lanczos tridiagonalization of B with the starting vector s

generates at each step k a non-decreasing piecewise constant
distribution function ω(k) , with the nodes being the (distinct)

eigenvalues of the Lanczos matrix Tk and the weights ω
(k)
j

being the squared first entries of the corresponding normalized
eigenvectors, [Hestenes, Stiefel: ’52].
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9. Golub-Kahan iterative bidiagonalization and its

properties
Approximation of the Riemann-Stieltjes distribution function

The distribution functions ω(k)(λ) , k = 1, 2, . . . represent
Gauss-Christoffel quadrature (i.e. minimal partial realization)
approximations of the distribution function ω(λ) , [Hestenes,

Stiefel: ’52], [Fischer: ’96], [Meurant, Strakoš: ’06].
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9. Golub-Kahan iterative bidiagonalization and its

properties
Approximation of the Riemann-Stieltjes distribution function

Consider the SVD
Lk = Pk Θk Qk

T ,

Pk = [p
(k)
1 , . . . , p

(k)
k ] , Qk = [q

(k)
1 , . . . , q

(k)
k ] ,

Θk = diag (θ
(k)
1 , . . . , θ

(k)
n ) ,

with the singular values ordered in the increasing order,

0 < θ
(k)
1 < . . . < θ

(k)
k .

Then Tk = Lk LT
k = Pk Θ2

k PT
k is the spectral decomposition of

Tk ,

(θ
(k)
ℓ )2 are its eigenvalues (the Ritz values of AAT ) and

p
(k)
ℓ its eigenvectors (which determine the Ritz vectors of AAT ),

ℓ = 1, . . . , k .
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9. Golub-Kahan iterative bidiagonalization and its

properties
Approximation of the Riemann-Stieltjes distribution function

Consequently, the GK bidiagonalization generates at each step k

the distribution function

ω(k)(λ) with nodes (θ
(k)
ℓ )2 and weights ω

(k)
ℓ = |(p(k)

ℓ , e1)|2

that approximates the distribution function

ω(λ) with nodes σ2
j and weights ωj = |(b/β1, uj)|2 ,

where σ2
j , uj are the eigenpairs of A AT , for j = N, . . . , 1 ,

[Hestenes, Stiefel: ’52], [Fischer: ’96], [Meurant, Strakoš: ’06].

Note that unlike the Ritz values (θ
(k)
ℓ )2, the squared singular

values σ2
j are enumerated in descending order.
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9. Golub-Kahan iterative bidiagonalization and its

properties
Approximation of the Riemann-Stieltjes distribution function

Discrete ill-posed problem, the smallest node and weight in
approximation of ω(λ):
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10. Propagation of noise
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10. Propagation of noise
Motivation

If the noise level δnoise in the data is known, many different
approaches can be used for the stopping criterion in GK [Kilmer,

O’Leary: ’01], e.g., the discrepancy principle [Morozov: ’66],

[Morozov: ’84], [Hansen: ’98].

However, in most applications such apriory information is not
available.

GK starts with the normalized noisy right-hand side
s1 = b / ‖b‖. Consequently, vectors sj contain information about
the noise.

Can this information be used to determine the (unknown)
noise level?
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10. Propagation of noise
Spectral properties of bidiagonalization vectors

Consider the problem SHAW(400) from [Regularization Toolbox]
with a noisy right-hand side (the noise was artificially added using
the MatLab function randn). As an example we set

δnoise ≡ ‖ bnoise ‖
‖ bexact ‖ = 10−14 .
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10. Propagation of noise
Spectral properties of bidiagonalization vectors

Components of several bidiagonalization vectors sj computed via
GK with double reorthogonalization:
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10. Propagation of noise
Spectral properties of bidiagonalization vectors

The first 80 spectral coefficients of the vectors sj in the basis of
the left singular vectors uj of A:
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10. Propagation of noise
Spectral properties of bidiagonalization vectors

Using the three-term recurrences,

β2α1 s2 = α1(Aw1 − α1s1) = AAT s1 − α2
1s1,

where AAT has smoothing property. The vector s2 is a linear
combination of s1 contaminated by the noise and A AT s1 which is
smooth. Therefore the contamination of s1 by the high frequency
part of the noise is transferred to s2, while a portion of the smooth
part of s1 is subtracted by orthogonalization of s2 against s1. The
relative level of the high frequency part of noise in s2 must
be higher than in s1.
In subsequent vectors s3, s4, . . . the relative level of the high
frequency part of noise gradually increases, until the low frequency
information is projected out.
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10. Propagation of noise
Spectral properties of bidiagonalization vectors

Signal space – noise space diagrams:

s
1
 −> s

2
s

5
 −> s

6
s

6
 −> s

7
s

10
 −> s

11
s

13
 −> s

14
s

15
 −> s

16

s
16

 −> s
17

s
17

 −> s
18

s
18

 −> s
19

s
19

 −> s
20

s
20

 −> s
21

s
21

 −> s
22

sk (triangle) and sk+1 (circle) in the signal space
span{u1, . . . , uk+1} (horizontal axis) and the noise space
span{uk+2, . . . , un} (vertical axis).
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10. Propagation of noise
Noise amplification

Noise is amplified with the ratio αk/βk+1:

GK for the spectral components:

α1 (V Tw1) = Σ (UT s1) ,

β2 (UT s2) = Σ (V Tw1) − α1 (UT s1) ,

and for k = 2, 3, . . .

αk(V Twk) = Σ (UT sk) − βk(V Twk−1) ,

βk+1(U
T sk+1) = Σ (V Twk) − αk(UT sk) .

See [Hnětynková, Plešinger, Strakoš: ’10] for a detailed derivation.
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10. Propagation of noise
Noise amplification

Since dominance in Σ(UT sk) and (V Twk−1) is shifted by one
component, in αk (V Twk) = Σ (UT sk) − βk (V Twk−1) , one
can not expect a significant cancellation, and therefore

αk ≈ βk .

Whereas Σ (V Twk) and (UT sk) do exhibit dominance in the
direction of the same components. If this dominance is strong
enough, then the required orthogonality of sk+1 and sk in
βk+1 (UT sk+1) = Σ (V Twk) − αk (UT sk) can not be achieved
without a significant cancellation, and one can expect

βk+1 ≪ αk .
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10. Propagation of noise
Noise amplification

Absolute values of the first 25 components of Σ(V Twk),
αk(UT sk), and βk+1(U

T sk+1) for k = 7 (left) and for k = 12
(right), SHAW(400) with the noise level δnoise = 10−14:
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11. Determination of the noise level
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11. Determination of the noise level
Estimate based on distribution functions

Back to the distribution function:

The large nodes σ2
1, σ2

2, . . . of ω(λ) are well-separated
(relatively to the small ones) and their weights on average decrease
faster than σ2

1 , σ2
2 due to the DPC. Therefore the large nodes

essentially control the behavior of the early stages of the
Lanczos process.
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11. Determination of the noise level
Estimate based on distribution functions

Depending on the noise level, the weights corresponding to smaller
nodes are completely dominated by noise, i.e., there exists an
index Jnoise such that

|(b/β1, uj)|2 ≈ |(bnoise/β1, uj)|2 , for j ≥ Jnoise .

The weight of the set of the associated nodes is given by

δ2 ≡
n∑

j=Jnoise

|(bnoise/β1, uj )|2 ≈ δ2
noise .
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11. Determination of the noise level
Estimate based on distribution functions

At any iteration step, the weight of ω(k)(λ) corresponding to the

smallest node (θ
(k)
1 )2 must be larger than the sum of weights

of all σ2
j smaller than this (θ

(k)
1 )2 , see [Fischer, Freund: ’94].

As k increases, some (θ
(k)
1 )2 eventually approaches (or becomes

smaller than) the node σ2
Jnoise

, and its weight becomes

|(p(k)
1 , e1)|2 ≈ δ2 ≈ δ2

noise .
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11. Determination of the noise level
Estimate based on distribution functions

Summarizing:

The weight |(p(k)
1 , e1)|2 corresponding to the smallest Ritz value

(θ
(k)
1 )2 is strictly decreasing. At some iteration step it sharply

starts to (almost) stagnate close to the squared noise level
δ2
noise

, see [Hnětynková, Plešinger, Strakoš: ’10].

The last iteration before this happens is called the noise
revealing iteration knoise.
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11. Determination of the noise level
Estimate based on distribution functions

Square roots of the weights |(p(k)
1 , e1)|2, k = 1, 2, . . . (left), and

the smallest node and weight in approximation of ω(λ) (right),
SHAW(400) with the noise level δnoise = 10−14:
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11. Determination of the noise level
Estimate based on distribution functions

Square roots of the weights |(p(k)
1 , e1)|2, k = 1, 2, . . . (left), and

the smallest node and weight in approximation of ω(λ) (right),
SHAW(400) with the noise level δnoise = 10−4:
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11. Determination of the noise level
Identification of the noise revealing iteration

In order to estimate δnoise, the iteration knoise must be identified.
This can be done by an automated procedure that does not rely
on human interaction.

For example, in our experiments knoise was determined as the first
iteration for which

|(p(k+1)
1 , e1)|

|(p(k+1+step)
1 , e1)|

<

(
|(p(k)

1 , e1)|
|(p(k+1)

1 , e1)|

)ζ

,

where ζ was set to 0.5 and step was set to 3.
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11. Determination of the noise level
Identification of the noise revealing iteration

Noise level δnoise in the data, iteration knoise, and the estimated
noise level |(p(knoise+1)

1 , e1)|, for two problems from [Regularization
Toolbox]. The estimates represent average values computed using
1000 randomly chosen vectors bnoise:

SHAW(400)

δnoise 1 × 10−14 1 × 10−6 1 × 10−4 1 × 10−2

knoise 16 9 7 4
estimate 1.80 × 10−14 1.31 × 10−6 1.01 × 10−4 1.03 × 10−2

ILAPLACE(100,1)

δnoise 1 × 10−13 1 × 10−7 1 × 10−2 1 × 10−1

knoise 22 15.30 6.02 2
estimate 9.12 × 10−14 1.34 × 10−7 1.02 × 10−2 1.11 × 10−1
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12. Noise vector approximation
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12. Noise vector approximation
Basic formula

In the noise revealing iteration

δnoise ≈ |(p(knoise+1)
1 , e1)|,

and the bidiagonalization vector sknoise
is fully dominated by the

high frequency noise. Thus

bnoise ≈ ‖bnoise‖ sknoise
≈ β1 |(p(knoise+1)

1 , e1)| sknoise
,

represents an approximation of the unknown noise.

We can subtract the reconstructed noise from the noisy
observation vector b. Hopefully, the noise level in the corrected
system will be lower than in the original one.

What happens if we repeat this process several times?
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12. Noise vector approximation
Noise subtraction

Algorithm: Given A, b; b(0) := b;
for j = 1, . . . , t
• GK bidiagonalization of A with the starting vector b(j−1);
• identification of the noise revealing iteration knoise;

• δ(j−1) := |(p(knoise)
1 , e1)|;

• bnoise,(j−1) := β1 δ(j−1) sknoise
; // noise approximation

• b(j) := b(j−1) − bnoise,(j−1); // correction

end;
The accumulated noise approximation is

b̂noise ≡
t−1∑

j=0

bnoise,(j) .
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12. Noise vector approximation
Numerical illustration - SHAW problem

Singular values of A, and spectral coeffs. of the original and
corrected observation vector b(j), j = 1, . . . , 5, SHAW(400) with
the noise level δnoise = 10−4 (knoise = 10 is fixed):
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12. Noise vector approximation
Numerical illustration - SHAW problem

Individual components (top) and Fourier coeffs. (bottom) of
b̂noise, SHAW(400) with the noise level δnoise = 10−4:
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12. Noise vector approximation
Numerical illustration - ELEPHANT image deblurring problem

Elephant image deblurring problem: image size 324 × 470 pixels,
problem dimension N = 152280, the exact solution (left) and the
noisy right-hand side (right), δnoise = 3 × 10−3:

xexact bexact + bnoise
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12. Noise vector approximation
Numerical illustration - ELEPHANT image deblurring problem

Square roots of the weights |(p(k)
1 , e1)|2, k = 1, 2, . . . (top) and

error history of LSQR solutions (bottom):
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12. Noise vector approximation
Numerical illustration - ELEPHANT image deblurring problem

The best LSQR reconstruction (left), x
LSQR

41 , and the
corresponding componentwise error (right). GK without any
reorthogonalization:

LSQR reconstruction with minimal error, xLSQR
41

Error of the best LSQR reconstruction, |xexact − xLSQR
41
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12. Noise vector approximation
Numerical illustration - ELEPHANT image deblurring problem

Singular values of A, and spectral coeffs. of the original and
corrected observation vector b(j), j = 1, . . . , 3, Elephant image
deblurring problem with δnoise = 3 × 10−3 (knoise corresponds to
the best LSQR approximation of x):
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13. Open problems

Message:

Using GK, information about the noise can be obtained in a
straightforward and cheap way.

Open problems:

◮ Large scale problems (determining knoise);

◮ Behavior in finite precision arithmetic
(GK without reorthogonalization);

◮ Regularization;

◮ Denoising;

◮ Colored noise.
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Thank you for your kind attention!
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Základy algebraikého multigridu zaloºenéhona zhlazenýh agregaíhP. Van¥kZápado£eská univerzita v PlzniCílem p°edná²ky je poskytnout posluha£i základní informae o metod¥ zhlazenýh agregaí.P°edná²ka obsahuje detailní popis algoritmu v jeho podob¥ vhodné pro °e²ení neskalárníheliptikýh problém· jako jsou problémy pruºnosti a tenké pruºnosti (desky a sko°epiny). Výkladje drºen v elementárníh mezíh. V záv¥ru p°edná²ky bude prezentován klí£ový konvergen£nívýsledek o víeúrov¬ové metod¥ zhlazenýh agregaí (bez d·kazu).



Metoda zhlazených agregací

Tato přednáška se opírá o tyto výsledky:

[1] P. Vaněk, M. Brezina, J. Mandel Convergence of
Algebraic Multigrid Based on Smoothed AggregationsNumer.
Math. 88(2001), no. 3 pp. 559–579
[2] P. Vaněk, J. Mandel, M. Brezina Algebraic Mul-
tigrid by Smoothed Aggregation for Second and Fourth Order
Elliptic Problems Computing 56(1996) pp. 179–196

• Metoda pro řešení soustav lineárních algebraických
rovnic pro řešení okrajových úloh pro eliptické parciální
diferenciální rovnice
• zhrubovací technika v algebraickém multigridu
• umožňuje řešení problémů na vysoce
nestrukturovaných sítích
• vhodná pro neskalární problémy (elasticita, tenká elas-
ticita)

1

Co je multigrid ?

• Řešíme soustavu

Ax = f

se symetrickou positivně definitní maticí vzniklou
diskretizací okrajové úlohy pro parciální diferenciální
rovnici
• Metoda více sítí se odehrává ve dvou základních
krocích:
– přípravná fáze
– iterace

• V přípravné fázi se vytváří systém prolongátorů I ll+1 a
hierarchie hrubých matic Al,

• l := 1 a A1 := A,
• opakuj
– zkonstruuj I ll+1 : IR

nl+1 → IRnl, nl+1 < nl,
– vypočti

Al+1 = (I ll+1)
TAlI

l
l+1,(0.1)

– l ← l + 1
• dokud Al není dostatečně malá, aby umožňovala efek-
tivní finitní řešení,
• L := l.

2

iterace: jsou dány:

• produkty přípravné fáze
– prolongátory I ll+1, l = 1, . . . , L− 1
– hierarchie matic Al, l = 1, . . . , L, A1 = A

• hladící iterační procedura

xl ← Sl(xl, fl), xl, fl ∈ IRnl

• iterační parametry
– ν1: počet pre–smoothing hladicích kroků
– ν2: počet post–smoothing hladicích kroků
– γ: parametr cyklu, γ = 1 nebo γ = 2

Algoritmus 1. x1 := x, f1 := f a MG(·, ·) := MG1(·, ·),
kde MGl(·, ·) je definováno takto:
• pro i = 1, . . . , ν1 proveď xl ← Sl(xl, fl),
• dl = Alxl − fl,
• dl+1 = (I ll+1)

Tdl,
• Je-li l + 1 = L, řeš soustavu Al+1v = dl+1, v ∈ IRnl+1,
finitně, jinak
– polož v = 0,
– pro i = 1, . . . , γ proveď v←MGl+1(v,dl+1)

• xl ← xl − I ll+1v,
• pro i = 1, . . . , ν2 proveď xl ← Sl(xl, fl).

3

Základní informace o konvegenční teorii metody
více sítí [BPWX]:

Nejprve definujeme

I1l = I12 . . . I
l−1
l , I11 = I.

Dále definujme hierarchii hrubých prostorů s normou a
skalárním součinem

Ul = Range (I1l )

(·, ·)l : I
1
l x, I

1
l y 7→

nl
∑

i=1

xiyi,

‖ · ‖l = (·, ·)
1/2
l .

• Přirozenou bází prostoru Ul = Range (I1l ) jsou slupce
matice I1l .
• V algoritmu počítáme s reprezentacemi vektorů I1l x ∈
Ul vzhledem k bázi dané sloupci I1l , tedy vektory x.
• Normou vektoru I1l x ∈ Ul je Eukleidovská norma vek-
toru x, tedy Eukleidovská norma reprezentace vektoru
I1l x vzhledem k sloupcům matice I

1
l .

• Skalárním součinem vektorů I1l x, I
1
l y ∈ Ul je Euklei-

dovský skalární součin vektorů x,y, tedy Eukleidovský
skalární součin reprezentací vektorů I1l x, I

1
l y vzhledem

k sloupcům matice I1l .
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Theorem 0.1. Předpokládáme existenci lineárních zob-
razení

Ql, l = 1, . . . , L, Q1 = I,

takových, že

‖(Ql −Ql+1)u‖
2
l ≤

C1

̺(Al)
‖u‖2A(0.2)

∀u ∈ U1, l = 1, . . . , L− 1

a

‖Ql‖A ≤ C2 ∀l = 1, . . . , L.(0.3)

Dále uvažujeme hladiče ve tvaru

Sl(xl, fl) = (I −RlAl)xl +Rlfl,

kde Rl jsou symetrické pozitivně semidefinitní matice takové,
že matice I−RlAl jsou Al-symetrické pozitivně semidefinitní
a

CR(Rlu,u)IRl ≥
‖u‖2IRnl

̺(Al)
(0.4)

∀u ∈ IRnl, l = 1, . . . , L− 1,

kde ‖ · ‖IRnl , (·, ·)IRnl značí Eukleidovskou normu a skalární
součin v IRnl. Potom pro operátor šíření chyby E metody
více sítí platí

‖E‖A ≤ 1−
1

CL
, C =

(

1 + C
1/2
2 + (CRC1)

1/2
)2

.
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Poznámka 0.2. Z definice prostoru Ul plyne, že operátor
Ql je možno psát ve tvaru

Ql = I1l Q̃l, Q̃l : U1 → IRnl.

Tato skutečnost, rovnost Al = (I1l )
TAI1l , Q1 = I a rozklad

Ql = Ql −Ql−1 +Ql−1 −Ql−2 + . . .+Q2 −Q1 +Q1

=
l−1
∑

j=1

(Qj+1 −Qj) +Q1

nám umožňuje odhadovat

‖Qlu‖A = ‖
l−1
∑

j=1

(Qj+1 −Qj)u+Q1u‖A

≤
l−1
∑

j=1

‖(Qj −Qj+1)u‖A + ‖Q1u‖A

=
l−1
∑

j=1

‖(I1j Q̃j − I1j+1Q̃j+1)u‖A + ‖u‖A

=
l−1
∑

j=1

‖I1j (Q̃j − Ijj+1Q̃j+1)u‖A + ‖u‖A

=
l−1
∑

j=1

‖(Q̃j − Ijj+1Q̃j+1)u‖Aj
+ ‖u‖A

≤
l−1
∑

j=1

√

̺(Aj)‖(Q̃j − Ijj+1Q̃j+1)u‖IRnj + ‖u‖A

=
l−1
∑

j=1

√

̺(Aj)‖I
1
j (Q̃j − Ijj+1Q̃j+1)u‖j + ‖u‖A

=
l−1
∑

j=1

√

̺(Aj)‖(Qj −Qj+1)u‖j + ‖u‖A.

Výše uvedený odhad spolu s aproximační podmínkou (0.2)
dává

‖Qlu‖A ≤
l−1
∑

j=1

C
1/2
1 ‖u‖A + ‖u‖A = (1 + C

1/2
1 (l − 1)‖u‖A.
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Odtud vidíme, že podmínka (0.3) plyne z aproximační pod-
mínky (0.2) s kvazioptimální konstantou. Aproximační pod-
mínka (0.2) je tudíž podmínkou klíčovou. Z podmínky (0.2)

plyne, že při konstrukci hrubých prostorů je třeba sledovat
dva cíle:
• konstruovat prolongátory tak, že levá strana (0.2) je
co možná nejmenší (aproximace),
• a tak, že spektrální poloměry hrubých matic jsou tak
malé, jak je jen možné, s cílem učinit aproximační pod-
mínku (0.2) co nejslabší (nejsnažší splnit).

Aproximační podmínka (0.2):

‖(Ql −Ql+1)u‖
2
l ≤

C1

̺(Al)
‖u‖2A

7

Metoda zhlazených agregací – základní koncept

Zde popíšeme metodu zhlazených agregací, tedy metodu,
kde prolongátor je konstruován ve tvaru

I ll+1 = SlP
l
l+1,

kde
• Sl je polynom v Al volený tak, aby

̺(Al+1) = ̺((I ll+1)
TAlI

l
l+1) = ̺((SlP

l
l+1)

TAlSlP
l
l+1)

byl co možná nejmenší a
• P l

l+1 je ortogonální matice vytvořená metodou zobec-
něných agregací. Jejím úkolem je zajistit aproximaci.

Jak jsme již řekli, ve snaze splnit klíčovou podmínku konver-
genční věty (0.2) t.j.

‖(Ql −Ql+1)u‖
2
l ≤

Ca

̺(Al)
‖u‖2A,

‖ · ‖l : I
1
l x 7→ (xTx)1/2.

usilujeme o dvě věci:
• minimalizovat levou stranu aproximační podmínky
(aproximace),
• minimalizovat ̺(Al), l = 2, . . . , L, a tím učinit apro-
ximační podmínku co nejslabší (nejsnažší splnit).

Takže,

• P l
l+1 má za úkol minimalizovat levou stranu (0.2)

• prolongátorový hladič Sl má za úkol minimalizovat
̺(Al).

8



Vyložme nyní efekt hlazení prolongátoru. Protože P l
l+1 je

ortogonální matice, je

‖x‖IRnl+1 = ‖P l
l+1x‖IRnl ∀x ∈ IRnl+1,

a můžeme odhadovat

̺(Al+1) = max
x∈IRnl+1

(

(I ll+1)
TAlI

l
l+1x,x

)

IRnl+1

‖x‖2IRnl+1

= max
x∈IRnl+1

(

(SlP
l
l+1)

TAlSlP
l
l+1x,x

)

IRnl+1

‖x‖2IRnl+1

= max
x∈IRnl+1

(

ST
l AlSlP

l
l+1x, P

l
l+1x

)

IRnl

‖P l
l+1x‖

2
IRnl

= max
x∈ Range P l

l+1

(

ST
l AlSlx,x

)

IRnl

‖x‖2IRnl

≤ max
x∈IRnl

(

ST
l AlSlx,x

)

IRnl

‖x‖2IRnl

= ̺(ST
l AlSl).

Závěr:

• ̺(Al+1) ≤ ̺(ST
l AlSl), takže Sl volíme tak, abychom

minimalizovali ̺(ST
l AlSl).

• Jako Sl volíme polynom v Al minimalizující

̺(ST
l AlSl) = ̺(S2

l Al).
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Jako prolongátorový hladič volíme polynom v Al

Sl = I −
4

3

1

λ̄l
Al, λ̄l ≥ ̺(Al).(0.5)

Tuto specifickou volbu zdůvodníme za chvíli. Pro ̺(Al+1)
máme odhad

̺(Al+1) ≤ ̺(ST
l AlSl) = ̺(S2

l Al) = max
t∈σ(Al)

t

(

1−
4

3

1

λ̄l
t

)2

≤ max
t∈[0,λ̄l]

t

(

1−
4

3

1

λ̄l
t

)2

=
1

9
λ̄l,

takže za λ̄l+1 ≥ ̺(Al+1) můžeme vzít

λ̄l+1 =
1

9
λ̄l.(0.6)

Důvodem volby prolongátorového hladiče (0.5) je
skutečnost, že

min
ω∈IR

max
t∈[0,λ̄l]

t

(

1− ω
1

λ̄l
t

)2

= max
t∈[0,λ̄l]

t

(

1−
4

3

1

λ̄l
t

)2

.
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Metoda zobecněných agregací

Standardní agregace:
• Nejjednodušší prolongátor založený na agregacích pro
jednodimenzionální příklad
• P 1

2 pro jednodimenzionální Laplaceovu rovnici
diskretizované na pravidelné síti sestávající z
n1 = 3n2 nodů
• Máme agregáty stupňů volnosti

{1, 2, 3}, {4, 5, 6}, . . . , {n1 − 2, n1 − 1, n1}.

• Sloupce P 1
2 definujeme jako restrikce vektoru jedniček

na příslušné agregáty:

P 1
2 =

































































1 ·
1 ·
1 ·

1 ·
1 ·
1 ·

· · · ·
· · · ·
· · · ·

· 1
· 1
· 1

































































.

• Operátor P 1
2 odpovídá disagregaci dané agregáty

stupňů volnosti

{1, 2, 3}, {4, 5, 6}, . . . , {n1 − 2, n1 − 1, n1}.

• Sloupce P 1
2 sestávající z 0–1 vektorů s disjunktní

nenulovou strukturou
• P 1

2 odpovídá diskrétní po částech konstantní interpo-
laci
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Metoda zobecněných agregací

• Naším cílem je vytvořit hierarchii pomocných
prolongátorů P l

l+1 takových, že pro danou n1×r matici
B1

Range B1 ⊂ Range P 1
l , P 1

l = P 1
2 . . . P

l−1
l(0.7)

l = 1, . . . , L− 1.

• Obor hodnot matice B1 specifikuje, které funkce (vek-
tory na nejjemnější úrovni) budou přesně
reprezentovány na všech úrovních. Podobně jako v [2],
volíme B1 jako generátor módů s nulovou energií, tedy
kernel matice tuhosti bez esenciálních okrajových pod-
mínek.
• Módy s nulovou energií získané z geometrie a definice
elementů jsou dostupné ve většině konečněprvkových
řešičů.
• Předpokládáme že máme matice P 1

2 , . . . , P
l−1
l a Bl

takové, že

P 1
l B

l = B1.

Abychom splnili (0.7), tvoříme souběžně P l
l+1 a nl+1×r

matici Bl+1 tak, že

P l
l+1B

l+1 = Bl,(0.8)

kde Bl bylo vytvořeno spolu s P l−1
l (a dáno na úrovni

l = 1). Tím je zaručeno, že

P 1
l+1B

l+1 = B1.
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Agregáty:

• Naše konstrukce je založena na agregaci supernodů. Na
každé úrovni, stupně volnosti jsou organizovány v ma-
lých disjunktních množinách zvaných supernody (su-
pernody tvoří disjunktní pokrytí množiny všech
stupňů volnosti.) Na nejjemnější úrovni supernody
musí být specifikovány, například jako množiny stupňů
volnosti odpovídající konečněprvkovým vertexům. Na
hrubších úrovních jsou supernody definovány naším al-
goritmem.
• Prolongátor P l

l+1 je konstruován z daného systému
agregátů {Al

i}
Nl

i=1, které tvoří disjunktní pokrytí super-
nodů na úrovni l.
• Agregáty jsou malé množiny supernodů, které tvoří dis-
junktní pokrytí množiny všech supernodů. V ideálním
případě jsou agregáty tvořeny jako nodální okolí vy-
braných supernodů

N (i) = {j : Aij 6= 0} ,

kde i, j jsou supernody a Aij je blok matice Al odpo-
vídající supernodům i, j.
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• V praxi je mnohdy nemožné vytvořit disjunktní
prokrytí z nodálních okolí, proto jsou agregáty oboha-
covány supernody

k : Akj 6= 0 pro nějaké j ∈ N (i).

• Algoritmus tvorby agregátů lze v hrubých rysech po-
psat takto:

Algoritmus 2.

– polož k = 1
– Definuj C jako množinu všech supernodů na úrovni
l.
– Pro všechny supernody i ∈ C
∗ Je-li N (i) ⊂ C, polož Al

k = N (i), C ← C \ N (i)
a k ← k + 1.

– Pro všechny supernody i ∈ C
∗ Najdi agregát Al

k jehož supernody j ∈ Al
k jsou

se supernodem i vázány největšími bloky Aij a
polož Al

k ← A
l
k ∪ {i}.

• Vlastnost (0.8) je vynucována agregát po agregátu;
sloupce P l

l+1 odpovídající agregátu A
l
i jsou tvořeny

ortonormalizovanými restrikcemi sloupců Bl na
agregátAl

i. Pro každý agregát tato konstrukce dá vznik
r stupňům volnosti na hrubé úrovni, které tvoří super-
node. Každý agregát na úrovni l dá tudíž vznik jed-
nomu supernodu na úrovni l + 1.
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Obrázek 0.1. Pomocný prolongátor založený na zobecněných agregacích.
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Algoritmus 3. Pro daný systém agregátů {Al
i}

Nl

i=1 a nl×
r matici Bl splňující P 1

l B
l = B1, vytvoříme prolongátor P l

l+1,
matici Bl+1 splňující (0.8) a supernody na úrovni l + 1 ná-
sledovně:
1. Nechť di značí počet stupňů volnosti odpovídající
agregátu Al

i. Rodzěl nl×r matici Bl do di×r bloků Bl
i,

i = 1, . . . , Nl, z nichž každý odpovídá množině stupňů
volnosti agregátu Al

i (viz Obr. 0.1).
2. Rozlož Bl

i = Ql
iR

l
i, kde Q

l
i je di × r ortogonální matice

a Rl
i je r × r horní trojúhelníková matice.

3. Polož P l
l+1 = diag(Ql

i), a (viz Obr. 0.1)

Bl+1 =

















Rl
1

Rl
2

. . .
Rl

Nl

















.

4. Pro každý agregát Al
i, zhrubování dává vznik r stupňů

volnosti na hrubé úrovni (i−tý blokový sloupec P l
l+1).

Tyto stupně volnosti definují i−tý supernode na hrubé
úrovni.
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Konvergence metody zhlazených agregací

kompozitní agregáty
• Kompozitní agregát Ãl

i je agregát A
l
i chápaný jako

množina stupňů volnosti na nejjemější úrovni
• Formálně je možno kompositní agregáty zavést takto:

Ãl
i = A

l,1
i , kde Al,l

i = Al
i, Al,j−1

i =
⋃

k∈Al,j
i

Aj−1
k .

• Alternativní způsob definice kompozitních agregátů:

Ãl
i = supp P 1

l χ(A
l
i)
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Theorem 0.3. Nechť prolongátorové hladiče Sl jsou dány
formulí

Sl = I −
4

3

1

λ̄ l
Al,

kde

λ̄l =
1

9l−1
λ̄, λ̄ ≥ ̺(A).

Předpokládáme že C1 > 0 je konstanta taková, že existují
lineární zobrazení

Q̃l : IR
n1 → IRnl, l = 1, . . . , L, Q̃1 = I,

taková, že

‖P 1
l Q̃lu− P 1

l+1Q̃l+1u‖
2
IRn1 ≤ C2

1

9l−1

λ̄
‖u‖2A(0.9)

∀u ∈ IRn1, l = 1, . . . , L− 1.

Dále předpokládáme že Rl je symetrická pozitivně definitní
matice splňující (0.4) s konstantou cR > 0 nezávislou na
úrovni.
Potom

‖x̂−MG(x,b)‖A ≤
(

1−
1

c0

)

‖x̂− x‖A ∀x ∈ IRn1,

kde Ax̂ = b, a

c0 =

(

2 + C1cR +
4

3
cR +

1

3
C1

(

1 +
4

3
cR

)

(L− 1)

)2

(L− 1)

Navíc, je–li P : u 7→ MG(0,u), pak P je symetrická matice
a cond(A,P ) ≤ c0.
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Theorem 0.4. Nechť prolongátorový hladič Sl je dán for-
mulí

Sl = I −
4

3

1

λ̄ l
Al,

kde

λ̄l =
1

9l−1
λ̄, λ̄ ≥ ̺(A)

a pomocný prolongátor P l
l+1 je vytvořen Algoritmem 3 po-

mocí n1 × r matice B1 a agregátů {Al
i}

Nl

i=1, l = 1, . . . , L− 1.
Předpokládáme, že existuje konstanta CA > 0 taková, že pro
každý vektor u ∈ IRn1 a každé l = 1, . . . , L− 1 platí

Nl
∑

i=1

min
w∈IRr
‖u− B1w‖2l2(Ãl

i)
≤ CA

9l−1

λ̄
‖u‖2A.(0.10)

Dále předpokládáme že Rl je symetrická pozitivně definitní
matice splňující (0.4) s konstantou cR > 0 nezávislou na
úrovni. Potom,

‖x̂−MG(x,b)‖A ≤
(

1−
1

c0

)

‖x̂− x‖A ∀x ∈ IRn1,

kde Ax̂ = b, a

c0 = (2 + CAcR + (4/3)cR + (1/3)CA (1 + (4/3)cR) (L− 1))2 (L−1).

Dále, pokud P : u 7→MG(0,x), pak P je symetrická matice
a cond(A,P ) ≤ c0.
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1 IntrodutionDamage presents an inelasti load-indued response of solid bodies, whih is typial of quasi-brittle materials. From the physial point of view, it is interpreted as a olletive e�et ofmirostrutural failures, leading �nally to the marosopi ollapse of the struture. Due toobvious reasons, the damage theories have reeived a great attention in the engineering literatureand a onsiderable amount of theoretial, numerial and experimental work has been investedinto understanding and predition of damage proesses. In this ontribution, we present anoverview of available results related to a spei� non-loal rate-independent isotropi damagemodel and its numerial treatment. The major di�erene of the urrent work and the existingapproahes is the fat that the reported numerial simulations are supported by a number ofrigorous mathematial results obtained reently in [1, 5, 7, 8℄.2 The model setupThe ommon theoretial framework for both the analysis and numeris is provided by reentadvanes in the mathematial theory of rate-independent proesses; see [4℄ for a review. In thissetting, the state of a system is desribed by kinematis (displaement �eld u) and an internalvariables (damage level ζ). The time evolution of the system is then governed by the globalminimization of total energy of the system, onsisting of the globally stored and the dissipatedenergy spei�ed later.The global energy minimizer in spae and times is then referred to as the energeti solution tothe damage problem. Its existene for a spei� damage model of the Frémond-Nedjar type [3℄was proven in [1, 6, 8℄ under mild assumptions the problem data. In general, the proedureinvolves the introdution of the ǫ-regularized problem, preventing the omplete disintegrationof the material, and the semi-disretization in time. For a given partition of the time interval
0 = t0 < t1 + τ . . . < tN = T , the time-inremental problem reads as

(uǫ(tk), ζ
ǫ(tk)) ∈ Arg min

(bu,bζ)∈K×Z

[
Eǫ(tk, û, ζ̂) + D(ζ(tk−1), ζ̂)

] for k = 1, 2, . . . ,N, (1)where K denotes the set of kinematially admissible displaements, Z is the set of admissibleinternal variables and the energeti ontributions attain the from



Eǫ(t, û, ζ̂) =

∫

Ω

ǫ+ ζ̂

2
ε(û + uD(t)) : C : ε(û + uD(t)) +

1

2
κ
∣∣∣∇ζ̂

∣∣∣
2

dΩ, (2)
D(ζ̂1, ζ̂2) =





∫

Ω
a(x)

(
ζ̂1(x) − ζ̂2(x)

)
dx if ζ̂1 ≥ ζ̂2 a.e. in Ω

+∞ otherwise (3)where uD denote the time-dependent Dirihlet boundary data, ε(û) is the linearized strainorresponding to a displaement �eld û, C is a fourth-order tensor of elasti sti�ness, κ is anin�uene fator introduing an internal length into the formulation, a denotes an ativationthreshold (related to strength of a material) and the term �+∞� ensures unidiretionality of thedamage evolution. An energeti solution to the omplete damage is then obtained by the limitpassage in time (τ → 0) and regularization parameter ǫ, with an appropriate re-interpretationof kinematis at fully damaged regions [1, 5℄.3 Numerial aspetsIn the numerial treatment, the formulation is onverted to the disrete form by performingthe spatial disretization using the onforming �nite element method. The inremental timeproblem then transforms into a non-onvex large-sale optimization program posed in terms ofnodal displaements and nodal damage values. Following Bourdin [2℄, the speial struture of theproblem is exploited to apply sequential onvex optimization proedure, onverging to a ritialpoint of the objetive funtion. To ensure that the ritial point is a good approximation tothe global minimizer, a simple variant of a time bak-traking algorithm, based on two-sidedenergeti estimates derived in [6℄, is introdued [7℄.
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(a) (b)Figure 1: Example of energetis for a dog-bone shape speimen; (a) without baktraking (energybalane fails), (b) with baktraking (an approximate energeti solution), Eǫ is the globally storedenergy, VarD denotes the umulative dissipative energy.To illustrate the performane of the proposed algorithm, in Figure 1 we present energetis ofa uniaxial tension experiment for a dog-bone shape speimen. The results on�rm that theproposed baktraking algorithm is apable of delivering a solution with lower energies then thebasi sheme. Moreover, it an be shown that the resulting response is (almost) independent ofspatial and temporal disretization. An interested reader is referred to [7℄ for additional details.
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